
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 11 3484 – 3493

3484
IJRITCC | November 2014, Available @ http://www.ijritcc.org

Multi Objective Criteria for Selection of Manufacturing Method using NLP

Parser

Mr. Girish R. Naik
Associate Professor

Production Department

KIT‟s College of Engineering

Kolhapur,India

girishnaik2025@gmail.com

Dr. V.A.Raikar
Principal Govt. Engineering College

Karwar, India

Var312@yahoo.com

Dr. Poornima G. Naik
Assistant Professor

Department of Computer Studies

Chh Shahu Institute of Business

Education and Research, Kolhapur, India

luckysankalp@yahoo.co.in

Abstract— Installing a manufacturing method might be very expensive and time consuming project. Organization should examine and decide on

how best to make this decision of selecting appropriate process meeting their requirements. In order to improve the manufacturing cycle more

than 110 manufacturing processes have been proposed. The objectives aimed at and the functions focused on by these processes vary. The

process should be flexible enough to accommodate reasonable changes in design. This poses a great challenge to a manager in selection of

effective and economical manufacturing process. Different organizations have different objectives and based on their specific requirement they

deploy suitable process conforming to their objective. Today‟s business scenario is highly competitive, complex and dynamic in nature which

demands strategic planning meeting the challenges of changing time. In this paper we have made an attempt to enable the end user a quick

selection of appropriate manufacturing method based on multiple objectives. The information pertaining to the method selection is stored in a

persistent Relational DataBase Management System (RDBMS) which can be manipulated by the end user as the organizational objectives and

the market needs change. The end user instead of querying the database directly will use the natural language, termed as Manufacturing Query

Language (MQL) designed by us, which is interfaced with RDBMS using prolog. To implement MQL, we have defined a finite set of symbols,

words and language rules, MQL grammar. The parse tree is constructed based on the grammar specified. The NLP query is parsed using NLP

parser designed by us and the queries which are successfully parsed are evaluated by mapping them to the corresponding prolog query using

Java interface to Prolog (JPL). Prolog rules are stored in three different prolog knowledge bases, mqlgrammar.pl, rules.pl, and methodrules.pl.

NLP offers most flexible way to implement grammar which can be readily extended with least efforts and as such offers an efficient way of

implementing rules in dynamically changing scenarios. Our current work focuses on a multiple objectives. In real situations multi objective and

multi function criteria is required for the proper selection of the manufacturing method. Our future work involves modification of the tool and

parser to take account of multiple objectives and functions.

 Keywords- JPL, Manufacturing Method, MQL, Natural Language Processing, NLIDB, Parser Tree

__*****___

I. INTRODUCTION

Manufacturing methods are of many different types based
upon the technological solution, or software solution or modern
management methods to meet the organizational objectives. To
assist managers in selecting the best method to achieve certain
criteria, two mapping methods are available, one based on the
objectives of the method and the other based on the functions
that the methods may serve. Based on the maturity of the
manufacturing company, a particular manufacturing method
may focus on manufacturing hardware, auxiliary software
support, production planning and control, next generation
production management, processing manufacturing methods,
commercial aspects, organization, advanced organizational
manufacturing methods, design methods, human factors in
manufacturing, environmental manufacturing methods, or cost
and quality manufacturing methods. Giden Halevi has
presented a review of manufacturing methods and their
objectives [1]. The author has listed 110 published
manufacturing methods which fall in 5 different classes based
on their nature. In this paper we consider the following
objectives as proposed by Giden Halevi in selection of a
particular manufacturing method.

Meeting delivery dates

• Reduce production costs.
• Rapid response to market demands
• Reduce lead time
• Progress towards zero defects
• Progress towards zero inventory
• Improve management knowledge and information
• Marketing – market share
• Improve and increase team work collaboration
• Improve customer and supplier relationships
• Improve procurement management and control\
• Management strategic planning
• Improve human resources management
• Improve enterprise integration
• Continuous improvement
• Environmental production
The suitability of each method to a specific objective is

graded according to the following grades.
a – Excellent for specific dedicated objective
b – Very good
c – Good
d – Fair

This paper focuses on assisting managers to evaluate and

select the most appropriate manufacturing method or methods

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 11 3484 – 3493

3485
IJRITCC | November 2014, Available @ http://www.ijritcc.org

for their needs, based on multiple objectives. Several
alternatives may be proposed, allowing the user to decide
which one is more suitable under the circumstances. The user
can select the method according to its type. The decision
depends on the objectives, the class considered, and on the
grading given to each method. The objectives and grades can
be manipulated by the end user. The information pertaining to
different objectives, classes, and methods along with their
grades is stored in a persistent relational database management
system (RDBMS) which can be constantly updated by the end
user as the organizational objectives change. The end user,
instead of querying the database directly will use natural
language which is interfaced with RDBMS using prolog. The
NLP query is parsed using NLP parser and the queries which
are successfully parsed are evaluated by mapping to the
corresponding prolog query using JPL interface to prolog.

Introduction to Prolog

 Prolog, Programming in Logic, is a special type of

declarative type programming in which the various program

elements and constructs are expressed in predicate logic. A

program consists of mainly a number of declarations

representing relevant facts and rules concerning the problem

domain. The solution to be discovered is also expressed as a

question to be answered or to be more precise the goal to be

achieved based on the resolution method suggested by

Robinson consisting of matching goals with facts and rules. A

prolog program consists of a finite sequence of facts, rules and

a query or goal statement. Prolog database or knowledge base

consists of facts and rules. Prolog inferencing system mainly

consists of three mechanisms viz.,

i) Backtracking

ii) Unification and

iii) Resolution.

 Two interesting features of logic programming are

non-determinism and backtracking. A non-deterministic

program may find a number of solutions, rather than just one,

to a given problem. Backtracking mechanism allows

exploration of potentially alternative directions for solutions,

when some direction currently being investigated, fails to find

an appropriate solution.

Introduction to Natural Language Processing
Natural language processing (NLP) is a field that combines

computer science technologies such as Artificial Intelligence,
Statistical inference and Machine Learning with applied
linguistics, concerned with the interactions between computers
and natural human languages. Hence NLP is related to the area
of human–computer interaction. It allows computer-supported
understanding and processing of information expressed in
human language for specific tasks, including machine
translation, interactive dialog systems, opinion mining, etc.
Many challenges in NLP involve natural language
understanding by enabling computers to derive meaning from
human or natural language input, and others involve natural
language generation.

Natural Language Interface to Database

Most of the IT applications continuously store and retrieve

information from databases, which requires knowledge of

database languages like Structured Query Language (SQL).
SQL norms and SQL proprietary extensions have been pursued
in almost all the languages for relational database systems.
However, for efficient data retrieval the knowledge of the
structure of the database and core database concepts such as
joining, filtering, query optimization are desirable. This led to
the evolution of IDBS. There is an inevitable need for non-
expert users to query relational databases in their natural
language instead of working with the various SQL intricacies.
As a result many intelligent natural language interfaces to
databases have been developed, which provides flexible
options for the manipulation of the queries. The idea of using
Natural Language instead of SQL has prompted the
development of new type of processing called Natural language
Interface to Database (NLIDB). NLIDB is a step towards the
development of intelligent database systems (IDBS) to enhance
the users in performing flexible querying in databases. The
transformation of a sentence entered in a natural language to
the corresponding SQL query before execution against the
database is depicted in the following Figure 1 and the
corresponding flow of logic for execution of MQL command is
depicted in Figure 2.

Figure 1. Natural Language Interface to Database

Figure 2. Execution of query in Natural Language

Manufacturing Query Language (MQL)

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 11 3484 – 3493

3486
IJRITCC | November 2014, Available @ http://www.ijritcc.org

A Manufacturing Query Language is designed which
enables the end user to query the database in a human language
without worrying about tedious SQL syntax. No formal
knowledge of SQL is desirable. It provides a layer on top of
SQL to render the query language end user friendly. The
architecture is depicted in Figure 3.

II. LITERATURE SURVEY

There exists a vast amount of literature on manufacturing

process monitoring using both crisp and fuzzy logic

approach [3,9] which focus mainly on software selection,

technology selection and system project selection. Chenhui

Shao et.al [10] have developed a novel algorithm for

parameter tuning and feature selection. Quality monitoring is

used for monitoring a quality of a manufacturing process.

Multiple criteria decision making method is employed by R.

V. Rao, T. S. Rajesh [11]. The authors have presented a

decision making framework using a multiple criteria

decision making method viz., Preference Ranking

Organization Method for Enrichment Evaluations

(PROMETHEE) which has been integrated with analytic

hierarchy process (AHP) and the fuzzy logic. The

framework enables the manager a software selection in

manufacturing industries. Mohammad Akhshabi [12] has

developed a Fuzzy Multi Criteria Model for Maintenance

Policy which is used for the optimized decision making.

The authors have developed different types of parsers for

parsing MQL command using text parser, Finite State

Automata Parser [13,15] which offer certain limitations in

extensibility and are overcome in NLP parser. The

following Table 1 depicts the relative comparison between

the different approaches used for developing a parser for

MQL.

Table 1. Comparison between MQL Parsers

III. PROPOSED ALGORITHM

A. Pseudo Code

Pseudo code for parsing and evaluating MQL query in C++
notation is depicted below:

/* A function for transforming the sentence entered by the

user in Natural Language into a Prolog Query and executing

the query. The query checks the grammar of the sentence by
retrieving the information stored in Prolog knowledgebase
mqlgrammar.pl

Input – MQL query entered by the user in Natural
Language

Output - 1 indicates that the query is successfully executed
 0 indicates that the query contains syntactical errors
 */

int function parseQuery(String sentence)
{
 tokens = sentence.split(“ “);
 query = ”[“;
 for (i=0;i<tokens.length;i++)
 {
query=query + tokens[i];
 }
 q1 = new Query(“consult(„mqlgrammar.pl‟)”);
 q2 = new Query(query);
 if (q2.query()== 1)
 return 1;
else
 return 0;
}

/*
A function for evaluating the query using Natural Language

Interface to Database. MQL query is converted into the
corresponding Prolog query and the query on successful
execution retrieves the contents of Prolog knowledgebase
rules.pl and methodrules.pl

Input – Successfully parsed MQL query
Output - Results of the query stored in a string array.

*/
char[][] function evaluateQuery(char[] query)
{
 tokens = query.split(“ “);
 l = tokens.length();
 if (I == 3)
 {
 if (tokens[2] == “methods”)
 {
 q3 = new Query(“list_all(X, methods).”);
 }
 else if (tokens[2] == “classes”)
 {
 q3 = new Query(“list_all(X, classes).”);
 }
 else if (tokens[2] == “objectives”)
 {
 q3 = new Query(“list_all(X, objectives).”);
 }
 q4 = new Query(“consult(„rules.pl‟)”);
 q4.query();
 result = q3.allSolutions();
 }
 else if (l ==5 && tokens[3] == “meeting”)
 {
 q4 = new Query(“list_all (X, methods, tokens[4]).”);
 result = q4.allSolutions();
 }
else if (tokens[3] == “meeting” && tokens[l – 2] == “in”)
 {

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 11 3484 – 3493

3487
IJRITCC | November 2014, Available @ http://www.ijritcc.org

 str1="(objective_for_method(X, ";
 str2=", a);objective_for_method(X, ";
 str3=", b))";
 for (i=1; i<=l; i++)
 {
 if (tokens[i] == “and”)
 {
 query= query + str1 + tokens[i+1] + str2 + tokens[i+1]

+ str3;
 }
 query = query + “.”;
 q5 = new Query(“consult(„rules.pl‟)”);
 q5.query();
 q6 = new Query(query);
 result=q6.allSolutions();
 }
 else if (l > 5 && tokens[l-2] == “in”)
 {
 str5=tokens[l-1];
 if (str5 == “classm”)
 {
 query = query + “method_in_class(X, m)”;
 }
 else if (str5 == “classp”)
{
 query = query + “method_in_class(X, p)”;
 }
 else if (str5 == “classs”)
 {
 query = query + “method_in_class(X, s)”;
 }
 else if (str5 == “classt”)
 {
 query = query + “method_in_class(X, t)”;
 }
 else if (str5 == “classx”)
 {
 query = query + “method_in_class(X, x)”;
 }
 q7 = new Query(“consult(„methodrules.pl‟)”);
 q7.query();
 q8 = new Query(query);
 result=q8.allSolutions();
 }
 return result;
}

B. General syntax of ‘List’ MQL Command

A single MQL command viz., List is implemented at
present which has the following syntax.

List All {Methods| Objectives |Classes} [Meeting
{Objective1|Objective2|…|Objective16} AND
{Objective1|Objective2|…|Objective16}........ [in Class
{M|P|S|T|X}]].

List All Methods in Class {M|P|S|T|X}
The following notations are used

{a|b|…} → One clause from the group of clauses separated

by | must be selected.

[..] → The clause specified is optional

The above semantics generates the following queries.
1. List All Methods
2. List All Objectives
3. List All Classes

4. List All Methods Meeting Objective<n>
where <n> can take any value between 1 and 16.
5. List All Methods Meeting Objective<n> in ClassM
 List All Methods Meeting Objective<n> in ClassP
 List All Methods Meeting Objective<n> in ClassS
 List All Methods Meeting Objective<n> in ClassT
 List All Methods Meeting Objective<n> in ClassX
where, n can take any value between 1 and 16.
6. List All Methods Meeting Objective<n> AND

Objective<n> AND Objective<n>
 where, n can take any value between 1 and 16.
7. List All Methods Meeting Objective<n> AND

Objective<n> AND Objective<n> in ClassM
 List All Methods Meeting Objective<n> AND

Objective<n> AND Objective<n> in ClassP
 List All Methods Meeting Objective<n> AND

Objective<n> AND Objective<n> in ClassS
 List All Methods Meeting Objective<n> AND

Objective<n> AND Objective<n> in ClassT
 List All Methods Meeting Objective<n> AND

Objective<n> AND Objective<n> in ClassX
where <n> can take any value between 1 and 16.

Grammar for MQL.

To implement MQL, we have constructed a language by

defining the rules which specify how to test a string of alphabet
letters to verify. A finite set of symbols used in the language is
given by

∑ = {a, c, i, l, m, o, p, s, t, x}

and a set of words over an alphabet is given by
L={list, all, methods, objectives, classes, meeting,

objective1, objective2, objective3, objective4, objective5,
objective6, objective7, objective8, objective9, objective10,
objective11, objective12, objective13, objective14, objective15,
objective16, in, classm, classp, classs, classx, classt}

Syntax and Semantics of a Natural Language

Languages are defined by their legal sentences. Sentences are

sequences of symbols. The legal sentences are specified by a

grammar.

 Our first approximation of natural language is a

context-free grammar. A context-free grammar is a set of

rewrite rules, with non-terminal symbols transforming into a

sequence of terminal and non-terminal symbols. A sentence of

the language is a sequence of terminal symbols generated by

such rewriting rules. For example, the grammar rule

 sentence→noun_phrase, verb_phrase

means that a non-terminal symbol sentence can be a

noun_phrase followed by a verb_phrase. The symbol "→"
means "can be rewritten as." The complete set of grammar
for MQL is depicted below.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 11 3484 – 3493

3488
IJRITCC | November 2014, Available @ http://www.ijritcc.org

sentence --> noun_phrase, verb_phrase, terminator.

noun_phrase --> proper_noun, adjective.
noun_phrase --> determiner, noun.

verb_phrase --> intransitive_verb.
verb_phrase --> intransitive_verb, preposition, determiner.
verb_phrase --> transitive_verb, helping_verb, noun.
verb_phrase --> transitive_verb, helping_verb, noun,

conjunction, noun.
verb_phrase --> transitive_verb, helping_verb, noun,

conjunction, noun, conjunction, noun.
verb_phrase --> transitive_verb, helping_verb, noun,

conjunction, noun, conjunction, noun, conjunction, noun.
verb_phrase --> transitive_verb, helping_verb, noun,

conjunction, noun, conjunction, noun, conjunction, noun,
conjunction, noun.

proper_noun --> [list].
adjective --> [all].

intransitive_verb --> [methods].
intransitive_verb --> [classes].
intransitive_verb --> [objectives].

transitive_verb --> [methods].

helping_verb --> [meeting].
noun --> [objective1].
noun --> [objective2].
noun --> [objective3].
noun --> [objective4].
noun --> [objective5].
noun --> [objective6].
noun --> [objective7].
noun --> [objective8].
noun --> [objective9].
noun --> [objective10].
noun --> [objective11].
noun --> [objective12].
noun --> [objective13].
noun --> [objective14].
noun --> [objective15].
noun --> [objective16].

conjunction --> [and].
conjunction --> [or].

preposition --> [in].
determiner --> [classm].
determiner --> [classp].
determiner --> [classs].
determiner --> [classt].
determiner --> [classx].

terminator --> ['.'].

terminator --> [].

The corresponding parse tree is shown in Figures 4 (a) - 4 (e).

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 11 3484 – 3493

3489
IJRITCC | November 2014, Available @ http://www.ijritcc.org

Figure 4(a) - 4 (e) MQL Parse Trees

Evaluation of MQL Commands

The prolog rules for retrieving all method names, class names,

objective names, methods in a particular class and methods

meeting one or more objectives are constructed in the following

format by retrieving the corresponding database information.

objective_for_method(<Method Proposed>, <Objective>,

<Grade of the Objective>).

For the current domain and the problem under consideration

110 method name rules, 5 class name rules and 16 objective

name rules are generated and stored in a prolog database

rules.pl.

Data Cleaning

Figure (5) Data Cleaning by Character Set Mapping

The format of the sample prolog facts are depicted

below:

list_all(activityqqbasedzzcosting, methods).

list_all(agentqqdrivenzzapproach, methods).

list_all(technologicalzzsolutionsvvzzrequireszzhardwarezzresou

rces, classes).

list_all(softwarezzsolutionvvzzrequireszzcomputer, classes).

list_all(meetingzzdeliveryzzdateszzqqzzproductionzzplanningzz

andzzcontrol, objectives).

list_all(reducezzproductionzzcosts, objectives).

list_all(agentqqdrivenzzapproach, methods, classm).

list_all(agilezzmanufacturing, methods, classm).

list_all(bioniczzmanufacturingzzsystem, methods, classp).

list_all(commonqqsensezzmanufacturing, methods, classp).

list_all(activityqqbasedzzcosting, methods, classs).

list_all(benchmarking, methods, classs).

list_all(flexiblezzmanufacturingzzsystem, methods, classt).

list_all(manufacturingzzexecutionzzsystem, methods, classt).

list_all(knowledgezzmanagement, methods, classx).

list_all(mobilezzagentzzsystem, methods, classx).

The whole set of MQL query to Prolog query mapping is

depicted in the following Table 2:

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 11 3484 – 3493

3490
IJRITCC | November 2014, Available @ http://www.ijritcc.org

 Table 2. Generation of Equivalent Prolog Query from MQL

 Query

IV. RESULTS AND ANALYSIS

The results presented above are implemented in Java with
MS-Access as backend for storing method and objective
details. The structure of the database is shown in the following
Figure 6.

Figure 6. Structure of MQL Database

A prolog rule relating the method proposed for the given

organizational objective along with the grade is constructed in
the following format by retrieving the database information.

objective_for_method(<Method Proposed>, <Objective>,
<Grade of the Objective>).

For the current domain and the problem under consideration

680 method rules and 110 class rules are generated and stored
in a prolog database methodrules.pl. The format of the prolog
facts are depicted below:

objective_for_method(method1, objective14, c).
objective_for_method(method1, objective2, c).
objective_for_method(method1, objective11, d).
objective_for_method(method1, objective7, c).
method_in_class(method1, s).
method_in_class(method2, m).
method_in_class(method3, m).
method_in_class(method4, x).

 method_in_class(method5, p).

The format of the query for selection of manufacturing

methods conforming to objective1 is as follows.
If (objective1.grade=a OR objective1.grade=b) then select

method.
Where, objective1.grade refers to the grade of objective1.
The equivalent prolog query is:
Selected_methods:=objective_for_method(X,objective1,a);

objective_for_method(X,objective1,b).
The format of the query for selection of manufacturing

method conforming to objective2 and belonging to class M or S
is as follows:

If ((objective1.grade=a OR objective1.grade=b) AND
class=M) OR

 ((objective1.grade=a OR objective1.grade=b)
AND class=S) THEN select method.

The equivalent prolog query is:
Selected_methods:=((objective_for_method(X,obje

ctive1,a);
objective_for_method(X,objective1,b)),method_in_clas
s(X,m));((objective_for_method(X,objective1,a);
objective_for_method(X,objective1,b)),method_in_clas
s(X,s)).

jpl.jar file contains the necessary java classes for
interfacing with prolog. The structure of java program
for executing prolog query is shown below:

String t1 = "consult('methodrules.pl')";
Query q1 = new Query(t1);
FileOutputStreamfos=new

FileOutputStream("c:\\methods.txt");
FileOutputStream fos1=new

FileOutputStream("c:\\query.txt");
byte[] arr=new byte[20];
byte[] q=new byte[100];
 String str;
 System.out.println(t1 + " " +

(q1.hasSolution() ? "succeeded" : "failed"));
String str1 = "((objective_for_method(X," + args[0]

+ ", a);objective_for_method(X, " + args[0] + ",
b)),method_in_class(X,";String str2 = "))";

 String t2="";
 for (int i=1;i<args.length-1;i++)
 {
 t2=t2+str1+args[i]+str2+";";
 }
 t2=t2+str1+args[args.length-1]+str2;
 Query q2 = new Query(t2);
 System.out.println("first solution of " + t2 +
 ": X = " + q2.oneSolution().get("X"));

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 11 3484 – 3493

3491
IJRITCC | November 2014, Available @ http://www.ijritcc.org

 q=t2.getBytes();
 fos1.write(q);
 //--
 java.util.Hashtable[] ss4 = q2.allSolutions();
 System.out.println("all solutions of " + t2);
 for (int i=0 ; i<ss4.length ; i++) {
 System.out.println("X = " + ss4[i].get("X"));
 str=ss4[i].get("X").toString()+"\r\n";
 arr=str.getBytes();

 fos.write(arr);
 }
 fos.close();
 fos1.close();

The result presented above is implemented in Java using

SWI prolog and Java interface to prolog. The user interface is
implemented in JFC swing and is presented in Figures 7 (a) –
(j)

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 11 3484 – 3493

3492
IJRITCC | November 2014, Available @ http://www.ijritcc.org

Figure 7 (a)-(j) User Interface for parsing and execution of

MQL Commands.

V. CONCLUSION AND FUTURE WORK

This paper presents the design of an NLP parser for parsing

human like query in the manufacturing domain which assists

the manager in selection of a manufacturing method based on

multiple objectives. A manufacturing query language (MQL) is

designed to assist the manager to query a database in

conventional language. A general syntax and a parse tree of a

query language are presented. To implement MQL, we have

designed our own language by defining a finite set of symbols,

words and language rules, MQL grammar. . The NLP query is

parsed using NLP parser designed by us and the queries which

are successfully parsed are evaluated by mapping them to the

corresponding prolog query using Java interface to Prolog

(JPL). Prolog rules are stored in three different prolog with the

view to incorporate distributed file system and distributed

processing in future as data set grows. NLP offers most flexible

way to implement grammar which can be readily extended with

least efforts and as such offers an efficient way of

implementing rules in dynamically changing scenarios. In this

context, it clearly out scores other similar implementations of

parsers such as text parsers, finite automata parsers etc. Our

future work focuses on modification of the parser and the query

language to incorporate multiple objectives and functions.

REFERENCES

[1] Gideon Halevi, Handbook of Production Management
Methods, Butterworth Heinemann publications, ISBN 0
7506 5088 5.

[2] L. Mikhailov and M. G. Singh, “Fuzzy analytic
network process and its application to the development
of decision support systems,” IEEE Transactions on
Systems, Man, and Cybernetics, Part C. Applications
and Reviews, Vol. 33, No. 1, pp. 33–41, 2003.

[3] R. Santhanam and G. J. Kyparisis, “A multiple criteria
decision model for information system project
selection,” Computers & Operations Research, Vol. 22,
No. 8, pp. 807–818, 1995.

[4] V. S. Lai, K. W. Bo, and W. Cheung, “Group decision
making in a multiple criteria environment: A case using
the AHP in software selection,” European Journal of
Op-erational Research, Vol. 137, No. 1, pp. 34–144,
2002. C. C. Wei, C. F. Chien, and M. J. J. Wang, “An
AHP- based approach to ERP system selection,”
International Journal of Production Economics, Vol.
96, No. 1, pp. 47– 62, 2005.

[5] J. P. Brans, B. Mareschal, and P. Vincke,
“PROMETHEE: A new family of outranking methods
in multicriteria analysis,” Operational Research, Vol. 3,
pp. 477–490. 1984.

[6] R. V. Rao, “Decision making in the manufacturing
envi-ronment using graph theory and fuzzy multiple
attribute decision making methods,” Springer-Verlag,
London, 2007.

[7] R. Santhanam and G. J. Kyparisis, “A multiple criteria
decision model for information system project
selection,” Computers & Operations Research, Vol. 22,
No. 8, pp. 807–818, 1995.

[8] Dhananjay R. Kalbande and G.T.Thampi, Multi-
attribute and Multi-criteria Decision Making Model for
technology selection using fuzzy logic, International
Journal of Computing Science and Communication

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 11 3484 – 3493

3493
IJRITCC | November 2014, Available @ http://www.ijritcc.org

Technologies, VOL. 2, NO. 1, July 2009. (ISSN 0974-
3375)

[9] Journal of Micromechanics and Microengineering,
Xuan F Zha and H Du, Manufacturing process and
material selection in concurrent collaborativedesign of
MEMS devices, 13, 509–522, 2003.

[10] Chenhui Shaoa, , Kamran Paynabarb, Tae Hyung
Kima, Jionghua (Judy) Jinc, S. Jack Hua, J. Patrick
Spicerd, Hui Wangd, Jeffrey A. Abelld, Feature
selection for manufacturing process monitoring using
cross-validation, Journal of Manufacturing Systems,
Volume 32, Issue 4, October 2013, Pages 550–555

[11] R. V. RAO, T. S. RAJESH, Software Selection in
Manufacturing Industries Using a Fuzzy Multiple
Criteria Decision Making Method, PROMETHEE,
Intelligent Information Management, 2009, 1, 159-165,
December 2009

[12] Mohammad Akhshabi, A New Fuzzy Multi Criteria
Model for Maintenance Policy, Middle-East Journal of
Scientific Research 10 (1): 33-38, 2011

[13] Mr. Girish R. Naik, Dr. V.A.Raikar, Dr. Poornima G.
Naik, Single Objective Criteria for Selection of
Manufacturing Method, International Journal of
Computer Science and Engineering (IJCSE) ISSN(P):
2278-9960; ISSN(E): 2278-9979 Vol. 3, Issue 2, Mar
2014, 35-46.

[14] Mr. Girish R. Naik, Dr. V.A.Raikar, Dr. Poornima G.
Naik, Single Objective Single Function Criteria for
Selection of Manufacturing Method, International
Journal of Emerging Technology and Advanced

Engineering, (ISSN 2250-2459, ISO 9001:2008
Certified Journal, Volume 4, Issue 2, February 2014,
182-190.

[15] Mr. Girish R. Naik, Dr. V.A.Raikar, Dr. Poornima G.
Naik, Multi Objective Criteria for Selection of
Manufacturing Method, International Journal of
Advanced Research in Computer Science and
Software Engineering ISSN: 2277 128X, Volume 4,
Issue 7, July 2014, 989-1002.

