
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 11 3375 - 3379

3375
IJRITCC | November 2014, Available @ http://www.ijritcc.org

Performance Enhancement of Multicore Processors using Dynamic Load

Balancing

Ajay Tiwari

School of Computer Science

Devi Ahilya University (DAVV)

Indore, India

 e-mail: tiwariajay8@yahoo.com

Abstract— Introduction of Multi-core Architecture has opened new area for researchers where dynamic load balancing can be applied to

distribute the work load among the cores. Multi-core Architecture provides hardware parallelism through cores inside CPU. Its increased

performance and low cost as compared to single-core machines, attracts High Performance Computing (HPC) community. The paper proposes a

user level dynamic load balancing model for multi-core processors using Java multi-threading and use of Java I/O framework for I/O operations.

Keywords-Multithreading;dynamic load balancing; multicore;

__*****___

I. INTRODUCTION

Nodes of the distributed computing environment,
comprising multi-core processors are becoming more popular
than traditional Symmetric Multiprocessor (SMP) computing
nodes. Both scientific and business applications can be
benefited from multi-core processors [3]. Due to large
difference in the architecture of single-core and multi-core
processors, the existing dynamic load balancing techniques
cannot be directly applicable in DCE comprising multi-core
processing elements. The existing DLB techniques for
distributed computing environment viz. cluster, grid and cloud,
distribute and balance the load among the nodes whereas for
DCE comprising multi-core processing elements, a two stage
load balancing is required: in first stage DLB among the nodes
and in its second stage among the cores of the nodes.

From 1994 to 1998, CPU clock speeds rose by 300% and it
was expected by the processor manufacturers that in near future
processors clock speed will reach up to 10.0 Ghz and
processors would be capable of processing one trillion
operations per second. However it was observed that with the
increase of clock speed, processors consume more power and
generate more heat. This extra heat generation became barrier
to speed acceleration of CPU. Therefore from 2007 to 2011,
maximum CPU clock speed raised from 2.93 GHz to 3.9 GHz
i.e. an increase of 33%. Later on, the improvement in the
processor‟s performance was observed with the invention of
multi-core processors. As shown in Figure 1, in multi-core
architecture, processes are executed on more than one core of
the processor, each having restrained clock speed which
provides hardware parallelism and is named as Chip Multi
Processing (CMP). Prior to CMP, HPC community used
Symmetric Multi Processors (SMP). The main drawback of
SMP is that, processors of SMP communicate through
motherboard whereas lying on the same die, cores of CMP
communicate through faster cache. Clusters using multi-core
nodes are more popular and due to its better cost-to-
performance ratio draw the attention of scientific institutions
and business organizations. One of the major challenges for
multi-core nodes is running parallel applications and tasks to
cores mapping such that each core of the computing resources
are efficiently utilized [1].

Multi processing and multi-core processing elements

provide parallelism at hardware level. However, parallel
processing cannot be achieved without the support of
parallelism at software level. In software, parallelism can be
achieved through Instruction-Level Parallelism (ILP) or
Thread-Level Parallelism (TLP). ILP works on the machine-
instruction and helps the processors to split the instructions into
sub-instructions and re-order the instructions & sub-
instructions as per need. TLP is a boon for multi-core
processors where different threads are executed on different
cores to achieve parallelism. Some examples of TLP are as
follows:

System Bus

Core 1

Registers

L1
Cache

A

L

U

Core 2

Registers

L1
Cache

A

L

U

Core 3

Registers

L1

Cache

A

L

U

Registers

L1

Cache

A

L

U

Core 0

System Memory

Processor

L2 Cache

Figure 1 Symmetric Multicore Processor

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 11 3375 - 3379

3376
IJRITCC | November 2014, Available @ http://www.ijritcc.org

 Mail-server allows reading of e-mails and
downloading the material simultaneously using
separate threads.

 Computer game software applies physics, AI and
graphics using separate threads.

The advanced technique of integrating registers produces
complex multi-core processors ranging from symmetric multi-
core to asymmetric multi-core processors. In symmetric multi-
core processor, all cores present in a die are identical whereas
cores of an asymmetric multi-core also preset in a same die but
are of different design and different capabilities. Multi-
threading based applications make best use of symmetric multi-
core processors whereas asymmetric multi-core processors are
used by special purpose programs viz. video games, home
theatre etc. Two barriers which deteriorate the performance of
multi-core processors: I/O operations and unequal distribution
of task among the threads which results workload imbalance
among the cores.

In proposed model, Java multi-threading is used to
distribute the workload evenly among the cores and Java I/O
framework reduces the gap between processor performance and
I/O performance.

II. RELATED WORK

Several approaches have been proposed in literature to

address the issue of utilization of multi-core processors using

load balancing at core level. The load distribution is performed

based on observed behavior of application. In these types of

load balancing strategies, an algorithm is tailored to improve

performance of a particular parallel application and is not

suitable for general purpose parallel applications.

Lea proposed Java Fork/Join framework to support divide-

and-conquer problems. This framework is easy to use and

consists of splitting the task into independent subtasks via fork

operation, and then joining all subtasks via a join operation.

The performance primarily depends on garbage collection,

memory locality, task synchronization, and task locality. The

framework is made up of a pool of worker threads, a fork/join

Task, and queues of tasks. The worker threads are standard

(“heavy”) threads. The framework also uses work-stealing

algorithm which consists of, from an empty queue of a worker

thread, popping a task belonging to a non-empty queue of

another worker thread. When the subtask size is smaller than

the threshold, subtask is executed serially. But, sometimes it is

very difficult to determine the threshold [7] [10].

Zhong presented algorithms for both inter-node and intra-

node load balancing based on performance models, previously

developed for each node. Performance models of each core in a

multi-core processor are created. However, as cores compete

for shared resources and affect the performance of each other

dynamically, the performance model of an individual core may

not be realistic. In most of the models, including the model for

heterogeneous clusters, authors treat all the nodes of the cluster

as having equal computing capabilities, whereas in practice,

cluster may consists of nodes having different computing

capabilities [14] [4]].

Wang pointed out two common problems of utilizing

processors under multi-core architecture, namely processors

waiting for IO operation to finish and load balancing among

cores. In order to exploiting multi-core processing power of, he

proposed a multi-core load balancing model using Java

framework. Wang considered priority of processes at the core

level, which reduces the performance of the algorithm [13].

Hofmeyr presented a load balancing technique designed

specifically for parallel applications running on multi-core

systems. Instead of balancing run queue length, author‟s

algorithm balanced the time for which a thread has executed on

“faster” core and “slower” core [6].

To exploit multi-core architecture, a major challenge is to

convert single threaded applications to multithreading codes

[9]. Hybrid programming paradigms have been reported in

several published work that mainly experimented on SMP

cluster. IBM SP systems are used by Cappello & Daniel to

compare NAS parallel benchmarks on SMP cluster. Authors

also presented a study of communication and memory access

patterns in the cluster [2]. Hit rates of L1 and L2 cache are

studied by Taylor & Wu on multi-core cluster by using

„National aeronautics and space administration Advanced

Supercomputing (NAS)‟ parallel benchmarks SP and BT [12].
In the related literature, we have observed that either the

researchers have improved I/O bottleneck or parallelism. The
proposed model tries to improve both I/O bottleneck and
parallelism simultaneously.

III. PROPOSED FRAMEWORK

In the past, the only way to deal with divide-and-conquer

problems was the use of low level threads by native methods.

The number of threads created by native methods were equal

to number of tasks i.e. there is one-to-one correspondence

between number of tasks and number of threads which results

poor performance as some threads are of heavy weight while

others are light weight. One slice thread and 10 slices thread

are treated in similar way at the time of allocation to the cores

of multi-core processor which results in load imbalance at core

level. Similarly, there is a large difference between processor‟s

speed and I/O speed. A processor or a core has to wait a lot till

the completion of I/O operations.

The paper addresses both these problems by using Java

Fork/Join framework for parallel applications and Java New

Input-Output (NIO) framework to speed up I/O operations for

reducing the weighting time of the cores. The Java Fork/Join

framework was included in JDK 1.7 API and Java NIO

framework was introduced in JDK1.4.

A. Fork/Join Framework

Fork/Join framework is a classical way of solving divide-
and-conquer problems. Lea has introduced Java Fork/Join
framework to deal with parallel programming through high
level threads with the goal to minimize execution time by
exploiting parallelism [7] [15]. The framework can be
described as follows:
a) Partition into Sub-Problems: The problem is broken up

into manageable sub-problems where each sub-problem
should be as independent as possible (one of the important
decomposition principles).

b) Create Subtasks: The solution to each sub-problem is
found as a Runnable task.

c) Fork Subtasks: The subtasks are handed over to pool of
worker threads where pool size depends on the number of
cores of a multi-core node.

d) Join Subtasks: Compose the solution of the subtasks
belonging to a worker thread. Repeat the step for all the
worker threads.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 11 3375 - 3379

3377
IJRITCC | November 2014, Available @ http://www.ijritcc.org

e) Compose Solution: Integrate the solution provided by the
worker threads.

As stated above, the framework balances the load among
multi-cores in step (c) where tasks are handed over to worker
threads. The load balancing is achieved by serializing more
than one light weight tasks to a worker thread whereas a heavy
task is taken care by an individual worker thread.

B. Java NIO Framework

Java New Input/Output (NIO) is an alternative to standard

java stream based I/O API. Although Java NIO comprises of

number of classes and components, its core components are

Channel, Buffer and Selector. Java NIO works with channels

and buffers instead of byte streams and character streams [11].
A Channel is similar to streams, with the difference that

Channels read data into Buffers and Buffers write data into
Channels. To handle file and network I/O, there are several
Channels provided by Java viz. FileChannel,
DatagramChannel, SocketChannel, ServerSocketChannel etc. It
is known that a buffer is a block of memory into which data is
written as well as read from. Java NIO, wrap these memory
blocks in a Buffer object, where a set of methods allowed easy
handling of buffers. In Java NIO, a selector is an object that can
monitor multiple channels for events viz. connection opened,
data arrived etc. and allows a single thread to handle multiple
Channels (connections) [5].

C. Proposed Server Load Balancing Architecture

As shown in Figure 2, this section discusses the proposed
multi-core server architecture where we have combined Java

NIO and Fork/Join framework. The working of the model is as
follows:

 Java NIO framework is used to handle network I/O and
file I/O which minimizes the multi-core waiting time.

 Requests are categorized into classes viz. data-intensive,
computation-intensive etc. to help in splitting the tasks as
well as serialization of light weight tasks.

 Fork/Join framework is used to exploit multi processing
where a load balancer serializes light weight tasks to
worker threads for even workload distribution among the
multi-cores. Finally, the response is sent back to the client
through NIO framework.

The proposed system considers symmetric multi-core nodes
where all the cores are identical. Though the proposed
framework is not able to solve all the problems, it utilizes
multi-cores in such a way that heavy tasks and light weight
tasks complete their execution almost simultaneously and
improves the performance of overall system.

D. Proposed Load Balancing Algorithm

Algorithm considers the following assumptions:

 The server has n cores C1, C2, … , Cn.

 Qi is the queue attached with core Ci.

 Wi is the worker thread which executes the tasks of Qi.
queue.

 There are m tasks T1, T2… Tm in the system.
Task Ti can be divided into k parallel subtasks Ti1, Ti2… Tik

where k may vary from task to task.

a) For all tasks Ti, distribute parallel subtasks Ti1, Ti2… Tik
into all task queues such that each queue has k/n parallel
subtasks.

b) Worker thread Wi executes the tasks of queue Qi on core
Ci.

c) Worker threads use adoptive migration techniques to
migrate a process from a heavy loaded queue to their own
queue. The technique works as:

i) For a lightly loaded system it uses pull based or
receiver initiated technique to pull the tasks from
a longer queue.

ii) For a moderately or heavy loaded system the
sender initiated technique is being used where a
worker thread searches least loaded queue and
request for process migration.

IV. EXPERIMENT AND RESULT ANALYSIS

To compare the performance of proposed work, various
experiments are executed using proposed DLB algorithm
without external load balancing. The experiments cover Matrix
Multiplication, Merge Sort and Fibonacci [10]. For matrix
multiplication, we used iterative method, where merge sort,
uses divide-and-conquer algorithm which divides the list into
two equal sub lists until the sub list is reduced to two elements.
Fibonacci is a compute intensive algorithm to find the sum of
natural numbers. For each experiment, number of subtasks
executed on each core and total execution time with and
without DLB is collected [13]. The Experiments are performed
in IBM System X-3200 M3 Server 7328-I6S, Intel Xeon E
3430 (Quad Core) 8 MB Cache 1333 MHz 2.4 GHz, 8 GB
Ram running Linux Fedora 11 with Java 1.7.0 runtime
environment. The experiments are repeated five times and
results are averaged.

Task Categorization

Client

Category 0

Category 1

Category N

Java NIO Framework

Solution Composer

Pool of Worker Threads

DLB Module

Fork/Join Framework

Request Response

Server

Figure 2 Proposed Multicore Server Load Balancing Architecture

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 11 3375 - 3379

3378
IJRITCC | November 2014, Available @ http://www.ijritcc.org

TABLE I NUMBER OF PROCESSES

Experiments
Core

0

Core

1

Core

2

Core

3

Fibonacci 9837 8698 9119 10510

Merge Sort 14376 16504 14682 16869

Matrix Mul 23327 19430 21465 16320

LB Fibonacci 9321 9698 9631 9514

LB Merge Sort 16012 15131 15705 15583

LB Matrix Mul 19785 20641 20149 19967

TABLE II PROCESSES EXECUTION TIME IN MILLISECONDS

Experiments With DLB Without DLB

Fibonacci 5478 6183

Merge Sort 7932 9319

Matrix Mul 9163 11063

Figure 3. Distribution of Number of Tasks in various Cores.

Figure 4. Comparison of Execution Time With and Without DLB.

The Fibonacci function is executed for fifty arguments and
merge sort is used to sort twenty five thousands integers to test
the performance of the proposed model. Tables I and Figure 3
depicts the number of processes that are distributed among the
cores. Figure 3 shows that the processes are distributed evenly
when DLB algorithm is being used. On the other hand, in
random distribution method, uneven distribution can be
observed. The distribution of tasks of smaller size is similar to
the proposed model as in the case of Fibonacci and Merge sort
but for larger tasks like Matrix multiplication, a large
difference can be observed in distribution of processes by using
both methods as shown in Figure 3. Table II and Figure 4 show
the completion time of the various experiments using proposed
DLB model and using random distribution method.
Approximately 13%, 17% and 21% increase of throughput of
the system using proposed model over random distribution
method for Fibonacci, Merge Sort and Matrix multiplication
experiments respectively has been observed. Therefore, the
proposed model is useful for larger tasks.

V. CONCLUSION

Multiple cores are effective for data parallel applications

where same code can run through multiple threads on different

sets of data as well as for functionally decomposed

computation intensive tasks where each task run in parallel on

different cores [8]. Design of dynamic load balancing

algorithms for multi-core processor based DCE is more

complex than DCEs having uni-core processor based nodes.
The paper proposes an adaptive load balancing model for

symmetric multi-core nodes where all the cores of a node are
identical. The model used two frameworks for I/O as well as
for parallel programming. Experimental results show that the
proposed model is feasible for large tasks and all the processes

5000

7000

9000

11000

13000

15000

17000

19000

21000

23000

25000

Core 0 Core 1 Core 2 Core 3

N
u

m
b

er
 o

f
P

ro
ce

ss
es

Cores of Multicore Processor

Fibonacci LB Fibonacci

Merge Sort LB Merge Sort

Matrix Mul LB Matrix Mul

0

2000

4000

6000

8000

10000

12000

Fibonacci Merge SortMatrix Mul

M
il

li
se

c
o

n
d

s

With DLB Without DLB

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 11 3375 - 3379

3379
IJRITCC | November 2014, Available @ http://www.ijritcc.org

finish almost at the same time which indicates the overall
performance of the multi-core processors.

REFERENCES

[1] S. Akhter and R. Jason, “Multi-Core programming:

increasing performance through software multi-

threading,” Machine Press, Beijing, China, 2007, pp. 12-

13.

[2] F. Cappello and D. Etiemble, “MPI versus MPI+OpenMP

on the IBM SP for the NAS benchmarks,” IEEE

conference on Supercomputing, Nov. 2000, pp. 12-23.

[3] J. Chen, W. Watson and W. Mao, “Multi-threading

performance on commodity multi-core processors,” 9th

International Conference on High Performance

Computing, March 2007, pp. 1-8.

[4] J. Dummler, T. Rauber and G. Runger, “Scalable

computing with parallel tasks,” 2nd Workshop on Many-

Task Computing on Grids and Supercomputers, Portland,

Nov. 2009, pp. 141-148.

[5] R. Hitchens, “How to build a scalable multiplexed server

with NIO,” JavaOne Conference, 2006.

[6] S. Hofmeyr, C. Iancu and F. Blagojevic, “Load balancing

on speed,” ACM Symposium on Principles and Practice of

Parallel Programming, Bangalore, India, Jan 2010, pp.

147-158.

[7] D. Lea, “A Java Fork/Join Framework,” In JAVA‟00,

2000, pp. 36-43.

[8] A. Mamidala, “MPI collectives on modern Multicore

clusters: performance optimizations and communication

characteristics,” 10th IEEE International Conference on

Cluster, Cloud and Grid Computing, Melbourne, May

2010.

[9] M. Parsons, “The challenge of Multicore: a brief history of

a brick wall,” Technical Report, Available online at:

http://www.epcc.ed.ac.uk.

[10] A. Senghor and K. Konate, “A Java Fork-Join framework-

based parallelizing compiler for dealing with divide and

conquer algorithm,” Journal of Information Technology

Review, Vol. 4, No 1, Feb 2013, pp. 1-12.

[11] R. Standtke and U. Nitsche, “Java NIO framework-

introducing a high-performance i/o framework for java,”

In Proceedings of the Internationl Conference on Software

and Data Technologies (ICSOFT 2008), Porto, Portugal,

2008.

[12] V. Taylor and X. Wu, “Performance characteristics of

hybrid MPI/OpenMP implementations of NAS parallel

benchmarks SP and BT on large-scale Multicore clusters,”

International Workshop on Performance Modeling,

Benchmarking and Simulation of High Performance

Computing Systems , Vol. 38, No. 4, March 2011.

[13] Y. Wang and G. Qin, “A Multicore load balancing model

based on Java NIO,” Indonesian Journal of Electrical

Engineering, Vol.10, No.6, Oct 2012, pp. 1490-1495.

[14] Z. Zhong, V. Rychkov and A. Lastovetsky, “Data

partitioning on heterogeneous Multicore platforms,” IEEE

International Conference on Cluster Computing, Sept.

2011, pp. 580-588.

[15] Z. Zhou, “Understanding the JVM: advanced features and

best practices,” Machine Press, Beijing, China, 2011, pp.

336-337.

