
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 12 4198 - 4204

4198
IJRITCC | December 2014, Available @ http://www.ijritcc.org

A Hash Based Frequent Itemset Mining using Rehashing

Sirisha Aguru
1

Department of Computer Scince and Engineering
1
,

Sri Vasavi Engineering College

Pedatadepalli,India.
1
sirib4u1@gmail.com

Batteri Madhava Rao
2

Department of Computer Applications
2

Sri Vasavi Engineering College

Pedatadepalli,India.
2
madhavbatteri@gmail.com

Abstract—Data mining is the use of automated data analysis techniques to uncover previously undetected relationships among data items.

Mining frequent item sets is one of the most important concepts of data mining. Frequent item set mining has been ahighly concerned field of

data mining for researcher for over two decades. It plays an essential role in many data mining tasks that try to find interesting itemsets from

databases, such as association rules, correlations, sequences, classifiers and clusters . In this paper, we propose a new association rule mining

algorithm called Rehashing Based Frequent Item set (RBFI) in which hashing technology is used to store the database in vertical data format.

To avoid hash collision and secondary clustering problem in hashing, rehashing technique is utilized here. The advantages of this new hashing

technique are easy to compute the hash function, fast access of data and efficiency. This algorithm provides facilities to avoid unnecessary scans

to the database.

Keywords-- Data Mining ;Maximal frequent item set; Frequent Item set; Collision; Rehashing ;Hashing; Double hashing

__*****___

I. INTRODUCTION

Data mining is the process of discovering meaningful

new and interesting correlation, patterns and trends by sifting

through large amounts of data, by using pattern recognition

technologies as well as statistical and mathematical

technique [63]. Now a days Data mining has been widely

used and unifies research in various fields such as computer

science, networking and engineering, statistics, databases,

machine learning and Artificial Intelligence etc. There are

different techniques that also fit in this category including

association rule mining, classification and clustering as well

as regression [1]. Finding association rules is the core

process of data mining and it is the most popular technique

has been studied by many researchers.. It is mining for

association rules in database of sales transactions between

items which is important field of the research in dataset [2].

The benefits of these rules are detecting unknown

relationships, producing results which can used as a basis for

decision making and prediction.

Frequent itemset mining has wide applications. The

research in this field is started many years before but still

emerging. This is a part of many data mining techniques like

association rule mining, classification, clustering, web

mining and correlations. The same technique is applicable to

generate frequent sequences also. In general, frequent

patterns like tree structures, graphs can be generated using

the same principle. There are many applications where the

frequent itemset mining is applicable. In short, they can be

listed as market-basket analysis, bioinformatics, networks

and most in many analyses. Agarwal et. al [4] is the first

person to state this problem. Later many algorithms were

introduced to generate frequent itemsets.

A. Frequent Item sets

Let I = { I1, I2, I3, …, Im} be a set of items. Let D be the

transactional database where each transaction T is a set of

items such that T ⊆ I. Each transaction is associated with an

identifier TID. A set of items is referred as item set. An item

set that contains K items is a K-item set. The number of

transactions in which a particular item set exists gives the

support or frequency count or count of the item set. If the

support of an itemset I satisfies the minimum support

threshold, then the item set I is a frequent itemset.

Association rules are usually required to satisfy a user-

specified minimum support and a user-specified minimum

confidence at the same time. Association rule generation is

usually involving two steps :

(1)Finding out all the frequent item sets which are greater

than or equal to user-specified minimum support threshold

(2)Generating association rules from frequent item sets[5].

II. LITERATURE SURVEY

Methods for finding the maximal elements include All-

MFS [6], which works by iteratively attempting to extend a

working pattern until failure. A randomized version of the

algorithm that uses vertical bit-vectors was studied, but it

does not guarantee every maximal pattern will be returned.

MaxMiner [7] is another algorithm for finding the maximal

elements. It uses efficient pruning techniques to quickly

narrow the search. MaxMiner employs a breadthfirst

traversal of the search space; it reduces database scanning by

employing a lookahead pruning strategy DepthProject [8]

finds long itemsets using a depth first search of a

lexicographic tree of itemsets, and uses a counting method

based on transaction projections along its branches. It returns

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 12 4198 - 4204

4199
IJRITCC | December 2014, Available @ http://www.ijritcc.org

a superset of the MFI and would require post-pruning to

eliminate non-maximal patterns. FPgrowth [9] uses the novel

frequent pattern tree (FP-tree) structure, which is a

compressed representation of all the transactions in the

database. Mafia [10] is the most recent method for mining

the MFI. Mafia uses three pruning strategies to remove non-

maximal sets. The first is the look-ahead pruning first used in

MaxMiner. The second is to check if a new set is subsumed

by an existing maximal set. Apriori is the first efficient

algorithm that performs onlarge databases which was

proposed by Agrawal and Srikant [11] and Mannila et. al

[12] independently at the same time. They proposed their

cooperative work in [13] MaxMiner [7] performs a breadth-

first traversal of the search space as well, but also performs

lookaheads to prune out branches of the tree. The lookaheads

involve superset pruning, using apriori in reverse (all subsets

of a frequent itemset are also frequent). In general,

lookaheads work better with a depth-first approach, but

MaxMiner uses a breadth-first approach to limit the number

of passes over the database. DepthProject [8] performs a

mixed depth-first traversal of the tree, along with variations

of superset pruning. Instead of a pure depth-first traversal,

DepthProject uses dynamic reordering of children nodes.

With dynamic reordering, the size of the search space can be

greatly reduced by trimming infrequent items out of each

node’s tail. Also proposed in DepthProject is an improved

counting method and a projection mechanism to reduce the

size of the database. The other notable maximal pattern

methods are based on graph-theoretic approaches.

MaxClique and MaxEclat [14] both attempt to divide the

subset lattice into smaller pieces (―cliques‖) and proceed to

mine these in a bottom-up Apriori-fashion with a vertical

data representation. The VIPER algorithm has shown a

method based on a vertical layout can sometimes outperform

even the optimal method using a horizontal layout [15].

Other vertical mining methods for finding FI are presented

by Holsheimer [17] and Savasere et al. [18]. The benefits of

using the vertical tid-list were also explored by Ganti et al.

[16].

III. PAPER ORGANIZATION

The remainder of the paper is organized as follows:

Section-IV presents the different hashing techniques used for

frequent itemsets. Section-V presents the proposed work with

algorithm. Section-VI presents the example of the proposed

work. Section-VII, deals with the experimental results

graphically. Section-VIII gives the conclusion.

IV. HASHING TECHNIQUES

A. AprioriAlgorithm using hashing

Our hash based Apriori implementation, uses a data

structure that directly represents a hash table. This algorithm

proposes overcoming some of the weaknesses of the Apriori

algorithm by reducing the number of candidate k-item sets.

In particular the 2-itemsets, since that is the key to improving

performance. This algorithm uses a hash based technique to

reduce the number of candidate itemsets generated in the first

pass. It is claimed that the number of item sets in C2

generated using hashing can be small so that the scan

required to determine L2 is more efficient.

For example, when scanning each transaction in the

database to generate the frequent 1-itemsets, L1, from the

candidate 1-itemsets in C1, we can generate all of the 2-

itemsets for each transaction, hash(i.e) map them into the

different buckets of a hash table structure, and increase the

corresponding bucket counts . A 2-itemset whose

corresponding bucket count in the hash table is below the

support threshold cannot be frequent and thus should be

removed from the candidate set. Such a hash based apriori

may substantially reduce the number of the candidate k-item

sets examined.

B. Hashing Techniques

A hash table (hash map) is a data structure used to

implement an associative array, a structure that can map keys

to values. A hash table uses a hash function to compute an

index into an array of buckets or slots, from which the correct

value can be found..Hash functions are primarily used in

hash tables, to quickly locate a data record given its search

key . Specifically, the hash function is used to map the search

key to an index; the index gives the place in the hash table

where the corresponding record should be stored. Ideally,

the hash function will assign each key to a unique bucket, but

this situation is rarely achievable in practice (usually some

keys will hash to the same bucket). Instead, most hash table

designs assume that hash collisions—different keys that are

assigned by the hash function to the same bucket—will occur

and must be accommodated in some way.

1) Separate Chaining

In separatechaining, each bucket is independent, and has

some sort of list of entries with the same index. The time for

hash table operations is the time to find the bucket (which is

constant) plus the time for the list operation. (The technique

is also called open hashing or closed addressing.)

2) Open addressing

 In another strategy, called open addressing, all entry

records are stored in the bucket array itself. When a new

entry has to be inserted, the buckets are examined, starting

with the hashed-to slot and proceeding in some probe

sequence, until an unoccupied slot is found. When searching

for an entry, the buckets are scanned in the same sequence,

until either the target record is found, or an unused array slot

is found, which indicates that there is no such key in the

table.[12] The name "open addressing" refers to the fact that

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 12 4198 - 4204

4200
IJRITCC | December 2014, Available @ http://www.ijritcc.org

the location ("address") of the item is not determined by its

hash value. (This method is also called closed hashing; it

should not be confused with "open hashing" or "closed

addressing" that usually mean separate chaining.)

Well-known probe sequences include:

 Linear probing, in which the interval between probes

is fixed (usually 1)

 Quadratic probing, in which the interval between

probes is increased by adding the successive outputs

of a quadratic polynomial to the starting value given

by the original hash computation

 Double hashing, in which the interval between probes

is computed by another hash function

A drawback of all these open addressing schemes is that the

number of stored entries cannot exceed the number of slots in

the bucket array. In fact, even with good hash functions, their

performance dramatically degrades when the load factor

grows beyond 0.7 or so. For many applications, these

restrictions mandate the use of dynamic resizing, with its

attendant costs.Open addressing schemes also put more

stringent requirements on the hash function: besides

distributing the keys more uniformly over the buckets, the

function must also minimize the clustering of hash values

that are consecutive in the probe order. Using separate

chaining, the only concern is that too many objects map to

the same hash value; whether they are adjacent or nearby is

completely irrelevant.

3) Rehashing

Rehashing is a technique used in hash tables to resolve hash

collisions, when two different values to be searched for

producing the same hash key. It is a popular collision

resolution technique used on hash tables.Like linear probing

,it uses one hash value as a starting point and then

repeatedly steps forward an interval ,until the desired value

is located; an empty location is reached , or the entire table

has been searched. .In Linear probing, Quadratic probing

and Double hashing, we have to guess the number of

elements we need to insert into a hash table. Whatever our

collision policy is, the hash table becomes inefficient when

load factor is too high. The load factor is a measure of how

full the hash table is allowed to get before its capacity is

automatically increased..Rehashing technique resolves the

collisions that are encountered during various collision

resolution techniques used in open addressing starategy.This

is done by increasing the size of a hash table, and restoring

all of the items into the hash table using the hash function

h(k)=k%m where m is the new length of the hash table after

increasing it..

V. PROPOSED WORK

 In general the structure of the transactional database

may be in two different ways – Horizontal data format and

Vertical data format. In this paper, transactions of database

are stored in the vertical format. In vertical data format, the

data is represented as item-tidset format, where item is the

name of the item and Tidset is the set of transaction

identifiers containing the item.

 In this paper, a new Rehashing Based Frequent Item

set(RBFI) generation algorithm of the vertical data format

for the transactional database is proposed. In this first, the

data is represented as an item and Transaction id set

(Tidset) format.To avoid collisions, primary clustering

problem encountered in linear probing[19] and secondary

clustering problem encountered in quadratic probing[20]

rehashing technique is used.

1) RBFI Algorithm

Input: D, a database of transactions where all are

represented as vertical hash table.

Process logic: Finding the frequent item sets.

Output: Generating the frequent item sets.

begin

 m=0;k=0;

 Get minimum support,min_sup;

 Generate the new database in (Items, Tidset) format

 For all Items I ɛ Dk do

Increment m;

 n=2*m+1;

 Dk=D;

do

 begin

 Make a hash table of size n. Map items on to the

buckets. If collision occurs then use Rehashing technique.

Create a linked list for the k
th

level to maintain the

transaction from the database Dk .

 for all Items I ɛ Dk do

 begin

 Generate a subset of items.

 end.

 Find common transaction between the subsets in the kth

level.

 Eliminate the subset <=min_sup.

 Dk = Items >=min_sup.

 Increment k.

 end until frequent item set is found.

 End.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 12 4198 - 4204

4201
IJRITCC | December 2014, Available @ http://www.ijritcc.org

VI. EXAMPLE OF THE PROPOSED WORK

 Consider Table 1.Initial Transaction Database.For our

convinience, Let us replace these real time items

Benoquin,Dialyte,Ibuprofen,Nutradrops,Veetids with

I1,I2,I3,I4,I5 respectively.

TABLE 1.INITIAL TRANSACTION DATABASE

TransactionID Itemsets

T1 Benoquin,Dialyte,Ibuprofen,Nutradrops

Dialyte, Nutradrops

T2 Benoquin,Veetids

T3 Benoquin, Dialyte,Ibuprofen

T4 Benoquin,Nutradrops

T5 Dialyte,Ibuprofen

T6 Benoquin,Ibuprofen

T7 Dialyte,Nutradrops

T8 Benoquin,Dialyte

T9 Ibuprofen,Nutradrops

T10

TABLE 2. TRANSACTION DATABASE

TransactionID Itemsets

T1 I1,I2,I3,I4

T2 I2,I4

T3 I1,I5

T4 I1,I2,I3

T5 I1,I4

T6 I2,I3

T7 I1,I3

T8 I2,I4

T9 I1,I2

T10 I1,I3

By taking minimum support count=3 , the following table

shows Tid for all 5 items

TABLE-3: VERTICAL FORMAT OF TRANSACTIONAL DATABASE

Itemsets TransactionID

I1 T1,T3,T4,T5,T7,T9

I2 T1,T2,T4,T6,T8,T9

I3 T1,T4,T6,T7,T10

I4 T1,T2,T5,T8,T10

I5 T2,T3

The items in the transaction are hashed based on the hash
function:

h (k) = (order of item k) mod n.

The n value is determined by using the formula (2m + 1)

where m is the number of items in the database. The

transaction in which I1 are present is connected in the form

of linked list and the first node denotes the number of

occurrences of the item in the transactions. It can be

observed from Figure .1 that I1 is hashed to 1
st

location and it

is determined using the hash function. Similarly all items are

hashed into the hash table. The cross symbol indicates the

end of the items in the list. Here, the linked list is created

based on the item set and not on the transactions because the

transactions are more so that it occupies more memory and it

is very difficult to access the items. There is a link between a

transactions in each item sets. The linked list is created for all

levels of frequent item set generation. In the next higher

level, the item subsets become low and it is easy to find

frequent item sets of that level. The process continues until

the exact frequent item set is found.This is shown in the

below figure.1

TABLE -4: VERTICAL FORMAT OF THE TRANSACTIONAL

DATABASE IN THE SECOND LEVEL

ITEM

SET TID

{I1, I2} T1, T4, T9

{I1, I3} T1, T4, T7

{I1, I4} T1, T5

{I2, I3} T1, T4, T6

{I2, I4} T1, T2, T8

{I3, I4} T1, T10

TABLE 5 VERTICAL FORMAT OF THE TRANSACTIONAL

DATABASE IN THE THIRD LEVEL

Item set Tid set

{I1,I2,I3} T1,T4

{I1,I2,I4} T1

{I2,I3,I4} T1

The item set in the second level from Table.4. are hashed

based on the hash function,

h(k)=((order of X)*10+order of Y)mod n.

Here , the item sets are mapped to 1,2,3,1,2,1.Here , there is a

collision for {I1,I2}{I2,I3};they are mapped to 1 and

{I1,I2}{I3,I4} are mapped to 1 and {I1,I3}{I2,I4} are

mapped to 2.Rehashing technique is used to overcome this

collision.

Let h(k) be a hash function that maps element k to an integer

in [0,j+1] , where j = 2*m+1 and m is the size of the table.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 12 4198 - 4204

4202
IJRITCC | December 2014, Available @ http://www.ijritcc.org

Fig. 1.: Hash table including links for the transactional database in the first

level.
Here whenever collisions occur after mapping the frequent

item sets then an immediate check for the number of buckets

still vacant in the hash table must be done. If it is observed

that the hash table is either half –filled or is more than half

of the size of the hash table is occupied then it isappropriate

to apply rehashing technique using which we can double

the size of the hash table thus providing enough buckets for

all frequent item sets without any collisions.

Figure .2.Hash table including links for the transaction database at second

level

 Here , we increase the size of the hash table by doubling

the actual size , so that the resulting hash table size is also a

prime number. Thus the size of the hash table after

increasing is j= (2*m+1), where m=11 (initial hash table

size) .Therefore , j=23.Now,we apply the hash function.

h(k)=((order of X)*10+order of Y)mod j

It better avoids primary ,secondary clustering problems and

some collisions that may still occur using Double hashing

technique also.

 After rehashing the collision is resolved and the 2-

itemsets {I1,I2} ,{I1,I3},{I2,I3},{I2,I4},{I3,I4} ,{I1,I4} are

mapped to 12 ,13,0,1,11,14 buckets respectively as shown

in figure.2. In the second level, item sets {I1,I2}

,{I1,I3},{I2,I3},{I2,I4},{I3,I4} whose support counts are

greater than or equal to 3 are said to be frequent itemsets .It

can be observed from Table 4 and Figure.2. The 3-item sets

are generated from frequent itemsets of second level as

shown in the Table .5

The itemsets in the third level are hashed based upon the

hash function

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 12 4198 - 4204

4203
IJRITCC | December 2014, Available @ http://www.ijritcc.org

H(k)=((order of X)*100+(order of Y)*10+order of Z)mod j.

Using this hash function the itemsets

{I1,I2,I3},{I1,I2,I4},{I2,I3,I4} are mapped to location 8,9

and 4 respectively as shown in the Figure.3.

 The proposed algorithm (RBFI) performs better because

Frequent Itemset is calculated in a simplest way. The

structure of transactional database is vertical data format.

This makes easy to perform several tasks. In this format,

support also need not be calculated separately. In this case,

support is directly given by the number of transactions in the

Tidset of each FI or it can be obtained from the count value

in the header node of the corresponding linked list. It is

about 2 to 3 times faster than other hash based technique. It

quickly finds an empty location in the hash table to map the

items. The RBFI performs better with large number of

transactions and long item sets.

Here, this algorithm doesn’t require performing separate

pruning. Hash data structure can be maintained to store the

database.

Figure .3.Hash table including links for the transaction database at third

level

VII. EXPERIMENTAL RESULTS

Figure 4. Shows a time comparison between Apriori

algorithm,HBFI-DH and RBFI algorithms for various

values of thresholds. From the diagram it can be seen that

the time taken for RBFI is considerably reduced. In this

method the time taken to hash items in to vertical hash table

is comparatively very low. For various support counts the

time taken to find a frequent item set is less when compared

with Apriori and HBFI-DH.\

Figure .4 .Time Comparisions between Apriori,HBFI-Dh and
RBFI

VIII. CONCLUSION

In this paper, an effective algorithm for the initial candidate

set generation has been proposed. Our experimental results

demonstrate that it is better than Apriori and HBFI-

DH.HBFI-DH is a hash based algorithm and it is very

effective for the generation of candidate item sets and it

eliminates the items which are not needed for the generation

of frequent item sets before the generation of candidate 2-

item sets. The algorithm works well but it suffers from

collisions (secondary clustering) problem.
We presented RBFI, an algorithm for finding frequent item

sets. Our experimental results demonstrate that RBFI is

better than Apriori and other hash based methods because it

efficiently map the item sets in the hash table and it also

avoids the primary clustering problem and secondary

clustering.The vertical data format representation of the

database leads to the easy manipulations on hash data

structure.RBFI uses all the bins and hence the phenomenon

of secondary clustering will not occur with Rehashing.

References

[1] The Gartner Group, www.gartner.com.

[2] M.S.V.K. Pang-Ning Tan, ―Data mining, in Introduction

to datamining”, Pearson International Edition, 2006,

pp.2-7.

[3] J. Han, M. Kamber, ―Data Mining: Concepts and

Techniques 3rdedition‖, Morgan Kaufmann Publishers,

2013.

[4] R. Agrawal, T. Imielienski and A. Swami,

―Miningassociation rules between sets of items in large

databases. In P. Bunemann and S. Jajodia, editors,

Proceedings of the 1993 ACM SIGMODConference on

Management of Data, Pages 207-216, Newyork, 1993,

ACM Press.

[5] R. Agrawal, T. Imielinski, and A. Swami, ―Mining

Association RulesBetween Sets of Items in Large

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 12 4198 - 4204

4204
IJRITCC | December 2014, Available @ http://www.ijritcc.org

Databases,‖ Proc. ACM SIGMOD, May1993, pp. 207–

216.

[6] D. Gunopulos, H. Mannila, and S. Saluja, ―Discovering

all the most specific sentences byrandomized

algorithms‖, In Intl. Conf. onDatabase Theory, Jan.

1997.

[7] Roberto Bayardo, ―Efficiently mining long patterns from

databases‖, in ACM SIGMOD Conference 1998.

[8] R. Agarwal, C. Aggarwal and V. Prasad, ―A tre

projection algorithm for generation of frequent itemsets‖,

Journal of Parallel and Distributed Computing, 2001

[9] J. Han, J. Pei, and Y. Yin. ―Mining frequent patterns

without candidate generation‖, In ACM SIGMOD Conf.,

May 2000

[10] Burdick, D., M. Calimlim and J. Gehrke, ―MAFIA: A

maximal frequent itemset algorithm for transactional

databases‖, In International Conference on Data

Engineering, pp: 443 – 452, April 2001, doi =

10.1.1.100.6805

[11] Heikki Mannila, Hannu Toivonen, and A. Inkeri

Verkamo, ―Efficient Algorithms for discovering

association rules‖, in Usama M. Fayyad and Ramasamy

Uthurusamy, editors, AAAI Workshop on Knowledge

Discovery on Databases (KDD-94),pages 181-192,

Seattle, Washington, 1994, AAAIPress.

[12] R. Agrawal and R. Srikant, ―Fast algorithms for mining

association rules‖, in Proceedings of the 20th

International Conference on Very Large Databases

(VLDB’94), Santiago de Chile, September 12-15, pages

487-499, Morgan Kaufmann, 1994.

[13] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A.

I. Verkamo, ―Fast discovery of association rules‖,

Advances in Knowledge Discovery andData Mining,

pages 307-328, MIT Press, 1996.

[14] M. J. Zaki, ―Scalable Algorithms for Association

Mining‖, IEEE Transactions on Knowledge and Data

Engineering, Vol. 12, No. 3, pp 372-390, May/June

2000.

[15] P. Shenoy, J. R. Haritsa, S. Sudarshan, G. Bhalotia, M.

Bawa, and D. Shah, ―Turbo-charging Vertical Mining of

Large Databases‖, SIGMOD Conference 2000: 22-33.

[16] V. Ganti, J. E. Gehrke, and R. Ramakrishnan, ―DEMON:

Mining and Monitoring Evolving Data‖, ICDE 2000:

439-448

[17] M. Holsheimer, M. L. Kersten, H. Mannila, and

H.Toivonen, ―A Perspective on Databases and Data

Mining‖, KDD 1995: 150-155.

[18] A. Savasere, E. Omiecinski, and S. Navathe, ―An

efficient algorithm for mining association rules in large

databases‖, 21st VLDB Conference, 1995.

[19] A.M.J. Md. Zubair Rahman, P. Balasubramanie and P.

Venkata Krihsna ―A Hash based Mining Algorithm for

Maximal Frequent Itemsets using Linear Probing‖.

Infocomp Journal of Computer Science 2009, Vol.8,

No.1, pp.14-19.

[20] M. Krishnamurthy, A. Kannan , R. Baskaran, R.

Deepalakshmi ―Frequent Item set Generation Using

Hashing-Quadratic Probing Technique‖ ―European

Journal of Scientific Research ISSN 1450-216X Vol.50

No.4 (2011), pp. 523-532.

