
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 12 4230 - 4234

4230
IJRITCC | December 2014, Available @ http://www.ijritcc.org

Adaptive Load Balancing Policy for Web Server Custer

Ajay Tiwari

School of Computer Science

Devi Ahilya University (DAVV)

Indore, India

 e-mail: tiwariajay8@yahoo.com

Abstract—The paper highlights the significance of open source software for distributed computing environment and proposes an adaptive load
balancing model using open source software for distributed computing environment. The load balancing strategies used by the model are based
on load of the system. The proposed algorithm uses current load, response ratio and processor utilization of the nodes of the web server cluster to
evaluate the performance.

Keywords- Open Source Software; Distributed Computing; Dynamic Load Balancing;Response Ratio; Scheduling

__*****___

I. INTRODUCTION

Research work in the field of software technology shows

that the preferred software development method always been

the one that seemed to work best within the contemporary

technological and economic constraints, particularly the costs

of computer ownership, programming personnel and data

communications [9]. The idea of Open Source Software came

with the same philosophy in the early days of computing. In

1950s and for many years later, computer manufacturers

released their software free along with the hardware. The

supplied software was in both source code and object code

form. The accompanied software was used as a marketing tool
for the hardware. To run specific applications, computer users

wrote their own or hired computer programmers to write

application software.

The software world observed a transformation in 1964, with

the launch of IBM System 360. It was a standard computer

platform which expanded computer population especially

medium size business organizations. Most of the new

computer owners did not have the resources to hire computer

programmers and therefore an application software vacuum

was created which was filled by software companies. These

companies wrote special purpose software viz. insurance,
railway reservation system etc. and generic software viz.

payroll, inventory management etc. These software were quite

expensive as the software development was done by dedicated

and expensive team of programmers. Initially companies

supplied their software in both source and object code form

which was used for customization at the time of need but later,

due to competition, companies stopped disclosing the source

code.

Another boom was observed in the software world in late

1970s, with the advent of personal computers owing low cost

of computers, the computer population soared and the number
of companies providing software solution for these computers

increased exponentially. For the new PC environment,

software companies invested huge amount and was no longer

feasible for them to disclose their source code in this

competitive era. In the early 1990s, popularity of Internet

changed the work culture of the computer professionals. Now

it was possible for them to work in collaborative manner. This

gave the birth to today’s open source community. Linux was

the most popular open source product of the community. Open

source products were soon available in almost all the

established software categories [9].

The work done in the paper is the extension work of [2].

The rest of the paper is organized as follows. Section II

describes the revolution in the field of Open Source Software.

The proposed architecture and frame work is presented in

Section III. The simulation results are discussed in Section IV.

II. OPEN SOURCE SOFTWARE REVOLUTION

Open Source Software (OSS)/Free Software refer to the
software that are not copyrighted. Software are free and can be

used without any restriction. In OSS/free software, users can

run, copy, modify and distribute (copy of the original or

modified version) the software.

Open source software, together with clusters and grids,
offered a cost effective environment for web-enabled

applications. The cost effective hardware and software

solutions for implementing web technology increases the web

solutions which results processing load on the intranet and

Internet. Load balancing can be effectively used to balance

this workload on cluster, server farm, grids etc. [10][3].

Load balancing is a technique to distribute workload over

two or more resources in order to achieve increased

performance and is achieved by using load balancers. Load

balancer can be a hardware or software and follow some

policies to assign the requests to the resources. Typically,

these can be random, round robin, resource load based,
resource computing power based and least connection based.

Security is one of the additional features of load balancers as

they hide the network and resources behind the scene that are

performing the real task [7][14].

Linux Virtual Server (LVS) is an open source Linux load

scheduling and balancing software which is used to build a

highly available cluster of nodes with high-performance. And

provides services like web service, mail service, ftp service,

VoIP service etc. [6]. Apart from LVS, Red Hat Cluster Suite

is an easy to use cluster software implementation from Linux

leader Red Hat. MySQL has introduced dynamic load
balancing capability to its database platform and enterprise

subscription since 2008. It easily handles multi-core

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 12 4230 - 4234

4231
IJRITCC | December 2014, Available @ http://www.ijritcc.org

processors, large memory systems and proxy servers that serve

as a middleware layer between the client and database server.

It also prioritizes queries and workloads, based on user input.

Xiao et al have suggested a variety of open source software to

support HTTP/S, Mail (POP3, IMAP, SMTP), JMS, TCP,

UDP, VFS, SMS, XMPP, FIX, database, proxy and operating
systems etc [5].

The SimGrid and SimGrid v2 are among the most popular

open source grid simulation tools available to the researchers

[4]. SimGrid provides set of abstractions and functionalities to

build simulator for the custom applications. Its network

topology is fully configurable and the users have to define

topology to suit their needs. The resources in SimGrid are

modeled using two performance characteristics latency and

service rate. It is a discrete event simulator developed on top

of the “SimJava” API and supports the economy based

scheduling algorithms. It supports simulation of computational

Grid as well as the data Grid [15]. Various extensions to
GridSim have been released over the period of time. These

extensions include concept of advance resource reservation,

failure detection, improved network structure & topology and

buffer management across the network [13][11].

III. PROPOSED LOAD BALANCEER MODEL

This section explains the structure of proposed dynamic
load balancer model. The Web Server Cluster (WSC) in

consideration consists of a load balancer and number of

replicated servers. Load balancer receives the client requests

and distributes them to most suitable server of the cluster. The

proposed load balancer comprises of Internal Proxy, Load

Database (LDB) module, Load Controller (LC) module and

Decision Maker (DM) module as shown in Figure 1.1

All the client requests are received and responded by

Internal Proxy of load balancer where it performs compression

and caching to guarantee fast response time for most frequent

requests. As Internal Proxy is only entry point to the web

cluster, it can also be used as firewall wherever required. LDB

stores the current load of the nodes and also stores the value of
response ratio and processor utilization of the nodes to

evaluate the performance of the WSC. Load of the nodes are

determined with the help of heterogeneity factor and queue

length of the nodes. As heterogeneity factor of nodes is

constant, LDB keeps their value until the nodes are alive.

Therefore, only queue length of the nodes is updated in the

LDB for load calculation of the nodes of the WSC. LDB is

updated by LC as well as nodes of the WSC. LC collects the

queue length parameter of the node periodically and updates

LDB whereas nodes of the WSC uses state change driven

policy. According to the policy, a node updates its queue

length value at LDB whenever it changes from one level to
another. The levels are lightly loaded, moderate loaded and

heavily loaded. DM only refers LDB for optimal forwarding

of the client requests. Nodes of the WSC also refer LDB to

migrate processes using sender initiated or receiver initiated

policies.

Two types of communication between load balancer and

nodes of the WSC are possible. One is request-response data

and the other is control information. Request-response is done

between DM and nodes whereas control information

communication takes place between LC and nodes. Algorithm

does not consider communication overheads as these are
negligible.

Addition and removal of nodes (scaling) in the WSC is

handled by LC. If the overall load of WSC increases up to

some predefined level, LC selects a node from available nodes

and makes it available to WSC by updating LDB. Similarly, it

removes some resources during off time when WSC load is

less than a predefined limit by removing entries from LDB.

Health checking of the nodes of the WSC is done during

routine collection of values of their parameters. If LC does not

listen a node for a predetermined time interval, it sends a

message to the node to check whether it is alive or went down

and updates its table accordingly.

A. Infomal Discription of the Proposed Model

The assumptions of the algorithm are as follows:

 The scheduler has perfect information while making

scheduling decision.

 The scheduling as well as communication overheads

are negligible.

 The incoming requests are independent and can be

executed at any time and in any order.

WSC comprises of n replicated nodes, each serving its

queue and interconnected by high-speed network with

negligible communication delay. The nodes are of
heterogeneous nature in term of processor speed, RAM, cache

memory and front side bus. The system is simulated for the

setup of n=10 nodes of varying hardware profile.

Almost all the load balancing algorithms use some load

indices to measure the load of the nodes. Most of the

Web Server Cluster

Load Balancer

LDB

LC

D

M
I
N
T
E
R
N

A

L

P

R

O

X

Y

S
1

S
2

S
n

Internet

User

User

Figure 1.1 Proposed Load Balancer Model

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 12 4230 - 4234

4232
IJRITCC | December 2014, Available @ http://www.ijritcc.org

researchers have considered queue length of the node as load

indicator [1][8]. The proposed algorithm considers

heterogeneity factor along with queue length of the nodes for

lode calculation. For lightly loaded, moderately loaded and

heavily loaded WSC, the scheduler uses different node

selection policies which are as follows:

a) For lightly loaded WSC, scheduling algorithm uses

random policy to distribute requests in which a node is

selected randomly with each node having equal

probability.

b) In moderately and heavy loaded WSC system, scheduling

algorithm uses least loaded policy in which a node is

selected with minimum load.

c) A lightly loaded node uses receiver initiated (pull) policy

to pull the load from the relatively heavily loaded nodes

of WSC.

d) A heavily loaded node uses sender initiated (push) policy

to push the load to the relatively less loaded nodes.

Load Li of ith node in WSC can be computed as:

where, npi is the number of processes on node i, tj is the

remaining service time of process j and HFi is the

heterogeneity factor of node i and can be computed as:

where, PCi is the processing capability of ith node and

calculated on the basis of the nodes processing speed, cache

and RAM.

To test the performance of WSC, the response ratio and

processor utilization indices are being used by the algorithm.

Response ratio R of a process is calculated as follows:

 R = t / (t+w) 0< R ≤ 1

where, t is service time of process and w is the missed
time.

Mean response Rmean time of WSC having n nodes is

calculated as:

 0< Ri ≤ 1

where, Ri is the response ratio of node i and calculated as:

where, tj and wj are the service time and missed time of

process j on node i and npi is the number of processes at node

i.

Similarly, mean processor utilization Umean of WSC

having n nodes is calculated as:

where, Ui is the processor utilization of ith node of WSC.

B. Foraml Discription of the Proposed Model

Algorithm shown in Table 1.1 starts with initialization of
parameters of LDB and nodes of the WSC and describes the
functioning of load balancer. Similarly the algorithm shown in
Table 1.2, describes how load balancer handles the client
requests.

TABLE 1.1 LOAD UPDATING AND BALANCING ALGORITHM

1) Parameters and LDB are initialized.

Thread I // Updation of Load Data Base(LDB) by

Load Controller (LC)

2) Step (i) and (ii) are repeated infinitely

i) LC collects the value of parameters periodically.

ii) LC calculates the load of the nodes and updates the

LDB.

Thread II // Updation of LDB by Nodes of WSC

3) LDB is updated by nodes of the WSC whenever their
parameters value changes from one level to other.

Thread III // Nodes Perform Process Migration

4) Step (i) and (ii) are repeated infinitely

i) A lightly loaded node selects most heavily loaded

node from the LDB and sends a request (pull policy)

for process migration.

ii) A heavily loaded node selects least lightly node from

the LDB and sends a request (push policy) for

process migration.

Thread IV // Health Monitoring by LC

5) Step (i) and (ii) are repeated infinitely

i) LC calls removeResource function periodically to

remove access nodes entry from LDB or the nodes

which goes down abruptly.

ii) LC calls addResource function whenever additional

resources are needed.

TABLE 1.2 REQUEST AND RESPONSE FORWARDING ALGORITHM

Thread //Request forwarding Through DM Module

Step (i) to step (vi) will be repeated infinitely

a) Load balancer waits for the client requests

b) After arrival of requests, if the requested object is in
the internal proxy cache, response is sent back.

c) Else request is forwarded to DM.

d) DM refers the LDB and request is redirected to the

least loaded node.

e) Response is sent back to the internal proxy via DM.

f) Internal proxy caches the result for TTL time and

responds to the client.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 12 4230 - 4234

4233
IJRITCC | December 2014, Available @ http://www.ijritcc.org

IV. SIMULATION AND RESULT ANALYSIS

This section discusses the simulation results and result
analysis.

A. Simulation

To simulate the proposed model real network of six nodes
have been used [12]. Out of six nodes, one node is dedicated as
load balancer with Red Hat Cluster Suite and rest of the
machines are used as the nodes of the cluster. As the nodes of
the cluster are replicated, Apache tomcat and My-SQL are
installed in rest of the five nodes of the cluster. The client
programs also run on the load balancer machine. Internal
Proxy, Decision Maker (DM), Load Data Base (LDB) and
Load Controller (LC) modules are written using multithreaded
approach of Java programming and perform their respective
tasks as discussed in Section III, Table 1.1 and Table 1.2 using
the formula of Section III (A).

A Java function generates artificial requests (workload)
where arrival follows Poisson distribution and service follows
exponential distribution. Artificial workloads have a greater
flexibility as compared to real workloads and are easier to
reproduce. The nodes of the cluster are of different processing
capability and their heterogeneity factor is calculated by using
formula of Section III (A) and stored for load calculation of the
nodes. The proposed model is compared with random, round
robin and weighted round robin algorithms. The same set of
input request is simulated for random, round robin, weighted
round robin and proposed algorithm and mean response time
and mean processor utilization parameters are calculated for all
five nodes using the formula of Section III (A).

TABLE 1.3 MEAN RESPONSE TIME OF THE SERVERS FOR DLB POLICIES

Node ID Random RR WRR Proposed

Node 1 377.24 313.62 287.37 265.26

Node 2 372.12 298.89 319.22 294.18

Node 3 289.72 365.47 279.98 289.74

Node 4 380.23 335.56 299.31 269.83

Node 5 263.46 301.19 331.23 309.67

Figure1.2 Comparison of Mean Response Time of the Servers

B. Simulation Result and Result Analysis

Table 1.3 and Table 1.4 shows the mean response time and
mean server utilization for nodes of the cluster using random,
round robin, weighted round robin and proposed algorithm and
the comparison is depicted in Figure 1.2 and Figure 1.3. For
each algorithm, mean response time and mean server utilization
is computed for a predetermined set of inputs. Table 1.3 and
Figure 1.2 shows that mean response time ranges from 263.46
to 458.24, 298.89 to 365.47, 279.98 to 331.23 and 265.26 to
309.67 for random, round robin, weighted round robin and
proposed algorithm respectively and is dispersed around 79.67,
27.86, 21.49 and 18.25 about the mean. Similarly, as shown in
Table 1.4 and Figure 1.3, the mean server utilization improves
as we move from random to proposed algorithm. Although
upper bound is approximately same for all the algorithms,
lower bound varies from 42% to 75% as we move from random
to proposed algorithm which shows a significant difference in
the mean server utilization. Figure 1.2 and Figure 1.3 show the
smoothness of mean response time and mean server utilization
and one can easily observe that the smoothness improves as we
move from random to proposed algorithm. Whereas the
performance of random is highly zigzag, the results obtained by
proposed algorithm are more consistent.

TABLE 1.4 MEAN SERVER UTILIZATION FOR VARIOUS DLB POLICIES

Node ID Random RR WRR Proposed

Node 1 76 91 68 81

Node 2 49 65 93 93

Node 3 93 84 70 79

Node 4 56 49 81 75

Node 5 42 84 58 83

Figure1.3 Comparison of Mean Server Utilization

V. SUMMARY

Open source software are necessary for the rapid
development of IT based applications particular in the

developing countries to draw the benefits of the technology for

the common men. The popularity of distributed computing

over past decades has posed a challenge to the researchers and

software developers. The use of dynamic load balancing

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 12 4230 - 4234

4234
IJRITCC | December 2014, Available @ http://www.ijritcc.org

should be the essential feature of the distributed system

software to have better performance and improved response

time. Dynamic load balancing is one of the critical scheduling

problems in DCE on a cluster of replicated servers which faces

a constant pressure of increased network traffic and diverse

load levels. The problem is aggravated with the growing
complexity of web based applications and services.

The chapter investigated various open source software used
in the area of distributed computing and presents a load
balancing model using these software. The proposed model is
compared with random, round robin and weighted round robin.
Mean response time and mean server utilization parameters are
calculated for performance comparison. Simulation results
show that the performance of the proposed model is better than
random, round robin and weighted round robin scheduling
algorithms. The proposed load balancing model can be useful
for incorporating load balancing features in existing and new
open source software.

ACKNOWLEDGMENT

I would like to give my heartfelt thanks to my Ph D
supervisor Dr. Priyesh Kanungo for taking on multitude of
roles that provided guidance and direction for this research. I
would like to express deep sense of gratitude for his truly
insightful thoughts that envisioned the topic of the paper.

REFERENCES

[1] A Karimi, Z Faraneh , A Jantan and A R Ramli, “A New Fuzzy
App.roach for Dynamic Load Balancing Algorithm,”
International Journal of Computer Science and Information
Security (IJCSIS), Vol. 6, No 1, 2009, pp. 1-5.

 [2] A. Tiwari, P. Kanungo, “A Model for Dynamic Load Balancing

in Open Source Software for Distributed Computing
Environment,” Proceeding of CONSEG2012: 6th International
Conference on Software Engineering IEEE, Indore, Sept 2012,
pp. 1-5.

[3] Chin Lu and S Lau, An adaptive load balancing algorithm for
heterogeneous distributed systems with multiple task classes,
16th IEEE International Conference on Distributed Computing
Systems (ICDCS '96), 1996.

[4] H. Mehta, P. Kanungo and M. Chandwani, Performance
Enhancement of Scheduling Algorithms in Clusters and Grids

using Improved Dynamic Load Balancing Techniques, WWW
2011, March, 2011, Hyderabad, India. ACM 978-1-4503-0637-
9/11/03

[5] HL. Xiao, Y. Zhu, L.M. Ni, Z. Xu, “Incentive-based scheduling
for market-like computational grids,” IEEE Transactions on

Parallel and Distributed Systems, Vol. 19, No. 7, Jul 2008, pp.
903-913

[6] J Aweya, M Ouellette, D, Montuno, B. Doray and K Felske, An
adaptive load balancing scheme for web servers, International
Journal of Network Management, pp 3-39, 2002.

[7] L Cherkasova, M DeSouza and Shankar Ponnekanti,
Performance Analysis of Content-Aware Load Balancing
Strategy FLEX: Two Case Studies, Annual Hawaii International

Conference on System Sciences, 2001.
[8] L Wenzheng, S Hongyan and N Algorithm, “Load Balancing in

Cluster Systems,” Proceedings of the 2010 14th International
Conference on Computer Supp.orted Cooperative Work in
Design, IEEE, 2010 .

[9] M K Campbell, “Historical Reflections: Will the Future of
Software be Open Source?” Communications of the ACM, Vol.
51, No. 10, Oct 2008, pp. 21-23.

[10] M Colajanni, P S Yu and V Cardellini, Dynamic Load Balancing
in Geographically Distributed Heterogeneous Web Servers, 18th
IEEE International Conference on Distributed Computing
Systems (ICDCS'98), pp. 295-302, 1998.

[11] P Werstein, H Situ and Z Huang, Load Balancing in a Cluster
Computer, Seventh International Conference on Parallel and
Distributed Computing, Applications and Technology,
(PDCAT’06) IEEE, 2006.

[12] R Sharma, “Dynamic Load Balancing in Network of
Workstations of Different Computing Powers,” Ph D Thesis,
Department of Computer Engineering, IET, Devi Ahilya
University, Indore, MP, India, Jul 2013.

[13] V Cardellini, M Colajanni and P. Yu, Dynamic Load Balancing
on Web-Server Systems, Internet Computing Volume 3, Issue 3,
IEEE, ISSN: 1089-7801, pp 28 – 39, May 1999.

[14] W. Yang, S. Li and D. Cheng, A Load Balancing Strategy in
Web Cluster System, Third International Conference on Natural

Computation, IEEE, 2007.
[15] Z Lin, L Ping and S Yuan, A Content-based Dynamic Load-

Balancing Algorithm for Heterogeneous Web Server Cluster,
Journal of Intelligent Computing and Applications (JICA),
ISSN: 0974–410X, pp 21-29, Jan– June 2009.

http://www.ijritcc.org/

