
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 12 3875 – 3878

3875
IJRITCC | December 2014, Available @ http://www.ijritcc.org

Introducing Object Oriented Programming to

Engineering Technology Students with an App Development Tool

Rolfe Josef Sassenfeld, Michael Morrell, Luke Nogales

Department of Engineering Technology

New Mexico State University

Las Cruces, New Mexico, United States

rolfe@nmsu.edu

Abstract— Object oriented programming concepts are frequently a difficult topic for Engineering Technology educators to teach to students that

have no previous object oriented programming experience. With the recent rise of mobile computing, a powerful and robust tool is now available

to easily develop software for the Android mobile device operating system. Through “App” development with a highly interactive interface and

real-time device feedback, difficult programming concepts are conveyed in a highly visual and tactile learning environment.

Keywords-Object Oriented Programming; App Development; Engineering Education; Engineering Technology

__*****___

I. INTRODUCING A NOVEL WAY TO TEACH OBJECT

ORIENTED PROGRAMMING

 Introducing object oriented computer programming (OOP)

to Engineering Technology students who have never

programmed is often difficult. Even those students who have

programmed before in other non-object based languages are

often apprehensive or completely lost when introduced to Java

and related OOP languages. This apprehension inhibits the

learning process and has shown a need for a more inviting

development environment aside from the blank text document

with which the student is presented. A modern mobile

platform application (app) development tool offers an

innovative and exciting approach to the introduction of many

basic programming skills. This free software development tool

called “MIT App Inventor” [1], [2], or simply “AppInventor”

provides an inviting and lush development environment that

provides the student with immediate visual, and at times,

tactile feedback about their programming changes.

 This highlights a paradigm shift from teaching OOP

programming on a desktop computer versus a mobile

electronics device such as an Android [3] smartphone. The

Android phone is considered a smart device for the following

reasons: the smartphone “knows” when you touch it, where it

is located on the planet, how it is physically moving; knows

where it‟s at, where it‟s, going, where it‟s been. It can see you,

it can hear you, it can feel you, it can talk to you, and it can

also “number crunch” just as fast as a personal computer. All

of these sensing capabilities offer the programming instructor

an abundance of object related concept examples. Each

student‟s program will have a demonstrable working app that

stimulates all the creativity of the senses.

II. A BRIEF HISTORY OF THE TOOL

 MIT App Inventor was an open source software project

sponsored by Google, and released to the public in December

2010. Hal Abelson and Mark Friedman from the

Massachusetts Institute of Technology led the AppInventor

team. In 2011 Google terminated its direct relationship with

AppInventor and sponsored MIT to carry out the research and

development of AppInventor program. MIT is host to annual

summits to share the latest news and implementations of

related tools and exceptional examples of apps created with

AppInventor. MIT AppInventor is regularly updated and

improved and has a knowledgeable user community that is an

invaluable resource to students, developers, inventors, and

entrepreneurs.

III. SIGNIFICANT DEVELOPMENTS FOR AI2

 The AppInventor tool has been divided into two logical

categories; the design aspect (layout, object creation, etc.) and

the programming aspect of the event driven app. AppInventor

therefore has two main views; the design view and the blocks

editor. In the blocks editor the user defines reactions to events

initiated by the user of the app. One of the more significant

updates in the latest version “AppInventor 2” or simply “AI2”

is the blocks editor.

 The block editor is the most innovative part of the

AppInventor tool. It allows a visual perspective of the

programming relationship between objects and variables. As

we will see in the examples below, the block editor offers the

student a unique and logical view of the programming process.

Many updates have been incorporated into AI2, but perhaps

the most significant is the incorporation of the blocks editor

into the actual user‟s browser. No longer a separate Java

program the AI2 blocks editor is fully incorporated into the

user‟s browser. This major improvement cannot be

understated.

IV. HOW TO VISUALLY TEACH PROGRAMMING

 Most students benefit from tactile involvement in the

learning process. With the AI2 block editor the students get

immediate visual feedback to their programming. The blocks

ingeniously only allow relevant blocks to attach. So anything

that is not allowed isn‟t even an option. This limitation to a

menu of options provides the student with accuracy and helps

to underscore the understanding of logical object relationships

and actions. When a procedure is missing parameters block

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 12 3875 – 3878

3876
IJRITCC | December 2014, Available @ http://www.ijritcc.org

editor provides instant feedback in the form of a red X and a

hover over description of the problem.

 The block colors also have significance and help the

student to put together relevant functionality. A separate color

is assigned to procedures, mathematical operations, text

operations, events, and more. This enables the learner to

immediately associate relevant tasks and visually group logical

operations.

 Block programming has many benefits from a student‟s

perspective [4]. It is colorful, offers instant comment, and

allows students to group programming functionality spatially

on a palette without restriction. The “clickable” blocks

provide the student with immediate visual and aural feedback

as to which blocks work and do not work. When moving

blocks the user has the impression of holding or grasping the

block. This promotes a highly interactive environment that

aids the student tremendously with respect to concept

retention, logical thinking, and originality. The interface

invites experimentation and exploration. The fact that the

student immediately sees the changes on the wirelessly

connected mobile device facilitates iterative development and

problem solving. The immediate reward factor offers learners

positive reinforcement and a quick guidance [5]. The friendly

and rich interface of AI2 offers innovators and inventors an

easy way to tinker.

Figure 1. Control blocks for handling the motion of an on screen object.

Figure 2. Example of the built n Android App emulator.

V. WHAT ABOUT „REAL‟ PROGRAMMING AKA JAVA?

 A common criticism of AppInventor is that it isn‟t very

customizable. The nature of the block programming inherently

leads the user at some point to reach for a block that doesn‟t

exist. Therefore the objection is valid since there is currently

no easy way to create purely custom blocks. This is one of the

tradeoffs with the block programming method. For the ease of

use, you lose some flexibility. There are numerous ingenious

ways around these limitations. For instance, although AI2 has

a long list of mathematical operators, it can be cumbersome at

best and impossible at worst to perform some mathematical

operations or to arrange a functional expression. However, an

elegant work around is to use the remote server/scripting

functionality of Ai2 to perform all the heavy lifting at the

server and use the app as an interface. This approach is

actually becoming the most common type of app. One in

which data is processed remotely and only the display of data

is performed locally. This is really a prevalent operating mode

on the most popular apps from Facebook to Netflix to Amazon

etc. The app is only an interface to a server providing data or

content back to the user‟s device via the app interface.

 The previous example notwithstanding, there is demand for

an export function in AppInventor to allow a conversion of the

app to the Java/Eclipse development environment. This

functionality would allow entrepreneurs that develop

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 12 3875 – 3878

3877
IJRITCC | December 2014, Available @ http://www.ijritcc.org

AppInventor prototype apps in to move readily more their

project into a larger Java development environment. It would

also very much facilitate the teaching of Java by allowing

instructors to demonstrate Java concepts visually with the

block editor. There have been efforts at a separate tool to

perform these functions, however a direct export integrated

into Ai2 would be simplest from an educator‟s standpoint.

There is currently a working Google group that is prototyping

a process for converting AppInventor to JAVA. However, this

conversion process is cumbersome and still very inaccurate

with respect to converting object relationships from one

language to the other.

VI. BENEFITS TO ENGINEERING TECHNOLOGY EDUCATION

 Faster quicker grasp of complex programming

paradigm.

 Can be modified “on the fly” to provide the student

with immediate live feedback to their code

modifications.

 Tactile and visual

 High quality, no cost teaching resources available.

 Active development community.

 Easily integration of entrepreneurship monetary

incentive to students.

Figure 3. Touch menu interface example.

VII. CONCLUSIONS

 The AppInventor development tool has become more robust

and offers educators a highly stimulating learning environment

to teach OOP computer-programming concepts to their

students.

 The portability of the platform provides for an ever-

increasing audience. With the continued support of MIT AI2

offers a great long-term potential to improve engineering

technology‟s programming needs. The immediate and often

tactile feedback of working with a mobile device provides

students with an immersive programming experience with

multi-sensory feedback [6] Whether you are teaching

Computer Science students, technologists, or hobbyists; the

visual block editor and immersive development environment

of AppInventor merits consideration.

Figure 4. Example of simple scientific calculator interface.

ACKNOWLEDGMENT

The authors would like to acknowledge the work of the
MIT Mobile Computing Laboratory and the AppInventor
Development team. We would also like to acknowledge Dr.
Jeffrey Beasley our department head for his support of this
research. We also offer thanks and gratitude to our fathers, Dr.
Helmut Sassenfeld Sr., Malcolm Morrell, and John Nogales.

REFERENCES

[1] Abelson, H. (2011). MIT App Inventor. (M. I. Technology, Producer)
Retrieved 2011, from MIT App Inventor | Explore MIT App Inventor:
http://appinventor.mit.edu/explore/

[2] Wikipedia. (2014). Hal Abelson - Wikipedia, the free encyclopedia.
(Wikedpedia, Producer) Retrieved from Wikipedia, the free
encyclospedia.: http://en.wikipedia.org/wiki/Hal_Abelson

[3] Google. (2014). Android. (I. GOOGLE, Producer, & Google, Inc,)
Retrieved from Android: http://www.android.com

[4] Fischer, G. B. (1992). Adding rule-based reasoning to a demonstrational
interface builder. Proceedings of ACM Symposium on User Interface
Software and Technology (UIST ’92), Monterey, CA (pp. 89-97). New
York: ACM Press.

[5] Goldberg, A. (.-W. (1984). Smalltalk-80: The interactive programming
environment. (Vol. 1). Reading, MA: Addison-Wesley.

[6] Stephanidis, C. (2001). User Interfaces for All: New perspectives into
Human-Computer Interaction. Mahwah, NJ, USA: Lawrence Erlbaum
Associates.

http://en.wikipedia.org/wiki/Hal_Abelson

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 12 3875 – 3878

3878
IJRITCC | December 2014, Available @ http://www.ijritcc.org

Figure 5. Example of a the AppInvewntor designer screen layout.

Figure 6. Complex event hadnling using block programming.

