
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 12 4189 - 4193

4189

IJRITCC | December 2014, Available @ http://www.ijritcc.org

Survey on Ensuring Distributed Accountability for Data Sharing in the Cloud

Gayatri Karvande

ME, Compuer Engineering

JSPMNTC RSSOER Savitribai Phule Pune University

Pune, India

karvande.gayatri@gmail.com

Prof. Megha Borole

Assistant Professor, Computer Engineering

JSPMNTC RSSOER Savitribai Phule Pune University

Pune, India

megha.borole@gmail.com

Abstract—Cloud computing is the use of computing of sources that are delivered as a service over a network for example on internet. It enables

highly scalable services to be easily utilized over the Internet on an as needed basis. Important characteristic of the cloud services is that users’

data are usually processed remotely in unknown machines that users do not operate. It can become a substantial barrier to the wide taking on

cloud services. To address this problem highly decentralized responsibility framework to keep track of the actual usage of the user’s data in the

cloud. In this work has automated logging and distributed auditing mechanism. The Cloud Information Accountability framework proposed in

this work conducts distributed auditing of relevant access performed by any entity, carried out at any point of time at any cloud service provider.

It conations two major elements: logger and log harmonizer. This methodology will also take concern of the JAR file by converting the JAR into

obfuscated code which will adds an additional layer of security to the infrastructure. Rather than this here in this work, increase the security of

user’s data by provable data control for integrity verification.

Keywords-Cloud computing, data sharing, information accountability framework, Provable data possession.

__*****___

I. INTRODUCTION

Cloud services where services made available to users on
demand via the internet, by providing for dynamically scalable
and often virtualized resources as a service over the Internet.
Now Days, there are a number of noticeable commercial and
individual cloud computing services like Amazon, Google,
Microsoft, Yahoo, and Salesforce [19]. Examples of cloud
services include online backup solutions and data storage ,
Web-based e-mail services, hosted office suites and document
collaboration services, database processing more. Furthermore,
users may not know which machines actually process and host
their data. While enjoying the advantage brought by this new
technology, users also start concerned about losing control of
their own data. The data processed on clouds are often
deployed, causes to a number of issues related to accountability
like the handling of personally identifiable information for
cloud user. Such issues are becoming a noteworthy barrier to
the wide adoption of cloud services [30]. It is more important
for cloud users that monitor their usage of their data in the
cloud. For example, users have to be able to ensure that their
data are handled according to the service level agreements
made at the time they sign on for services in the cloud.
Traditional access control mechanisms uses centralized
approach that is it uses centralized server in distributed
environments which are not suitable, because of the following
features characterizing cloud environments. First one is the,
data handling can be outsourced/deployed by the direct cloud
service provider (CSP) to other user in the cloud and these
users can also instruct the tasks to others, and so on. Second,
users are allowed to join and leave the cloud in a flexible
manner. Because of this characteristic, data handling in the
cloud goes through a complex and dynamic service chain
which does not exist in traditional environments. To overcome
the above problems, new novel approach, namely Cloud
Information Accountability (CIA) framework, based on the
concept of information accountability [44]. Unlike the privacy
protection technologies which are built on the hide the
information or lose it view, information accountability focuses
on keeping the data usage transparent and trackable. CIA

framework provides end-to end accountability in a highly
distributed fashion. Most important feature of the CIA is that its
ability of maintaining lightweight and powerful accountability
that combines aspects of access control, usage control and
authentication. In CIA, data owners can track not only whether
or not the service-level agreements are being honored, but also
enforce access and usage control rules as needed. Associated
with the accountability feature, also develop two distinct modes
for auditing: push mode and pull mode. The push mode
mentions to logs being periodically sent to the data owner or
stakeholder while the pull mode mentions to an alternative
approach whereby the user (or another authorized party) can
retrieve the logs as needed. In CIA design presents substantial
challenges, including uniquely identifying cloud service
providers, ensuring the reliability of the log, adapting to a
highly decentralized infrastructure, etc. In this existing
approach toward addressing these issues is to hold and extend
the programmable capability of JAR (Java ARchives) files to
automatically log the usage of the users’ data by any entity in
the cloud. Users will send their data along with any policies
according to their choice such as access control policies and
logging policies that they want to enforce, enclosed in JAR
files, to cloud service providers. Any access to the data will
trigger an automated and authenticated logging mechanism
local to the JARs. We refer to this type of enforcement as
―strong binding‖ since the policies and the logging mechanism
travel with the data. This strong binding exists even when
copies of the JARs are created; thus, the user will have control
over his data at any location. Such decentralized logging
mechanism meets the dynamic nature of the cloud but also
imposes challenges on ensuring the integrity of the logging. To
cope with this issue, we provide the JARs with a central point
of contact which forms a link between them and the user. It
records the error correction information sent by the JARs,
which allows it to monitor the loss of any logs from any of the
JARs. Moreover, if a JAR is not able to contact its central
point, any access to its enclosed data will be denied. Currently,
we focus on image files since images represent a very common
content type for end users and organizations (as is proven by
the popularity of Flickr [14]) and are increasingly hosted in the

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 12 4189 - 4193

4190

IJRITCC | December 2014, Available @ http://www.ijritcc.org

cloud as part of the storage services offered by the utility
computing paradigm featured by cloud computing. Further,
images often reveal social and personal habits of users, or are
used for archiving important files from organizations. In
addition, our approach can handle personal identifiable
information provided they are stored as image files (they
contain an image of any textual content, for example, the SSN
stored as a .jpg file). We tested our CIA framework in a cloud
testbed, the Emulab testbed [42], with Eucalyptus as
middleware [41].

II. RELATED WORK

In this, we study on related works, which addresses the
privacy and security issues in the cloud. Then, we briefly
discuss works which adopt similar techniques as our approach
but serve for different purposes.

A. Cloud Privacy and Security

Cloud computing has raised a range of important privacy
and security issues [19], [25], [30]. Such issues are due to the
fact that, in the cloud, users’ data and applications reside—at
least for a certain amount of time—on the cloud cluster which
is owned and maintained by a third party.

Concerns arise since in the cloud it is not always clear to
individuals why their personal information is requested or how
it will be used or passed on to other parties. To date, little work
has been done in this space, in particular with respect to
accountability. Pearson et al. have proposed accountability
mechanisms to address privacy concerns of end users [30] and
then develop a privacy manager [31].

Their basic idea is that the user’s private data are sent to the
cloud in an encrypted form, and the processing is done on the
encrypted data. The output of the processing is deobfuscated by
the privacy manager to reveal the correct result. However, the
privacy manager provides only limited features in that it does
not guarantee protection once the data are being disclosed. In
[7], the authors present a layered architecture for addressing the
end-to-end trust management and accountability problem in
federated systems. The authors’ focus is very different from
ours, in that they mainly leverage trust relationships for
accountability, along with authentication and anomaly
detection.

Further, their solution requires third-party services to
complete the monitoring and focuses on lower level monitoring
of system resources. Researchers have investigated
accountability mostly as a provable property through
cryptographic mechanisms, particularly in the context of
electronic commerce [10], [21].

Arepresentative work in this area is given by [9]. The
authors propose the usage of policies attached to the data and
present a logic for accountability data in distributed settings.
Similarly, Jagadeesan et al. recently proposed a logic for
designing accountability-based distributed systems [20]. In
[10], Crispo and Ruffo proposed an interesting approach related
to accountability in case of delegation. Delegation is
complementary to our work, in that we do not aim at
controlling the information work-flow in the clouds. In a
summary, all these works stay at a theoretical level and do not
include any algorithm for tasks like mandatory logging.

To the best of our knowledge, the only work proposing a
distributed approach to accountability is from Lee and
colleagues [22]. The authors have proposed an agent-based
system specific to grid computing. Distributed jobs, along with
the resource consumption at local machines are tracked by

static software agents. The notion of accountability policies in
[22] is related to ours, but it is mainly focused on resource
consumption and on tracking of sub jobs processed at multiple
computing nodes, rather than access control.

B. Other Related Techniques

With respect to Java-based techniques for security, our
methods are related to self-defending objects (SDO) [17]. Self-
defending objects are an extension of the object-oriented
programming paradigm, where software objects that offer
sensitive functions or hold sensitive data are responsible for
protecting those functions/data. Similarly, we also extend the
concepts of object-oriented programming. The key difference
in our implementations is that the authors still rely on a
centralized database to maintain the access records, while the
items being protected are held as separate files. In previous
work, we provided a Java-based approach to prevent privacy
leakage from indexing [39], which could be integrated with the
CIA framework proposed in this work since they build on
related architectures. In terms of authentication techniques,
Appel and Felten [13] proposed the Proof-Carrying
authentication (PCA) framework. The PCA includes a high
order logic language that allows quantification over predicates,
and focuses on access control for web services. While related to
ours to the extent that it helps maintaining safe, high-
performance, mobile code, the PCA’s goal is highly different
from our research, as it focuses on validating code, rather than
monitoring content. Another work is by Mont et al. who
proposed an approach for strongly coupling content with access
control, using Identity-Based Encryption (IBE) [26].

We also leverage IBE techniques, but in a very different
way. We do not rely on IBE to bind the content with the rules.
Instead, we use it to provide strong guarantees for the
encrypted content and the log files, such as protection against
chosen plaintext and ciphertext attacks.

In addition, our work may look similar to works on secure
data provenance [5], [6], [15], but in fact greatly differs from
them in terms of goals, techniques, and application domains.
Works on data provenance aim to guarantee data integrity by
securing the data provenance.

They ensure that no one can add or remove entries in the
middle of a provenance chain without detection, so that data are
correctly delivered to the receiver. Differently, our work is to
provide data accountability, to monitor the usage of the data
and ensure that any access to the data is tracked.

Since it is in a distributed environment, we also log where
the data go. However, this is not for verifying data integrity,
but rather for auditing whether data receivers use the data
following specified policies.

Along the lines of extended content protection, usage
control [33] is being investigated as an extension of current
access control mechanisms. Current efforts on usage control are
primarily focused on conceptual analysis of usage control
requirements and on languages to express constraints at various
level of granularity [32], [34]. While some notable results have
been achieved in this respect [12], [34], thus far, there is no
concrete contribution addressing the problem of usage
constraints enforcement, especially in distributed settings [32].
The few existing solutions are partial [12], [28], [29], restricted
to a single domain, and often specialized [3], [24], [46].
Finally, general outsourcing techniques have been investigated
over the past few years [2], [38]. Although only [43] is specific
to the cloud, some of the outsourcing protocols may also be
applied in this realm. In this work, we do not cover issues of

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 12 4189 - 4193

4191

IJRITCC | December 2014, Available @ http://www.ijritcc.org

data storage security which are a complementary aspect of the
privacy issues.

III. CLOUD INFORMATION ACCOUNTABILITY

In this, we present an overview of the Cloud Information
Accountability framework. The Cloud Information
Accountability framework has automated logging and
distributed auditing of relevant access performed by any entity,
carried out at any point of time at any cloud service provider. It
has two important parts: logger and log harmonizer.

A. Major Components

There are two important parts of the CIA, the first being the
logger, and the second being the log harmonizer. The logger is
the component which is strongly coupled with the user’s data,
so that it is downloaded when the data are accessed, and is
copied whenever the data are copied. Logger is responsible for
logging access to that instance or copy. The log harmonizer
forms the central part which allows the user access to the log
files. The logger is strongly coupled with user’s data. Its main
tasks include automatically logging access to data items that it
contains, encrypting the log record using the public key of the
content owner, and periodically sending them to the log
harmonizer. It may also be configured to ensure that access and
usage control policies associated with the data are honored. For
example, a data owner can specify that user X is only allowed
to view but not to modify the data. The logger will control the
data access even after it is downloaded by user X. The logger
requires only minimal support from the server (e.g., a valid
Java virtual machine installed) in order to be deployed. The
tight coupling between data and logger, results in a highly
distributed logging system, therefore meeting our first design
requirement. Furthermore, since the logger does not need to be
installed on any system or require any special support from the
server, it is not very intrusive in its actions, thus satisfying our
fifth requirement. Finally, the logger is also responsible for
generating the error correction information for each log record
and sends the same to the log harmonizer. The error correction
information combined with the encryption and authentication
mechanism provides a robust and reliable recovery mechanism,
therefore meeting the third requirement. The log harmonizer is
responsible for auditing. Being the trusted component, the log
harmonizer generates the master key. It holds on to the
decryption key for the IBE key pair, as it is responsible for
decrypting the logs. Alternatively, the decryption can be carried
out on the client end if the path between the log harmonizer and
the client is not trusted. In this case, the harmonizer sends the
key to the client in a secure key exchange. It supports two
auditing strategies: push and pull. Under the push strategy, the
log file is pushed back to the data owner periodically in an
automated fashion. The pull mode is an on-demand approach,
whereby the log file is obtained by the data owner as often as
requested. These two modes allow us to satisfy the
aforementioned fourth design requirement. In case there exist
multiple loggers for the same set of data items, the log
harmonizer will merge log records from them before sending
back to the data owner.

The log harmonizer is also responsible for handling log file
corruption. In addition, the log harmonizer can itself carry out
logging in addition to auditing. Separating the logging and
auditing functions improves the performance. The logger and
the log harmonizer are both implemented as lightweight and
portable JAR files. The JAR file implementation provides

automatic logging functions, which meets the second design
requirement.

Figure 1. Overview of the cloud information accountability framework.

B. Data Flow

The CIA framework consist of combining data, users,

logger and harmonizer is sketched in Fig. 1. At the beginning,
each user creates a pair of public and private keys based on
Identity-Based Encryption [4] (step 1 in Fig. 1). This IBE
scheme is a Weil-pairing-based IBE scheme, which protects
us against one of the most prevalent attacks to our architecture
as described in Section 7. Using the generated key, the user will
create a logger component which is a JAR file, to store its data
items.

The JAR file includes a set of simple access control rules
specifying whether and how the cloud servers, and possibly
other data stakeholders (users, companies) are authorized
to access the content itself. Then, he sends the JAR file to the
cloud service provider that he subscribes to. To authenticate
the CSP to the JAR (steps 3-5 in Fig. 1), we use
OpenSSLbased certificates, wherein a trusted certificate
authority certifies the CSP. In the event that the access is
requested by a user, we employ SAML-based authentication
[8], wherein a trusted identity provider issues certificates
verifying the user’s identity based on his username. Once the
authentication succeeds, the service provider (or the user) will
be allowed to access the data enclosed in the JAR. Depending
on the configuration settings defined at the time of creation, the
JAR will provide usage control associated with logging, or will
provide only logging functionality. As for the logging, each
.time there is an access to the data, the JAR will automatically
generate a log record, encrypt it using the public key distributed
by the data owner, and store it along with the data (step 6 in
Fig. 1). The encryption of the log file prevents unauthorized
changes to the file by attackers. The data owner could opt to
reuse the same key pair for all JARs or create different key
pairs for separate JARs. Using separate keys can enhance the
security (detailed discussion is in Section 7) without
introducing any overhead except in the initialization phase. In

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 12 4189 - 4193

4192

IJRITCC | December 2014, Available @ http://www.ijritcc.org

addition, some error correction information will be sent to the
log harmonizer to handle possible log file corruption (step 7 in
Fig. 1). To ensure trustworthiness of the logs, each record is
signed by the entity accessing the content. Further, individual
records are hashed together to create a chain structure, able to
quickly detect possible errors or missing records. The
encrypted log files can later be decrypted and their integrity
verified. They can be accessed by the data owner or other
authorized stakeholders at any time for auditing purposes with
the aid of the log harmonizer (step 8 in Fig. 1). As discussed in
Section 7, our proposed framework prevents various attacks
such as detecting illegal copies of users’ data. Note that our
work is different from traditional logging methods which use
encryption to protect log files. With only encryption, their
logging mechanisms are neither automatic nor distributed.
They require the data to stay within the boundaries of the
centralized system for the logging to be possible, which is
however not suitable in the cloud. Example 2. Considering
Example 1, Alice can enclose her photographs and access
control policies in a JAR file and send the JAR file to the cloud
service provider. With the aid of control associated logging
(called AccessLog in Section 5.2), Alice will be able to enforce
the first four requirements and record the actual data access. On
a regular basis, the push-mode auditing mechanism will inform
Alice about the activity on each of her photographs as this
allows her to keep track of her clients’ demographics and the
usage of her data by the cloud service provider. In the event of
some dispute with her clients, Alice can rely on the pull-mode
auditing mechanism to obtain log records.

IV. AUTOMATED LOGGING MECHANISM

In this section, we first elaborate on the automated logging

mechanism and then present techniques to guarantee

dependability.

5.1 Logger Structure

The CIA framework consist a logger component which is

basically a nested Java JAR file that stores a user‟s data items

and corresponding log files. JAR file consists of one outer

JAR enclosing one or more inner JARs. Each inner JAR

consists of encrypted data, class files to assist retrieval of log

files and a log file for each encrypted item. The encryption is

done using Weil-pairing-based IBE scheme. Outer JAR

consist multiple inner JARs, access policy and class file that

authenticates the server or the users and one more class file for

finding the correct inner JAR. This enables logger component

to handle authentication of entities which want to access the

data stored in the JAR file. Logging occurs at any access to the

data in the JAR, and new log entries are appended

sequentially, in order of creation LR= (r1, r2 . . . rk). Each

record ri is encrypted individually and appended to the log file.

In particular, a log record takes the following form:

rk = (id, action, T, loc, h((id, action, T, loc)ri-1…r1), sig)

Where,

rk = log record

id = user identification

action = perform on user's data

T = Time at location loc

loc = Location

h((id, action, T, loc)ri-1…r1) = checksum component

sig = Signature of record by server

Checksum of each record is calculated and it is stored with

data. Checksum is computed using hash function [37].

B. Log Harmoniser

A log harmonizer has two main responsibilities: first is to deal

with copies of JARs and second is to recover corrupted logs.

The harmonizer is implemented as a JAR file. It does not

contain the user‟s data items being audited, but it has class

files for both a server and a client processes to allow it to

communicate with its logger components. The harmonzer

stores error correction information sent from its logger

components, as well as the user‟s IBE decryption key, to

decrypt the log records and handle any duplicate records.

Duplicate records result from copies of the user‟s data Jars.

Here, user‟s data are strongly coupled with the logger

component in a data JAR file, the logger will be copies

together with the user‟s data.

Figure. 2. The structure of the JAR file.

C. Generation of Encryption Keys

The traditional method to protect sensitive data from being

outsourced to third parties is to store encrypted data on

servers, while the decryption keys are disclosed to authorize

users only. An identity-based encryption scheme is specified

by four randomized algorithms: Set, Extract, Encrypt,Decrypt:

Set (): It take input a security parameter k and returns

parameters and master-key. The system parameters has

decryption of a finite message space M, and a description of a

finite cipher text space C. In this, the system parameters will e

publicly known, while the master-key will be known only to

the ―Private Key Generator" (PKG).

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 12 4189 - 4193

4193

IJRITCC | December 2014, Available @ http://www.ijritcc.org

Extract (): It takes as input parameters, master-key, and an

arbitrary ID € {0, 1}*, and returns a private key d.Where ID is

an arbitrary string that will be used as a public key, and d is

the corresponding private decryption key. Extract Algorithm is

used to extracts a private key from the given public key.

Encrypt (): It takes as input parameters, ID, and M € M. It

returns a ciphertext C € C.

Decrypt (): It takes as input parameters, ID, C € C, and a

private key d. It return M € M. Decrypt the message using

private key.

V. SECURITY DISCUSSION

We now analyze possible attacks to our framework. We

assume that attackers may have sufficient Java programming

skills to disassemble a JAR file and prior knowledge of our

CIA architecture. We first assume that the JVM is not

corrupted, followed by a discussion on how to ensure that this

assumption holds true.

A. Attacks on JAR files:

The common attack that we can assume is accessing the data

in JAR file without being noticed. This kind of attacks can be

found out by auditing. In this, if someone tries to download the

JAR files, the actions are recorded by the logger and the log

record is sent to the user. By this steps data owner will be

have knowledge of his/her JAR file download.

B. Unauthorized user:

If some unauthorized user who don’t have permission to

access that data, in this first we have to check the his/her

integrity by the authentication system before giving the access

to actual data. Let us consider third party tries to access the

data or hack the data. But he will receive the disassembled Jar

file and log record which is encrypted and if he/she need to

decrypt it to get the actual data, and also breaking the

encryption is computationally complex.

VI. CONCLUSION

It is more important today, to secure unwanted and

unauthorized disclosure of their confidential data from the

third party. In this paper, the authors have studied and review

the security and privacy issues in cloud computing. This paper

presents effective mechanism, which performs authentication

of users and create log records of each data access by the user.

Data owner has ability to audit his content on cloud, and he

can get the confirmation that his data is safe on the cloud. Data

owner also able to know the duplication of data made without

his knowledge. Data owner has secure storage his data on

cloud using this mechanism and data usage is transparent,

using this mechanism.

ACKNOWLEDGMENT

The authors would like to thanks the Department of Computer

Engineering JSPM’s College of Engineering & Research,

Pune, Indiafor the guidance and cooperation.

REFERENCE

[1] Smitha Sundareswaran, Anna C. Squicciarini and Dan Lin,

"Ensuring Distributed Accountability for Data Sharing in

the Cloud,", IEEE Transaction on dependable a secure

computing, VOL. 9, NO. 4, pg 556- 568, 2012.

[2] B.Crispo and G.Ruffo, ―Reasoning about Accountability

within Delegation‖ Proc. Third Int‟l Conf. Information and

Comm. Security (ICICS), pp. 251-260, 2001.

[3] S. Pearson, Y. Shen, and M. Mowbray," A privacy

Manager for Cloud Computing," Proc. Int'l Conf. Cloud

Computing (cloudcom), pp.90- 106, 2009.

[4] S. Pearson and A. Charlesworth, "Accountability as a Way

Forward for Privacy Protection in the Cloud, "Proc First

Int'l conf. Cloud Computing, 2009.

[5] R. Corin, S. Etalle, J.I. den Hartog, G. Lenzini, and I.

Staicu, ―A Logic for Auditing Accountability in

Decentralized Systems,‖ Proc. IFIP TC1 WG1.7 Workshop

Formal Aspects in Security and Trust, pp. 187-201, 2005.

[6] A. Squicciarini , S. Sundareswaran and D. Lin, " Preventing

Information Leakage from Indexing in the Cloud," Proc.

IEEE Int'l Conf. Cloud Computing, 2010

[7] Q. Wang, C. Wang, K. Ren, W. Lou and J. Li,‖Enabling

public auditability and data dynamics for storages security

incloud computing‖, in INFOCOM.IEEE,2010,pp. 525-

533.

[8] C.Wang, Q. Wang, K. Ren, and W. Lou, ―Privacy-

preserving public auditing for data storage security in cloud

computing,‖in INFOCOM. IEEE, 2010, pp. 525–533.

[9] D. Boneh and M.K. Franklin, ―Identity-Based Encryption

from the Weil Pairing,‖ Proc. Int‟l Cryptology Conf.

[10] HP Cloud Website

[11] Advances in Cryptology,pp. 213-229, 2001.B. Schneier,

Applied Cryptography: Protocols, Algorithms, and Source

Code in C. John Wiley & Sons, 1993.

[12] http://en.wikipedia.org/wiki/Identity-based_encryption

