
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 11 3406 – 3410

3406
IJRITCC | November 2014, Available @ http://www.ijritcc.org

Type-Ahead Search in XML data based on Improved Forward Index Structure:

ATASK

Ms. Sonali S. Kadam

Computer dept.

JSPM‟S BSIOTR (W)

Pune, India

sonali.kadam4@gmail.com

Prof. Sanchika A. Bhajpai

Computer dept.

JSPM‟S BSIOTR (W)

Pune, India

sanchi.scriet@gmail.com

Abstract— Recently, keyword based search system is most widely used in many real time applications for getting the required information from

a large amount of dataset in less time. There are many keyword search based systems and a method presented by various authors already, these

methods becomes inefficient in different ways like time to retrieve data, fetch that data. The all previous methods did not work for search XML

data in a type-ahead search, and hence it is not trivial to extend existing techniques to support fuzzy type-ahead search in XML data. Previous

methods are not purely based on XML data and as XML data is consisting of parent and child nodes, it is complex to understand such format to

read for existing methods. Existing methods directly works on single document. Thus to overcome the limitations of existing methods, we need

to have efficient XML based type-ahead search using forward indexing method. Recently, we have studied one method, which is called as TASX

(pronounced “task”) which is fuzzy type-ahead search method in XML data. This method searches the XML data during the typing of keyword

from user end and it searches XML data even if it‟s misspelled. Experimentally this method showing efficient performance as compared to

existing methods, but there are still suggestions over this method for improvement. Here, we are presenting extended approach for XML based

type-ahead search method ATASX (pronounced “a task”). In this method we are proposing to use improved forward-index structure method

with aim of improving the search efficiency it reduces searching time and provides result quality.

Keywords- Keyword Search System, Query, XML, TASX, Fuzzy, Forward index Structure.

__*****___

I. INTRODUCTION

Keyword search methods are recently have a great attention

in data mining and knowledge discovery. It is become

apparent most effective paradigm for discovering information

on web. The advantage of keyword search is its simplicity-that

user do not have to learn about complex query language and

can issue query without having any knowledge about structure

of xml document. Ranking the results of query is the most

important requirement for the keyword search so that the most

relevant results will be appeared. Keyword search provides

simple and user friendly query interface to access xml data in

web. Keyword search over xml is not always the entire

document but deeply nested xml[1]. Xml was designed to

transport and store data. It does not do anything, it is created to

structure, store, and transport information.xml document

contains text with some tags which is organized in hierarchy

with open and close tag.xml model addresses the limitation of

html search engine i.e. Google which returns full text

document but the xml captures additional semantics such as in

a full text titles, references and subsections are explicitly

captured using xml tags. For querying xml data keyword

search is proposed as an alternative method. In traditional

methods like xpath and xquery, to query over xml data it

requires query languages which are very hard to comprehend

for non database users. It can only understand by

professionals.

In order to reduce user‟s typing effort ATASX (pronounced

“a task”), a fuzzy type-ahead search method in XML data used.

ATASX searches the XML data, as user‟s type in query

keywords; even it has minor errors in their keywords. ATASX

provides a user friendly interface for users to explore XML

data, and can save users typing effort. In this work we have

studied the research challenges that came naturally in this

computing paradigm. The main challenge is search efficiency.

Each query with multiple keywords needs to be answered

efficiently[4]. To make search really interactive, for each

keystroke on the client browser, from the time the user presses

the key to the time the results computed from the server are

displayed on the browser, the delay should be as small as

possible. Interactive speed requires this delay should be within

milliseconds so that user get the answer immediately. This time

includes the network transfer time, execution time, and the time

for the browser to execute its Java-Script. Low Running time is

challenging task especially when the backend repository has a

large amount of data. To achieve the high efficiency, we

propose effective index structures and algorithms to answer

keyword queries in XML data. We examine effective ranking

functions and early termination techniques to progressively

identify top-k answers[14]. To the best of our knowledge, this

is the first paper to study fuzzy type-ahead search in XML data

based on improved forward index structuring method.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 11 3406 – 3410

3407
IJRITCC | November 2014, Available @ http://www.ijritcc.org

II. MINIMAL-COST TREE

In this section, new framework to find relevant answers to a

keyword query over an XML document. In the framework,

each node on the XML tree is potentially relevant to the query

with different scores. For each node, we define its

corresponding answer to the query as its subtree with paths to

nodes that include the query keywords. This subtree is called

the “minimal-cost tree” for this node. Different nodes

correspond to different answers to the query, and we will study

how to quantify the relevance of each answer to the query for

ranking.

III. FUZZY TYPE AHEAD SEARCH

Existing methods cannot search XML data in a type-ahead

search manner, and it is not trivial to extend existing

techniques to support fuzzy type-ahead search in XML data.

This is because XML contains parent-child relationships, and

we need to identify relevant XML subtrees that capture such

structural relationships from XML data to answer keyword

queries, instead of single documents. In this, we propose

ATASX (pronounced “task”), a fuzzy type-ahead search

method in XML data. ATASX searches the XML data on the

fly as user‟s type in query keywords, even in the presence of

minor errors of their keywords. ATASX provides a friendly

interface for users to explore XML data, and can significantly

save users typing effort. In this, we study research challenges

that arise naturally in this computing paradigm. The main

challenge is search efficiency. Each query with multiple

keywords needs to be answered efficiently. To make search

really interactive, for each keystroke on the client browser,

from the time the user presses the key to the time the results

computed from the server are displayed on the browser, the

delay should be as small as possible. An interactive speed

requires this delay should be within milliseconds. Notice that

this time includes the network transfer delay, execution time

on the server, and the time for the browser to execute its Java-

Script. This low-running-time requirement is especially

challenging when the backend repository has a large amount

of data. To achieve our goal, we propose effective index

structures and algorithms to answer keyword queries in XML

data. We examine effective ranking functions and early

termination techniques to progressively identify top-k answers.

To the best of our knowledge, this is the first paper to study

fuzzy type-ahead search in XML data. To summarize, we

make the following contributions:. We formalize the problem

of fuzzy type-ahead search in XML data. . We propose

effective index structures and efficient algorithms to achieve a

high interactive speed for fuzzy type-ahead search in XML

data. We develop ranking functions and early termination

techniques to progressively and efficiently identify the top-k

relevant answers. We have conducted an extensive

experimental study. The results show that our method

achieves high search efficiency and result quality.

Recently fuzzy type ahead search is studied which

allows minor mistakes in query. Type ahead search is a user

interface interaction method to progressively search for filter

through text. As the user types text, one or possible matches

for text are found and immediately present to user. The fuzzy

type ahead search in xml data returns the approximate results.

The best similar prefixes are matched and returned. For this

edit distance is used. Edit distance is defined as number of

operations (delete, insert, substitute) required to make the two

words equal. For example user typed the query ”mices” but the

mices is not in the xml document it contains miches ed(mices,

miches) is 1 so therefore the best similar prefix is miches it is

displayed.

Fuzzy Type ahead Search using improved Forward index

structure Algorithm Steps –

1. Compute Ranking of Sub Tree

There are mainly two ranking function to compute rank or

score between node n and keyword ki.

 The case I shows that n contains ki.

 The case II shows that n does not contain ki but has a

descendant containing ki.

Case I: n contains keyword ki the relevance or score of node n

and keyword ki is calculated by:

Where,

tf (ki, n) – number of occurrences of ki in sub tree rooted n

idf (ki) - ratio of number of nodes in xml to number of nodes

that contain keyword

ki ntl (n) - length of n /nmax length, nmax = node with max

terms

s - Constant set to 0.2 (Assumption)

Assume user composed a query containing keyword “db”

SCORE (13, db) = ln (1+1)*ln (27/2)

 (1- 0.2)+ (0.2*1)

 = 1.52

Case II: node n does not contain keyword ki whereas its

descendant has ki Second ranking function to calculate the

score between n and ki is given by:

Where,

P - Set of pivotal nodes

α - constant set to 0.8(Assumption)

- Distance between n and p

Assume the user entered query “db”

SCORE2 (12, db) = (0.8)*score1 (13, db)

 = 0.8 *1.52

 =1.21

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 11 3406 – 3410

3408
IJRITCC | November 2014, Available @ http://www.ijritcc.org

2. Ranking for Fuzzy Search Algorithm

Given a user keyword query Q= {k1, k2 …kl} in terms of

fuzzy search, a MCT may not contain the exact input

keywords, but contain predicted words for each keyword. Let

predicted words be {w1, w2... wl} the best similar prefix of wi

could be considered to be most similar to ki. The function to

quantify the similarity between ki and wi is given by

 Where,

 ed – edit distance

 ai – prefix,

wi – predicted word

 γ – constant

3. Improvement Using Forward Index Structure

Approach

Improved forward index is used to improve search

performance. We can utilize “random access” based on the

forward index to do an early termination in the algorithms.

That is, given an XML element and an input keyword, we can

get the corresponding score of the keyword and the element

using the forward index, without accessing inverted lists.

Fagin et al. have proved that the threshold-based algorithm

using random access is optimal over all algorithms that

correctly find the top k answers [12]. Thus, in this we have

improved forward index to implement random access.

Procedure

 Construct a trie structure to maintain the keyword

contained in the element.

 Each leaf node in the forward index keeps score of

element e to the corresponding keyword of the leaf

node.

 Given partial keyword we can efficiently check

element e contains a word having similar prefixes.

The time complexity of sorted access O (1) and for random

access is O(ed * AN), where ed is edit distance threshold and

AN is active number of nodes [27]. Suppose ed* A > I, we

will not maintain forward index, where I is average inverted

list length. The main advantage of forward index avoids

unnecessary element access compare to extended trie

structure.

IV. EXPERIMENTAL SETUP

The Type-Ahead Search in XML Data Based on Forward

Index Structure for XML data is implemented in Java, JSP and

downloadable package available on Internet is used. For

tomcat server the apache tomcat software package available on

Internet is used. It is written in Java

and runs on almost any platform. The model can be applied

directly to a dataset.

1. RESULTS AND DISCUSSION

In this section the performance of Type-Ahead Search In XML

Data Based On Forward Index Structure XML data with other

methods discussed. The results provided are based on

comparisons between proposed model and other models. Table

III shows elapsed time in milliseconds to execute query.

Table 1: Comparison Results between Type-Ahead Search in

XML Data Based on Forward Index Structure and Other

methods.

Query(Input) Method
Time-

in ms

Keyword Exact Search 280

Keyword Fuzzy Search 210

Keyword Effective Top-K Search 172

Keyword

Effective MCT with

Improved Forward index

Structure

17

2. RESULT SNAPSHOTS

Fig.1. Effective MCT with improved forward index structure

Input shown

Fig.2. Effective MCT with improved forward index structure

Elapsed time

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 11 3406 – 3410

3409
IJRITCC | November 2014, Available @ http://www.ijritcc.org

Here, Fig.2 we can take the input keyword for search and total

elapsed time required to search that keyword is calculated.

Elapsed time is time required between start time and end time.

From this we analyzed our system performance.

Fig.3. Comparative Graph of Effective Top-K search MCT

and Improved forward index structure

When user select result then it shows comparative analysis

between different systems, Comparative graph shows how our

system gives better performance than existing system. As

mentioned in figure 2 effective top-K MCT [1] is existing

system and Effective MCT with improved forward index

structure method is the proposed system.

Table 2: Difference between Mct and Mct with improved

forwared index

Table 8.2 shows comparative analysis between MCT and MCT

with improved forward index structure.

Elapsed time required for existing system and proposed

system is stored into table 2. Time is calculated in

milliseconds. Here, we can see that time required for existing

is more than proposed one.

V. CONCLUSION

We studied and implemented proposed method “Type-Ahead

Search in XML Data based on improved forward index

structure”.

We have identified following features of this method:

1. Keywords.-It allows users to explore data as they

type, even in the presence of minor errors of their

keywords.

2. Fuzzy type-ahead search method in xml data using

improved forward index structure, this method

searches the xml data during the typing of keyword

from user end and it searches xml data even if it‟s

misspelled.

3. Improving the search efficiency it reduces searching

time and provides result quality

As discussed in table 1.Experimentally this method showing

efficient performance as compared to existing methods in

order to elapsed time that is time required to execute that

string/keyword. We are presenting extended approach for xml

based type-ahead search method. In this method we are

proposing to use improved forward-index structure method

with aim of improving the search efficiency it reduces

searching time and provides result quality. our proposed

method has the following features: it extends auto complete by

supporting queries with multiple keywords in xml data, fuzzy:

it can find high-quality answers that have keywords matching

query keywords approximately ,this method is efficient in

terms of search time. However, there are chances to further

improve this search results by using the existing forward-index

structure method with aim of improving the search efficiency

and result quality. In this project we are adding the method

improved forward index structure.

ACKNOWLEDGMENT

Authors thanks BSIOTR(W), Pune for every support to write

this paper. Authors also thanks Prof. G. M. Bhandari, Head,

Department of Computer Engineering, Jspm‟s Bhivarabai

Sawant Institute of Technology & Research (W), Pune who

guided & encouraged me in completing the this work.

REFERENCES

[1] Jianhua Feng, Senior Member, IEEE, and Guoliang Li,

Member, IEEE “Efficient Fuzzy Type-Ahead Search in

XML Data”, ieee transactions on knowledge and data

engineering, vol. 24, no. 5, may 2012.

[2] S. Agrawal, S. Chaudhuri, and G. Das, “Dbxplorer: A

System for Keyword-Based Search over Relational

Databases,” Proc. Int‟l Conf. Data Eng. (ICDE), pp. 5-16,

2002.

[3] S. Amer-Yahia, D. Hiemstra, T. Roelleke, D. Srivastava,

and G.Weikum, “Db&ir Integration: Report on the

Dagstuhl Seminar „Ranked Xml Querying‟,” SIGMOD

Record, vol. 37, no. 3, pp. 46-49, 2008.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 11 3406 – 3410

3410
IJRITCC | November 2014, Available @ http://www.ijritcc.org

[4] A. Balmin, V. Hristidis, and Y. Papakonstantinou,

“Objectrank: Authority-Based Keyword Search in

Databases,” Proc. Int‟l Conf. Very Large Data Bases

(VLDB), pp. 564-575, 2004.

[5] Z. Bao, T.W. Ling, B. Chen, and J. Lu, “Effective XML

Keyword Search with Relevance Oriented Ranking,” Proc.

Int‟l Conf. Data Eng. (ICDE), 2009.

[6] H. Bast and I. Weber, “Type Less, Find More: Fast

Autocompletion Search with a Succinct Index,” Proc. Ann.

Int‟l ACM SIGIR Conf. Research and Development in

Information Retrieval (SIGIR), pp. 364-371, 2006.

[7] H. Bast and I. Weber, “The Completesearch Engine:

Interactive, Efficient, and towards Ir&db Integration,” Proc.

Biennial Conf. Innovative Data Systems Research (CIDR),

pp. 88-95, 2007.

[8] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S.

Sudarshan, “Keyword Searching and Browsing in

Databases Using Banks,” Proc. Int‟l Conf. Data Eng.

(ICDE), pp. 431-440, 2002.

[9] Y. Chen, W. Wang, Z. Liu, and X. Lin,“Keyword Search

on Structured and Semi-Structured Data,” Proc. ACM

SIGMOD Int‟l Conf. Management of Data, pp. 1005-1010,

2009.

[10] E. Chu, A. Baid, X. Chai, A. Doan, and J.F. Naughton,

“Combining Keyword Search and Forms for Ad Hoc

Querying of Databases,” Proc. ACM SIGMOD Int‟l Conf.

Management of Data, pp. 349-360,2009.

[11] S. Cohen, Y. Kanza, B. Kimelfeld, and Y. Sagiv,

“Interconnection Semantics for Keyword Search in Xml,”

Proc. Int‟l Conf. Information and Knowledge Management

(CIKM), pp. 389-396, 2005.

[12] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv, “Xsearch: A

Semantic Search Engine for Xml,” Proc. Int‟l Conf. Very

Large Data Bases (VLDB), pp. 45-56, 2003.

[13] B.B. Dalvi, M. Kshirsagar, and S. Sudarshan, “Keyword

Search on External Memory Data Graphs,” Proc. Int‟l

Conf. Very Large Data Bases (VLDB), pp. 1189-1204,

2008.

[14] B. Ding, J.X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin,

“Finding Top-k Min-Cost Connected Trees in Databases,”

Proc. Int‟l Conf. Data Eng. (ICDE), pp. 836-845, 2007.

[15] R. Fagin, A. Lotem, and M. Naor, “Optimal Aggregation

Algorithms for Middleware,” Proc. ACM SIGMOD-

SIGACTSIGART Symp. Principles of Database Systems

(PODS), 2001.

[16] I.D. Felipe, V. Hristidis, and N. Rishe, “Keyword Search on

Spatial Databases,” Proc. Int‟l Conf. Data Eng. (ICDE), pp.

656-665, 2008.

[17] K. Golenberg, B. Kimelfeld, and Y. Sagiv, “Keyword

Proximity Search in Complex Data Graphs,” Proc. ACM

SIGMOD Int‟l Conf. Management of Data, pp. 927-940,

2008.

[18] L. Guo, J. Shanmugasundaram, and G. Yona, “Topology

Search over Biological Databases,” Proc. Int‟l Conf. Data

Eng. (ICDE),pp. 556-565, 2007.

[19] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram,

“Xrank: Ranked Keyword Search over Xml Documents,”

Proc. ACM SIGMOD Int‟l Conf. Management of Data, pp.

16-27, 2003.

[20] D. Harel and R.E. Tarjan, “Fast Algorithms for Finding

Nearest Common Ancestors,” SIAM J. Computing, vol. 13,

no. 2, pp. 338-355, 1984.

