
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 12 3879 – 3883

3879
IJRITCC | December 2014, Available @ http://www.ijritcc.org

Data Anonymization Using Map Reduce on Cloud based A Scalable Two-Phase

Top-Down Specialization

Zorige Priyanka
M.Tech (CSE) Student

GietEnggcollege

Rajahmundry,

Andhra Pradesh, India

Vamsi.priyanka5@gmail.com

K Nagaraju
Associate professor
Department of Cse

GietEnggcollegeRajahmundry

Andhra Pradesh, India

nagarajuknr.k@gmail.com

Dr. Y Venkateswarlu
Professor & Head

Department of CSE

GIET Engg College,

Rajahmundry,

Andhra Pradesh, India

yalla_venkat@yahoo.com

Abstract—A large number of cloud services require users to impart` private data like electronic health records for data analysis or Mining,

bringing privacy concerns. Anonymizing information sets through generalization to fulfill certain security prerequisites, for example, k-

anonymity is a broadly utilized classification of protection safeguarding procedures At present, the scale of information in numerous cloud

applications increments immensely as per the Big Data pattern, in this manner making it a test for normally utilized programming instruments to

catch, oversee, and process such substantial scale information inside a bearable slipped by time. As an issue, it is a test for existing

anonymization methodologies to accomplish security protection on security touchy extensive scale information sets because of their inadequacy

of adaptability. In this paper, we propose a versatile two-stage top-down specialization (TDS) methodology to anonymize huge scale information

sets utilizing the Map reduce schema on cloud. Experimental evaluation results demonstrate that with our approach, the scalability and efficiency

of TDS can be significantly improved over existing approaches.

Index Terms: Data anonymization, top-down specialization, MapReduce, cloud, privacy preservation

__*****___

I. INTRODUCTION:

At present Cloud computing, a disruptive trend, poses a

Significantbrunt on current IT industry and investigate

communities [1], [2], [3]. Cloud computing provides

enormous computation power and storage capacity via

utilizing a large number of commodity computers together,

enabling users to deploy applications cost-effectively without

heavy infrastructure investment. Cloud users can reduce huge

upfront investment of IT infrastructure, and concentrate on

their own core business.

Data anonymization has been extensively studied and

widely adopted for data privacy preservation in non

interactive data publishing and sharing scenarios [4]. Data

anonymization refers to hiding identity and/or sensitive data

for owners of data records. Then, the privacy of an individual

can be effectively preserved while certain aggregate

information is exposed to data users for diverse analysis and

mining. A variety of anonymization algorithms with different

anonymization operations have been proposed [5], [6], [7],

[8]. However, the scale of data sets that need anonymizing in

some cloud applications increases extremely in accordance

with the cloud computing and Big Data trends [1], [9]. Data

sets have become so large that anonymizing such data sets is

becoming a considerable challenge for traditional

anonymization algorithms. The researchers have begun to

investigate the scalability problem of large-scale data

anonymization [10], [11].

Large-scale data processing frameworks like MapReduce

[12] have been integrated with cloud to provide powerful

computation capability for applications. So, it is promising to

adopt such frameworks to address the scalability problem of

anonymizing large-scale data for privacy preservation. In our

research, we leverage MapReduce, a widely adopted parallel

data processing framework, to address the scalability

problem of the top-down specialization (TDS) approach [12]

for large-scale data anonymization. The TDS approach,

offering a good tradeoff between data utility and data

consistency, is widely applied for data anonymization [5],

[13], [14], [15]. Most TDS algorithms are centralized,

resulting in their inadequacy in handling largescale data sets.

Although some distributed algorithms have been proposed

[13], [15], they mainly focus on secure anonymization of

data sets from multiple parties, rather than the scalability

aspect. As the MapReduce computation paradigm is

relatively simple, it is still a challenge to design proper

MapReduce jobs for TDS

In this paper, we propose a highly scalable two-phase

TDS approach for data anonymization based on MapReduce

on cloud. To make full use of the parallel capability of

MapReduce on cloud, specializations required in an

anonymization process are split into two phases. In the first

one, original data sets are partitioned into a group of smaller

data sets, and these data sets are anonymized in parallel,

producing intermediate results. In the second one, the

intermediate results are integrated into one, and further

anonymized to achieve consistent k-anonymous [23] data

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 12 3879 – 3883

3880
IJRITCC | December 2014, Available @ http://www.ijritcc.org

sets. We evaluate our approach by conducting experiments

on real-world data sets. Experimental results demonstrate

that with our approach, the scalability and efficiency of TDS

can be improved significantly over existing approaches.

This paper is organized as follows: In Section 2,

formulates the two-phase TDS approach, and Section We

empirically evaluate our approach in Section 3. Finally, we

conclude this paper and discuss future work in Section 4.

II. TWO-PHASE TOP-DOWN SPECIALIZATION

(TPTDS)

The sketch of the TPTDS approach explained in section

2.1. the TPTDS has three components namely, data partition,

anonymization level merging, and data specialization are

detailed in Sections 2.2, 2.3, and 2.4, respectively.

2.1 Sketch of Two-Phase Top-Down Specialization

We propose a TPTDS approach to conduct the

computation required in TDS in a highly scalable and

efficient fashion. The two phases of our approach are based

on the two levels of parallelization provisioned by

MapReduce on cloud. Basically, MapReduce on cloud has

two levels of parallelization, i.e., job level and task level. Job

level parallelization means that multiple MapReduce jobs

can be executed simultaneously to make full use of cloud

infrastructure resources. Combined with cloud, MapReduce

becomes more powerful and elastic as cloud can offer

infrastructure resources on demand, for example, Amazon

Elastic MapReduce service [16]. Task level parallelization

refers to that multiple mapper/reducer tasks in a MapReduce

job are executed simultaneously over data splits. To achieve

high scalability, we parallelizing multiple jobs on data

partitions in the first phase, but the resultant anonymization

levels are not identical. To obtain finally consistent

anonymous data sets, the second phase is necessary to

integrate the intermediate results and further anonymized

entire data sets. Details are formulated as follows.

In the first phase, an original data set D is partitioned into

smaller ones. Let Di, 1 ≤ i≤ p, denote the data sets partitioned

from D the, where p is the number of partitions.

 𝐷𝑖

𝑝

𝑖=1

,𝐷𝑖 𝐷𝑗 ,𝐷𝑗 = Ø, 1 ≤ 𝑖 ≤ p

The details of how to partition D will be discussed in

Section 2.2. Then, we run a subroutine over each of the

partitioned data sets in parallel to make full use of the job

level parallelization of MapReduce. The subroutine is a

MapReduce version of centralized TDS (MRTDS) which

concretely conducts the computation required in TPTDS.

Algorithm 1 depicts the sketch of the two-phase TDS

approach.

Algorithm 1. Sketch Of Two-Phase TDS (TPTDS).

Input: Data set D, anonymity parameters k, kI and the

number of partitions p.

Output: Anonymous data set D*

1. Partition D into Di,1 _ i _ p.

2. Execute MRTDS(Di, kl, ALo) AL1i, 1 ≤ i ≤ p

in parallel as multiple MapReduce jobs.

3. Merge all intermediate anonymization levels

into one merge(ALi1, ALi2,……. ALip)

AL1

4. Execute MRTDS(D, k, ALI) AL* to

achievek-anonymity.

5. Specialize D according to AL* Output D*

In the Partition Step, a data record here can be treated as

a point in an m-dimension space, where m is the number of

attributes. Thus, the intermediate anonymization levels

derived fromDi, 1 ≤i ≤ p, can be more similar so that we can

get a better merged anonymization level. Random sampling

technique is adopted to partition D, which can satisfy the

above requirement. Specifically, a random number rand, 1 ≤

rand≤p, is generated for each data record. A record is

assigned to the partition Drand. Algorithm 2 shows the

MapReduce program of data partition. Note that the number

of Reducers should be equal to p, so that each Reducer

handles one value of rand, exactly producing p resultant files.

Each file contains a randomsample of D. the data partition

algorithm is shown below

Algorithm 2. Data Partition Map & Reduce.

Input: Data record (IDr, r), r € D, partition parameter p.

Output: Di, 1 ≤i≤ p.

Map: Generate a random number rand,where 1 ≤ rand ≤

p; emit (rand, r).

Reduce: For each rand, emit (null, list(r)).

Once partitioned data sets Di, 1 ≤ i ≤ p. are obtained,

werun MRTDS(D, k, ALo) on these data sets in parallel

toderive intermediate anonymization levels AL*I, 1 ≤ i ≤ p

Then, we run a subroutine over each of the partitioned

data sets in parallel to make full use of the job level

parallelization of MapReduce In the second step, all

intermediate anonymization levels are merged into one. The

merged anonymization level is denoted as ALI . The merging

process is formally represented as function merge(AL‟1,

AL‟2, ………., AL‟p} -> AL‟ where AL‟ denotes the final

anonymization level

Data Specialization

An original data set D is concretely specialized for

anonymization in a one-pass MapReduce job. After

obtaining the merged intermediate anonymization level ALI,

we run MRTDS(D, k,AL‟) on the entire data set D, and get

the final anonymization level AL*. Then, the data set D, is

anonymized by replacing original attribute values in D with

the responding domain values in AL*. Details of Map and

Reduce functions of the data specialization MapReduce job

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 12 3879 – 3883

3881
IJRITCC | December 2014, Available @ http://www.ijritcc.org

are described in Algorithm 3. The Map function emits

anonymous records and its count. The Reduce function

simply aggregates these anonymous records and counts their

number. An anonymous record and its count represent a QI-

group. The QI-groups constitute the final anonymous data

sets

Algorithm 3. Data Specialization Map & Reduce.

Input: Data record (IDr, r), r € D.; Anonymization level

AL*.

Output: Anonymous record (r*, count).

Map: Construct anonymous record r* = p1 (p2, p3 . . .

pm,sv), pi, 1 ≤ i≤ m, is the parent of a specialization in

currentAL and is also an ancestor of vi in r1 emit (r*, count).

Reduce: For each r*, sum = ∑ count; emit (r*, sum).

III. RESULTS AND DISCUSSIONS

To evaluate the effectiveness and efficiency of our two

phase approach, we compare it with the centralized TDS

approach proposed in [5], denoted as CentTDS. CentTDS is

the state-of-the-art approach for TDS anonymization.

Scalability and data utility are considered for the

effectiveness. For scalability, we check whether both

approaches can still work and scale over large-scale data sets.

Data utility is measured by the metric ILoss, a general

purpose data metric proposed in [17]. Literally, ILoss means

information loss caused by data anonymization. Basically,

higher ILoss indicates less data utility. The execution time of

CentTDS and TPTDS are denoted as TCent and TTP,

respectively.

The overheads of our approach are mainly introduced by

the MapReduce built-in operations and the parallelization in

the first phase of TPTDS. Built-in MapReduce operations

like data splitting and key-value pair sorting and transmission

will cause overheads. The overheads are hard to

quantitatively measure as they are implementation-,

configuration-, and algorithm-specific. The extra

specializations in the first phase incur overheads affecting the

efficiency of TPTDS heavily.

Experiment Evaluation: Experiment Settings

Our experiments are conducted in a cloud environment

named U-Cloud. U-Cloud is a cloud computing environment.

The system overview of U-Cloud has been depicted in Fig. 2.

The computing facilities of this system are located among

several labs at UTS. On top of hardware and Linux operating

system (Ubuntu), we install KVM virtualization software

[18] that virtualizes the infrastructure and provides unified

computing and storage resources. To create virtualized data

centers, we install OpenStack open source cloud environment

[19] for global management, resource scheduling and

interaction with users. Further, Hadoop [20] clusters are built

based on the OpenStack cloud platform to facilitate large-

scale data processing.

We use Adult data set [21], a public data set commonly

used as a de facto benchmark for testing anonymization

algorithms [6], [13]. We generate data sets by enlarging the

Adult data set according to the approach in [13].Both TPTDS

and CentTDS are implemented in Java. Further, TPTDS is

implemented with standard Hadoop MapReduce API and

executed on a Hadoop cluster built on OpenStack. The k-

anonymity parameter is set as 50 throughout all experiments.

Each round of experiment is repeated 20 times. The mean of

the measured results is regarded as the representative.

We conduct experiments to evaluate the effectiveness and

efficiency of our approach. In this we compare TPTDS with

CentTDS from the perspectives of scalability and efficiency.

In this proposed method, we measure the change of

execution time TCent and TTP with respect to S when p = 1.

The size S varies from 50 MB to 2.5 GB. The 2.5 GB data

set contains nearly 2:5 x 107 data records. The scale of data

sets in our experiments is much greater than that in [5] and

[13]. Thus, the data sets in our experiments are big enough to

evaluate the effectiveness of our approach in terms of data

volume or the number of data records. Note that ILCent=

ILTP because TPTDS is equivalent to MRTDS when p = 1.

So, we just demo the results of execution time. The results of

proposed method are listed in Fig.2 and 3.

Figure2 : Change of execution time with respect to data

size: TPTDS versus CentTDS.

Figure 3: Change of execution time with respect to data

size: TPTDS versus CentTDS.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 12 3879 – 3883

3882
IJRITCC | December 2014, Available @ http://www.ijritcc.org

Fig. 2 shows the change of TTP and TCent with respect

to the data size ranging from 50 to 500 MB. From Fig. 2, we

can see that both TTP and TCent go up when data size

increases although some slight fluctuations exist. The

fluctuations are mainly caused by the content of data sets.

TCent surges from tens of seconds to nearly 10,000 seconds,

while TTP increase slightly. The dramatic increase of TCent

illustrates that the overheads incurred by maintaining linkage

structure and updating statistic information rise considerably

when data size increases. Before the point S= 250 MB, TTP

is greater than TCent. But after the point, TTP is greater than

TCent, and the difference between TCent and TTP becomes

larger and larger with the size of data sets increasing. The

trend of TTP and TCent indicates that TPTDS becomes more

efficient compared with CentTDS for largescale data sets.

In our experiments, CentTDS fails due to

insufficientmemory when the size of data set is greater than

500 MB.Hence, CentTDS suffers from scalability problem

for largescaledata sets. To further evaluate the scalability

andefficiency of TPTDS, we run TPTDS over data sets

withlarger sizes. Fig 3 shows the change of TTP with respect

tothe data size ranging from 500 MB to 2.5 GB. It can be

seenfrom Fig. 3 that TTP grows linearly and stably with

respectto the size of data sets. Based on the tendency of TTP,

wemaintain that TPTDS is capable of scaling over large-

scaledata sets efficiently.

The above experimental results demonstrate that

ourapproach can significantly improve the scalability

andefficiency compared with the state-of-the-art TDS

approachwhen anonymizing large-scale data sets.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have investigated the scalability

problem of large-scale data anonymization by TDS, and

proposed a highly scalable two-phase TDS approach using

MapReduce on cloud. Data sets are partitioned and

anonymized in parallel in the first phase, producing

intermediate results. Then, the intermediate results are

merged and further anonymized to produce consistent k-

anonymous data sets in the second phase. We have creatively

applied MapReduce on cloud to data anonymization and

deliberately designed a group of innovative MapReduce jobs

to concretely accomplish the specialization computation in a

highly scalable way. Experimental results on real-world data

sets have demonstrated that with our approach, the scalability

and efficiency of TDS are improved significantly over

existing approaches. In cloud environment, the privacy

preservation for data analysis, share and mining is a

challenging research issue due to increasingly larger volumes

of data sets, thereby requiring intensive investigation. We

will investigate the adoption of our approach to the bottom-

up generalization algorithms for data anonymization. Based

on the contributions herein, we plan to further explore the

next step on scalable privacy preservation aware analysis and

scheduling on large-scale data sets. Optimized balanced

scheduling strategies are expected to be developed towards

overall scalable privacy preservation aware data set

scheduling.

V. REFERENCES:

[1] S. Chaudhuri, “What Next?: A Half-Dozen Data

Management Research Goals for Big Data and the

Cloud,” Proceedings 31st Symposium on “Principles of

Database Systems (PODS), pages:. 1-4, in the year 2012.

[2] M. Armbrust, A.D. Joseph, R. Katz A. Fox, R. Griffith, ,

“A View of Cloud Computing,” Comm. ACM, Volume:

53, Number: 4, Pages: 50-58, 2010.

[3] L. Wang, J. Zhan, Y. Liang and W. Shi, “In Cloud, Can

Scientific Communities Benefit from the Economies of

Scale?,” IEEE Transactions on Parallel and Distributed

Systems, Volume: 23, Number: 2, Pages:296-303, Feb.

2012.

[4] B.C.M. Fung, R. Chen, K. Wang, and P.S. Yu, “Privacy-

Preserving Data Publishing: A Survey of Recent Devel-

opments,” ACM Computing Surveys, volume. 42,

Number: 4, Pages: 1-53, 2010.

[5] B.C.M. Fung, K. Wang, and P.S. Yu, “Anonymizing

Classification Data for Privacy Preservation,” IEEE

Trans. Knowledge and Data Eng., Volume: 19, Number:

5, Pages: 711-725, May 2007.

[6] X. Xiao and Y. Tao, “Anatomy: Simple and Effective

Privacy Preservation,” Proc. 32nd Int‟l Conf. Very Large

Data Bases (VLDB ‟06), Pages: 139-150, 2006.

[7] K. LeFevre, D.J. DeWitt, and R. Ramakrishnan,

“Incognito: Efficient Full-Domain K-Anonymity,” Proc.

ACM SIGMOD Int‟l Conf. Management of Data

(SIGMOD ‟05), Pages: 49-60, 2005.

[8] K. LeFevre, D.J. DeWitt, and R. Ramakrishnan,

“Mondrian Multidimensional K-Anonymity,” Proc. 22nd

Int‟l Conf. Data Eng. (ICDE ‟06), 2006.

[9] V. Borkar, M.J. Carey, and C. Li, “Inside „Big Data

Management‟: Ogres, Onions, or Parfaits?,” Proc. 15th

Int‟l Conf. Extending Database Technology (EDBT ‟12),

Pages: 3-14, 2012.

[10] LeFevre, DeWitt, and Ramakrishnan, “Workload-Aware

Anonymization Techniques for Large-Scale Data Sets,”

ACM Trans. Database Systems, Volume: 33, Number: 3,

Pages: 1-47, 2008.

[11] Iwuchukwu and Naughton, “K-Anonymization as Spatial

Indexing: Toward Scalable and Incremental

Anonymization,” Proceedings of 33rd International

Conference on Very Large Data Bases (VLDB ‟07),

Pages: 746-757, in the year 2007.

[12] Dean and Ghemawat, “Mapreduce: Simplified Data

Processing on Large Clusters,” Communication in ACM,

volume. 51, number . 1, Pages: 107-113, in the year 2008.

[13] Mohammed, Fung,. Hung P.C.K, and Lee CK,

“Centralized and Distributed Anonymization for High-

Dimensional Healthcare Data,” ACM Trans. Knowledge

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 12 3879 – 3883

3883
IJRITCC | December 2014, Available @ http://www.ijritcc.org

Discovery from Data, Volume: 4, Number: 4, Article 18,

2010.

[14] Fung, Wang, Wang L, and. Hung P.C.K, “Privacy

Preserving Data Publishing for Cluster Analysis,” Data

and Knowledge Eng., Volume: 68, Number: 6, Pages:

552-575, in the year 2009.

[15] Mohammed, Fung, and Debbabi, “Anonymity Meets

Game Theory: Secure Data Integration with Malicious

Participants,” VLDB J., Volume: 20, Number: 4, Pages:

567-588, 2011.

[16] Amazon Web Services, “Amazon Elastic Mapreduce,”

http:// aws.amazon.com/elasticmapreduce/, 2013.

[17] Xiao and Tao, “Personalized Privacy Preservation,”

Proceedings of ACM SIGMOD Intternational Conference

on Management of Data (SIGMOD ‟06), Pages: 229-240,

in the year 2006.

[18] KVM, http://www.linux-kvm.org/page/Main_Page, 2013.

[19] OpenStack, http://openstack.org/, 2013

[20] Apache, “Hadoop,”http://hadoop.apache.org, 2013.

[21] UCI Machine Learning Repository,
ftp://ftp.ics.uci.edu/pub/ machine-learning-databases/,
2013.

