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Abstract—A large number of cloud services require users to impart` private data like electronic health records for data analysis or Mining, 

bringing privacy concerns.  Anonymizing information sets through generalization to fulfill certain security prerequisites, for example, k-

anonymity is a broadly utilized classification of protection safeguarding procedures At present, the scale of information in numerous cloud 

applications increments immensely as per the Big Data pattern, in this manner making it a test for normally utilized programming instruments to 

catch, oversee, and process such substantial scale information inside a bearable slipped by time. As an issue, it is a test for existing 

anonymization methodologies to accomplish security protection on security touchy extensive scale information sets because of their inadequacy 

of adaptability. In this paper, we propose a versatile two-stage top-down specialization (TDS) methodology to anonymize huge scale information 

sets utilizing the Map reduce schema on cloud. Experimental evaluation results demonstrate that with our approach, the scalability and efficiency 

of TDS can be significantly improved over existing approaches. 
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I. INTRODUCTION: 

At present Cloud computing, a disruptive trend, poses a 

Significantbrunt on current IT industry and investigate 

communities [1], [2], [3]. Cloud computing provides 

enormous computation power and storage capacity via 

utilizing a large number of commodity computers together, 

enabling users to deploy applications cost-effectively without 

heavy infrastructure investment. Cloud users can reduce huge 

upfront investment of IT infrastructure, and concentrate on 

their own core business.  

Data anonymization has been extensively studied and 

widely adopted for data privacy preservation in non 

interactive data publishing and sharing scenarios [4]. Data 

anonymization refers to hiding identity and/or sensitive data 

for owners of data records. Then, the privacy of an individual 

can be effectively preserved while certain aggregate 

information is exposed to data users for diverse analysis and 

mining. A variety of anonymization algorithms with different 

anonymization operations have been proposed [5], [6], [7], 

[8]. However, the scale of data sets that need anonymizing in 

some cloud applications increases extremely in accordance 

with the cloud computing and Big Data trends [1], [9]. Data 

sets have become so large that anonymizing such data sets is 

becoming a considerable challenge for traditional 

anonymization algorithms. The researchers have begun to 

investigate the scalability problem of large-scale data 

anonymization [10], [11].  

 

Large-scale data processing frameworks like MapReduce 

[12] have been integrated with cloud to provide powerful 

computation capability for applications. So, it is promising to 

adopt such frameworks to address the scalability problem of 

anonymizing large-scale data for privacy preservation. In our 

research, we leverage MapReduce, a widely adopted parallel 

data processing framework, to address the scalability 

problem of the top-down specialization (TDS) approach [12] 

for large-scale data anonymization. The TDS approach, 

offering a good tradeoff between data utility and data 

consistency, is widely applied for data anonymization [5], 

[13], [14], [15]. Most TDS algorithms are centralized, 

resulting in their inadequacy in handling largescale data sets. 

Although some distributed algorithms have been proposed 

[13], [15], they mainly focus on secure anonymization of 

data sets from multiple parties, rather than the scalability 

aspect. As the MapReduce computation paradigm is 

relatively simple, it is still a challenge to design proper 

MapReduce jobs for TDS 

In this paper, we propose a highly scalable two-phase 

TDS approach for data anonymization based on MapReduce 

on cloud. To make full use of the parallel capability of 

MapReduce on cloud, specializations required in an 

anonymization process are split into two phases. In the first 

one, original data sets are partitioned into a group of smaller 

data sets, and these data sets are anonymized in parallel, 

producing intermediate results. In the second one, the 

intermediate results are integrated into one, and further 

anonymized to achieve consistent k-anonymous [23] data 
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sets. We evaluate our approach by conducting experiments 

on real-world data sets. Experimental results demonstrate 

that with our approach, the scalability and efficiency of TDS 

can be improved significantly over existing approaches. 

This paper is organized as follows: In Section 2, 

formulates the two-phase TDS approach, and Section We 

empirically evaluate our approach in Section 3. Finally, we 

conclude this paper and discuss future work in Section 4. 

II. TWO-PHASE TOP-DOWN SPECIALIZATION 

(TPTDS) 

The sketch of the TPTDS approach explained in section 

2.1. the TPTDS has three components namely, data partition, 

anonymization level merging, and data specialization are 

detailed in Sections 2.2, 2.3, and 2.4, respectively. 

2.1 Sketch of Two-Phase Top-Down Specialization 

We propose a TPTDS approach to conduct the 

computation required in TDS in a highly scalable and 

efficient fashion. The two phases of our approach are based 

on the two levels of parallelization provisioned by 

MapReduce on cloud. Basically, MapReduce on cloud has 

two levels of parallelization, i.e., job level and task level. Job 

level parallelization means that multiple MapReduce jobs 

can be executed simultaneously to make full use of cloud 

infrastructure resources. Combined with cloud, MapReduce 

becomes more powerful and elastic as cloud can offer 

infrastructure resources on demand, for example, Amazon 

Elastic MapReduce service [16]. Task level parallelization 

refers to that multiple mapper/reducer tasks in a MapReduce 

job are executed simultaneously over data splits. To achieve 

high scalability, we parallelizing multiple jobs on data 

partitions in the first phase, but the resultant anonymization 

levels are not identical. To obtain finally consistent 

anonymous data sets, the second phase is necessary to 

integrate the intermediate results and further anonymized 

entire data sets. Details are formulated as follows. 

In the first phase, an original data set D is partitioned into 

smaller ones. Let Di, 1 ≤ i≤ p, denote the data sets partitioned 

from D the, where p is the number of partitions.  

 𝐷𝑖

𝑝

𝑖=1

,𝐷𝑖 𝐷𝑗 ,𝐷𝑗 =  Ø, 1 ≤ 𝑖 ≤ p  

The details of how to partition D will be discussed in 

Section 2.2. Then, we run a subroutine over each of the 

partitioned data sets in parallel to make full use of the job 

level parallelization of MapReduce. The subroutine is a 

MapReduce version of centralized TDS (MRTDS) which 

concretely conducts the computation required in TPTDS. 

Algorithm 1 depicts the sketch of the two-phase TDS 

approach. 

Algorithm 1. Sketch Of Two-Phase TDS (TPTDS). 

Input: Data set D, anonymity parameters k, kI and the 

number of partitions p. 

Output: Anonymous data set D* 

1. Partition D into Di,1 _ i _ p. 

2. Execute MRTDS(Di, kl, ALo) AL1i, 1 ≤ i ≤ p 

in parallel as multiple MapReduce jobs. 

3. Merge all intermediate anonymization levels 

into one merge(ALi1, ALi2,……. ALip)  

AL1 

4. Execute MRTDS(D, k, ALI)  AL*  to 

achievek-anonymity. 

5. Specialize D according to AL* Output D* 

 

In the Partition Step, a data record here can be treated as 

a point in an m-dimension space, where m is the number of 

attributes. Thus, the intermediate anonymization levels 

derived fromDi, 1 ≤i ≤ p, can be more similar so that we can 

get a better merged anonymization level. Random sampling 

technique is adopted to partition D, which can satisfy the 

above requirement. Specifically, a random number rand, 1 ≤ 

rand≤p, is generated for each data record. A record is 

assigned to the partition Drand. Algorithm 2 shows the 

MapReduce program of data partition. Note that the number 

of Reducers should be equal to p, so that each Reducer 

handles one value of rand, exactly producing p resultant files. 

Each file contains a randomsample of D. the data partition 

algorithm is shown below 

Algorithm 2. Data Partition Map & Reduce. 

Input: Data record (IDr, r), r € D, partition parameter p. 

Output: Di, 1 ≤i≤ p. 

Map: Generate a random number rand,where 1 ≤ rand ≤ 

p; emit (rand, r). 

Reduce: For each rand, emit (null, list(r)). 

Once partitioned data sets Di, 1 ≤ i ≤ p.  are obtained, 

werun MRTDS(D, k, ALo)    on these data sets in parallel 

toderive intermediate anonymization levels AL*I, 1 ≤ i ≤ p 

Then, we run a subroutine over each of the partitioned 

data sets in parallel to make full use of the job level 

parallelization of MapReduce In the second step, all 

intermediate anonymization levels are merged into one. The 

merged anonymization level is denoted as ALI . The merging 

process is formally represented as function merge( AL‟1,  

AL‟2, ………., AL‟p} -> AL‟ where AL‟ denotes the final 

anonymization level 

Data Specialization 

An original data set D is concretely specialized for 

anonymization in a one-pass MapReduce job. After 

obtaining the merged intermediate anonymization level ALI, 

we run MRTDS(D, k,AL‟) on the entire data set D, and get 

the final anonymization level AL*. Then, the data set D, is 

anonymized by replacing original attribute values in D with 

the responding domain values in AL*. Details of Map and 

Reduce functions of the data specialization MapReduce job 
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are described in Algorithm 3. The Map function emits 

anonymous records and its count. The Reduce function 

simply aggregates these anonymous records and counts their 

number. An anonymous record and its count represent a QI-

group. The QI-groups constitute the final anonymous data 

sets 

Algorithm 3. Data Specialization Map & Reduce. 

Input: Data record (IDr, r), r € D.; Anonymization level 

AL*. 

Output: Anonymous record (r*, count). 

Map: Construct anonymous record r* =  p1 ( p2, p3 . . . 

pm,sv), pi, 1 ≤ i≤ m, is the parent of a specialization in 

currentAL and is also an ancestor of vi in r1 emit (r*, count). 

Reduce: For each r*, sum = ∑ count; emit (r*, sum). 

III. RESULTS AND DISCUSSIONS 

To evaluate the effectiveness and efficiency of our two 

phase approach, we compare it with the centralized TDS 

approach proposed in [5], denoted as CentTDS.  CentTDS is 

the state-of-the-art approach for TDS anonymization. 

Scalability and data utility are considered for the 

effectiveness. For scalability, we check whether both 

approaches can still work and scale over large-scale data sets. 

Data utility is measured by the metric ILoss, a general 

purpose data metric proposed in [17]. Literally, ILoss means 

information loss caused by data anonymization. Basically, 

higher ILoss indicates less data utility. The execution time of 

CentTDS and TPTDS are denoted as TCent and TTP, 

respectively. 

The overheads of our approach are mainly introduced by 

the MapReduce built-in operations and the parallelization in 

the first phase of TPTDS. Built-in MapReduce operations 

like data splitting and key-value pair sorting and transmission 

will cause overheads. The overheads are hard to 

quantitatively measure as they are implementation-, 

configuration-, and algorithm-specific. The extra 

specializations in the first phase incur overheads affecting the 

efficiency of TPTDS heavily.  

Experiment Evaluation: Experiment Settings 

Our experiments are conducted in a cloud environment 

named U-Cloud. U-Cloud is a cloud computing environment. 

The system overview of U-Cloud has been depicted in Fig. 2. 

The computing facilities of this system are located among 

several labs at UTS. On top of hardware and Linux operating 

system (Ubuntu), we install KVM virtualization software 

[18] that virtualizes the infrastructure and provides unified 

computing and storage resources. To create virtualized data 

centers, we install OpenStack open source cloud environment 

[19] for global management, resource scheduling and 

interaction with users. Further, Hadoop [20] clusters are built 

based on the OpenStack cloud platform to facilitate large-

scale data processing. 

We use Adult data set [21], a public data set commonly 

used as a de facto benchmark for testing anonymization 

algorithms [6], [13]. We generate data sets by enlarging the 

Adult data set according to the approach in [13].Both TPTDS 

and CentTDS are implemented in Java. Further, TPTDS is 

implemented with standard Hadoop MapReduce API and 

executed on a Hadoop cluster built on OpenStack. The k-

anonymity parameter is set as 50 throughout all experiments. 

Each round of experiment is repeated 20 times. The mean of 

the measured results is regarded as the representative. 

We conduct experiments to evaluate the effectiveness and 

efficiency of our approach. In this we compare TPTDS with 

CentTDS from the perspectives of scalability and efficiency.  

In this proposed method, we measure the change of 

execution time TCent and TTP with respect to S when p = 1. 

The size S varies from 50 MB to 2.5 GB. The 2.5 GB data 

set contains nearly 2:5 x 107 data records. The scale of data 

sets in our experiments is much greater than that in [5] and 

[13]. Thus, the data sets in our experiments are big enough to 

evaluate the effectiveness of our approach in terms of data 

volume or the number of data records. Note that ILCent= 

ILTP because TPTDS is equivalent to MRTDS when p = 1. 

So, we just demo the results of execution time. The results of 

proposed method are listed in Fig.2 and 3. 

 
Figure2 : Change of execution time with respect to data 

size: TPTDS versus CentTDS. 

 

 
Figure 3: Change of execution time with respect to data 

size: TPTDS versus CentTDS. 

 



International Journal on Recent and Innovation Trends in Computing and Communication                                       ISSN: 2321-8169 
Volume: 2 Issue: 12                                                                                                                                                                       3879 – 3883 

_______________________________________________________________________________________________ 

3882 
IJRITCC | December 2014, Available @ http://www.ijritcc.org                                                                 

_______________________________________________________________________________________ 

Fig. 2 shows the change of TTP and TCent with respect 

to the data size ranging from 50 to 500 MB. From Fig. 2, we 

can see that both TTP and TCent go up when data size 

increases although some slight fluctuations exist. The 

fluctuations are mainly caused by the content of data sets. 

TCent surges from tens of seconds to nearly 10,000 seconds, 

while TTP increase slightly. The dramatic increase of TCent 

illustrates that the overheads incurred by maintaining linkage 

structure and updating statistic information rise considerably 

when data size increases. Before the point S= 250 MB, TTP 

is greater than TCent. But after the point, TTP is greater than 

TCent, and the difference between TCent and TTP becomes 

larger and larger with the size of data sets increasing. The 

trend of TTP and TCent indicates that TPTDS becomes more 

efficient compared with CentTDS for largescale data sets.  

In our experiments, CentTDS fails due to 

insufficientmemory when the size of data set is greater than 

500 MB.Hence, CentTDS suffers from scalability problem 

for largescaledata sets. To further evaluate the scalability 

andefficiency of TPTDS, we run TPTDS over data sets 

withlarger sizes. Fig 3 shows the change of TTP with respect 

tothe data size ranging from 500 MB to 2.5 GB. It can be 

seenfrom Fig. 3 that TTP grows linearly and stably with 

respectto the size of data sets. Based on the tendency of TTP, 

wemaintain that TPTDS is capable of scaling over large-

scaledata sets efficiently. 

The above experimental results demonstrate that 

ourapproach can significantly improve the scalability 

andefficiency compared with the state-of-the-art TDS 

approachwhen anonymizing large-scale data sets. 

IV. CONCLUSIONS AND FUTURE WORK 

In this paper, we have investigated the scalability 

problem of large-scale data anonymization by TDS, and 

proposed a highly scalable two-phase TDS approach using 

MapReduce on cloud. Data sets are partitioned and 

anonymized in parallel in the first phase, producing 

intermediate results. Then, the intermediate results are 

merged and further anonymized to produce consistent k-

anonymous data sets in the second phase. We have creatively 

applied MapReduce on cloud to data anonymization and 

deliberately designed a group of innovative MapReduce jobs 

to concretely accomplish the specialization computation in a 

highly scalable way. Experimental results on real-world data 

sets have demonstrated that with our approach, the scalability 

and efficiency of TDS are improved significantly over 

existing approaches. In cloud environment, the privacy 

preservation for data analysis, share and mining is a 

challenging research issue due to increasingly larger volumes 

of data sets, thereby requiring intensive investigation. We 

will investigate the adoption of our approach to the bottom-

up generalization algorithms for data anonymization. Based 

on the contributions herein, we plan to further explore the 

next step on scalable privacy preservation aware analysis and 

scheduling on large-scale data sets. Optimized balanced 

scheduling strategies are expected to be developed towards 

overall scalable privacy preservation aware data set 

scheduling. 
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