
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 10 3291 – 3296

3291
IJRITCC | October 2014, Available @ http://www.ijritcc.org

Development by Using the Test Driven Approach

Er. Anup Lal Yadav

M-Tech Student

Er. Sahil Verma

Asst. Prof. in C.S.E. Deptt.

EMGOI , Badhauli.

sahilkv4010@yahoo.co.in

Er. Kavita

Asst. Prof. in C.S.E. Deptt.

EMGOI , Badhauli

Abstract-- Test-Driven Development (TDD) is a software development technique consisting of short iterations where new test cases covering the

desired improvement or new functionality are written first, then the production code necessary to pass the tests is implemented, and finally the

software is refactored to accommodate changes. Test-Driven Development is related to the test-first programming concepts of Extreme

Programming, begun in the late 20th century, but more recently is creating more general interest in its own right. In this paper, I am describing

the test driven development cycle, development style ,benefits, limitations and how to do testing in different languages.

__*****___

1. Introduction

Test-driven development requires that an automated unit

test, defining requirements of the code, is written before

each aspect of the code itself. These tests contain assertions

that are either true or false. Running the tests gives rapid

confirmation of correct behaviour as the code evolves and is

refactored. Testing frameworks based on the x Unit concept

provide a mechanism for creating and running sets of

automated test cases.

2. Following sequence is used for test driven

development.

1) 2.1. Add a test

In test-driven development, each new feature begins with

writing a test. This test must inevitably fail because it is

written before the feature has been implemented. In order to

write a test, the developer must understand the specification

and the requirements of the feature clearly. This may be

accomplished through use cases and user stories to cover the

requirements and exception conditions. This could also

imply an invariant, or modification of an existing test. This

is a differentiating feature of test-driven development versus

writing unit tests after the code is written: it makes the

developer focus on the requirements before writing the code,

a subtle but important difference.

2) 2.2 Run all tests and see if the new one fails

This validates that the test harness is working correctly and

that the new test does not mistakenly pass without requiring

any new code.

The new test should also fail for the expected reason. This

step tests the test itself, in the negative: it rules out the

possibility that the new test will always pass, and therefore

be worthless.

3) 2.3 Write some code

The next step is to write some code that will cause the test to

pass. The new code written at this stage will not be perfect

and may, for example, pass the test in an inelegant way.

That is acceptable because later steps will improve and hone

it.

It is important that the code written is only designed to pass

the test; no further (and therefore untested) functionality

should be predicted and 'allowed for' at any stage.

4) 2.4 Run the automated tests and see them succeed

If all test cases now pass, the programmer can be confident

that the code meets all the tested requirements. This is a

good point from which to begin the final step of the cycle.

5) 2.5 Refactor code

Now the code can be cleaned up as necessary. By re-running

the test cases, the developer can be confident that refactoring

is not damaging any existing functionality. The concept of

removing duplication is an important aspect of any software

design. In this case, however, it also applies to removing any

duplication between the test code and the production code

— for example magic numbers or strings that were repeated

in both, in order to make the test pass in step 3.

3. Development style

There are various aspects to using test-driven development,

for example the principles of "Keep It Simple, Stupid"

http://en.wikipedia.org/wiki/Test_case
http://en.wikipedia.org/wiki/Code_refactoring
http://en.wikipedia.org/wiki/Extreme_Programming
http://en.wikipedia.org/wiki/Extreme_Programming
http://en.wikipedia.org/wiki/Extreme_Programming
http://en.wikipedia.org/wiki/Test_automation
http://en.wikipedia.org/wiki/Test_automation
http://en.wikipedia.org/wiki/Test_automation
http://en.wikipedia.org/wiki/Assertion_%28computing%29
http://en.wikipedia.org/wiki/Refactoring
http://en.wikipedia.org/wiki/XUnit
http://en.wikipedia.org/wiki/Use_case
http://en.wikipedia.org/wiki/User_story
http://en.wikipedia.org/wiki/Magic_number_%28programming%29

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 10 3291 – 3296

3292
IJRITCC | October 2014, Available @ http://www.ijritcc.org

(KISS) .By focusing on writing only the code necessary to

pass tests, designs can be cleaner and clearer than is often

achieved by other methods.[1]. To achieve some advanced

design concept (such as a Design Pattern), tests are written

that will generate that design. The code may remain simpler

than the target pattern, but still pass all required tests. This

can be unsettling at first but it allows the developer to focus

only on what is important.

Test-driven development requires the programmer to first

fail the test cases. The idea is to ensure that the test really

works and can catch an error. Once this is shown, the

normal cycle will commence. This has been coined the

"Test-Driven Development Mantra", known as

red/green/refactor where red means fail and green is pass.

Test-driven development constantly repeats the steps of

adding test cases that fail, passing them, and refactoring.

Receiving the expected test results at each stage reinforces

the programmer's mental model of the code, boosts

confidence and increases productivity.

Advanced practices of test-driven development can lead to

Acceptance Test-driven development [ATDD] where the

criteria specified by the customer are automated into

acceptance tests, which then drive the traditional unit test-

driven development [UTDD] process. This process ensures

the customer has an automated mechanism to decide

whether the software meets their requirements. With ATDD,

the development team now has a specific target to satisfy,

the acceptance tests - which keeps them continuously

focused on what the customer really wants from that user

story.

4. Benefits

Some possible benefits of TDD are as follows :

 Efficiency and Feedback: The fine granularity of the

test then- code cycle gives continuous feedback to the

developer.

 Low-Level design: The tests provide a specification

of the low level design decision in terms of the classes,

methods and interfaces created.

 Reducing Defect Injection. Often with debugging and

software maintenance, working code is “patched” to

alter its properties and specifications, and designs are

neither examined nor updated. Unfortunately, such

fixes and “small” code changes may be nearly 40 times

more error prone than new development By

continuously running these automated test cases, one

can find out whether a change breaks the existing

system.

 Test Assets: TDD makes programmers write code

that is automatically testable. Such automated unit test

cases written with TDD are valuable assets to the

project in terms of regression testing.

:Programmers using pure TDD on new ("greenfield")

projects report they only rarely feel the need to invoke a

debugger. Used in conjunction with a Version control

system, when tests fail unexpectedly, reverting the code to

the last version that passed all tests may often be more

productive than debugging.

Test-driven development can help to build software better

and faster.[citation needed] It offers more than just simple

validation of correctness, but can also drive the design of a

program. By focusing on the test cases first, one must

imagine how the functionality will be used by clients (in this

case, the test cases). Therefore, the programmer is only

concerned with the interface and not the implementation.

This benefit is complementary to Design by Contract as it

approaches code through test cases rather than through

mathematical assertions or preconceptions.

The power test-driven development offers is the ability to

take small steps when required. It allows a programmer to

focus on the task at hand as the first goal is to make the test

pass. Exceptional cases and error handling are not

considered initially. Tests to create these extraneous

circumstances are implemented separately. Another

advantage is that test-driven development, when used

properly, ensures that all written code is covered by a test.

This can give the programmer, and subsequent users, a

greater level of trust in the code.

While it is true that more code is required with TDD than

without TDD because of the unit test code, total code

implementation time is typically shorter. Large numbers of

tests help to limit the number of defects in the code. The

early and frequent nature of the tests helps to catch defects

http://en.wikipedia.org/wiki/KISS_principle
file:///C:\Documents%20and%20Settings\Administrator\Desktop\Test-driven_development.htm%23cite_note-Beck-2
http://en.wikipedia.org/wiki/Design_Pattern
http://testdrivendeveloper.com/default.aspx#a9eda991a-3ada-4e70-84d8-1194fa5edda7
http://en.wikipedia.org/wiki/Greenfield_project
http://en.wikipedia.org/wiki/Debugger
http://en.wikipedia.org/wiki/Version_control_system
http://en.wikipedia.org/wiki/Version_control_system
http://en.wikipedia.org/wiki/Version_control_system
http://en.wikipedia.org/wiki/Wikipedia:Citation_needed
http://en.wikipedia.org/wiki/Design_by_Contract

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 10 3291 – 3296

3293
IJRITCC | October 2014, Available @ http://www.ijritcc.org

early in the development cycle, preventing them from

becoming endemic and expensive problems. Eliminating

defects early in the process usually avoids lengthy and

tedious debugging later in the project.

TDD can lead to more modularized, flexible, and extensible

code. This effect often comes about because the

methodology requires that the developers think of the

software in terms of small units that can be written and

tested independently and integrated together later. This leads

to smaller, more focused classes, looser coupling, and

cleaner interfaces. The use of the Mock Object design

pattern also contributes to the overall modularization of the

code because this pattern requires that the code be written so

that modules can be switched easily between mock versions

for unit testing or "real" version for deployment.

5. Limitations

1. Test-Driven Development is difficult to use in

situations where full functional tests are required to

determine success or failure. Examples of these are

GUIs (graphical user interfaces), programs that

work with relational databases, and some that

depend on specific network configurations. TDD

encourages developers to put the minimum amount

of functional code into such modules and maximise

the logic that is extracted into testable library code,

using fakes and mocks to represent the outside

world.

2. Management support is essential. Without the

entire organization believing that Test-Driven

Development is going to improve the product,

management will feel that time spent writing tests

is wasted

3. Testing has historically been viewed as a lower

status position than developer or architect. This can

be seen in products such as Visual Studio 2005,

whose Architect Edition lacked the testing

facilities that the Testing Edition offered

4. The tests themselves become part of the

maintenance overhead of a project. Badly written

tests, for example ones that check hard-coded error

strings or which are themselves prone to failure, are

expensive to maintain. There is a risk that tests that

regularly generate false failures will be ignored, so

that when a real failure occurs it may not be

detected. It is possible to write tests for low and

easy maintenance, for example by the reuse of error

strings, and this should be be a goal during the

'Refactor' phase described above.

6. Testing automation

Software testing can be very costly. Automation is a good

way to cut down time and cost. Software testing tools and

techniques usually suffer from a lack of generic applicability

and scalability. The reason is straight-forward. In order to

automate the process, we have to have some ways to

generate oracles from the specification, and generate test

cases to test the target software against the oracles to decide

their correctness. Today we still don't have a full-scale

system that has achieved this goal. In general, significant

amount of human intervention is still needed in testing. The

degree of automation remains at the automated test script

level.

The problem is lessened in reliability testing and

performance testing. In robustness testing, the simple

specification and oracle: doesn't crash, doesn't hang suffices.

Similar simple metrics can also be used in stress testing.

7. When to stop testing?

Testing is potentially endless. We can not test till all the

defects are unearthed and removed -- it is simply impossible.

At some point, we have to stop testing and ship the software.

The question is when.

Realistically, testing is a trade-off between budget, time and

quality. It is driven by profit models. The pessimistic, and

unfortunately most often used approach is to stop testing

whenever some, or any of the allocated resources -- time,

budget, or test cases -- are exhausted. The optimistic

stopping rule is to stop testing when either reliability meets

the requirement, or the benefit from continuing testing

cannot justify the testing cost. This will usually require the

use of reliability models to evaluate and predict reliability of

the software under test. Each evaluation requires repeated

running of the following cycle: failure data gathering --

modeling -- prediction. This method does not fit well for

http://en.wikipedia.org/wiki/Mock_Object
http://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/Relational_database

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 10 3291 – 3296

3294
IJRITCC | October 2014, Available @ http://www.ijritcc.org

ultra-dependable systems, however, because the real field

failure data will take too long to accumulate.

8.Code Visibility

There are two kinds of testing code: black box and white

box, sometimes called glass box testing. Black box unit tests

functionality at the interface boundaries. Nearly all unit tests

are structured as black-box tests, because it guarantees

software modularity, and forces an emphasis on the interface

of the module. White box testing occurs when your tests can

both observe and mutate state belonging to the software

under test. These kinds of tests are strongly discouraged,

because subtle bugs can appear if the test itself is buggy.

Glass box testing occurs when your tests can only observe,

but not mutate, the state belonging to the production code.

Applications of glass box testing include hardware-level

verification of a function's output. For example, verifying a

skip-list's links are properly set is vital to the successful and

bug-free operation of a skip-list's implementation.

Test-suite code clearly has to be able to access the code it is

testing. In almost every case imaginable, this access occurs

through the published interface of function, procedure, or

method calls. The use of "mock objects" ensures information

hiding remains intact, guaranteeing a total separation of

concerns.

Unit test code for TDD is almost never written within the

same project or module as the code being tested. By placing

tests in a separate module or library, the production code

remains pristine. Placing the TDD code inside the same

module would fundamentally alter the production code. Use

of conditional compilation directives can introduce subtle

bugs.

Some may argue that using strict black box testing does not

provide access to private data and methods. This is

intentional; as the software evolves, you may find the

implementation of a class changes fundamentally.

Remember a critical step of test-driven development is to

refactor. Refactoring may introduce changes which adds or

removes private members, or alters an existing member's

type. These changes ought not break existing tests. Unit tests

that exploit glass box testing are highly coupled to the

production software; changing the implementation of a class

or module may mean you must also update or discard

existing tests, things which should never have to occur. For

this reason, glass box testing must be kept to the minimum

possible. White box testing should never be used in test-

driven development.

In all cases, thought must be given to the question of

deployment. The best approach is to develop your software

so that you have three major components. The first major

component is the unit test runner application framework

itself. The second is the main entry module for the

production logic. Both of these modules would link

(preferably dynamically) to one or more libraries, each

implementing some or all of the business logic under

development. This guarantees total modularity and is

thoroughly deployable.

9. Fakes, mocks and integration tests

Unit tests are so-named because they each test one unit of

code. Whether a module of code has hundreds of unit tests

or only five is irrelevant. A test suite should never cross

process boundaries in a program, let alone network

connections. Doing either introduces delays, which make

tests run slowly, which in turn discourages developers from

running the whole suite. Introducing dependencies on

external modules and/or data also turns unit tests into

integration tests. If one module misbehaves in a chain of

inter-related modules, it may not be clear where to look for

the cause of the failure.

When code under development relies on a database or a web

service or any other external process or service, enforcing a

unit-testable separation is an opportunity and a driving force

to design more modular, more testable and more re-usable

code. Two steps are necessary:

1. Whenever external access is going to be needed in

the final design, an interface should be defined that

describes the access that will be available.

2. The interface should be implemented in two ways,

one of which really accesses the external process,

and the other is a fake or mock object. Fake objects

need do little more than add a message such as

"Person object saved" to a trace-log or to the

console. Mock objects differ in that they

http://en.wikipedia.org/wiki/Black_box_testing
http://en.wikipedia.org/wiki/White_box_testing
http://en.wikipedia.org/wiki/White_box_testing
http://en.wikipedia.org/wiki/White_box_testing
http://en.wikipedia.org/wiki/Information_hiding
http://en.wikipedia.org/wiki/Information_hiding
http://en.wikipedia.org/wiki/Information_hiding
http://en.wikipedia.org/wiki/Separation_of_concerns
http://en.wikipedia.org/wiki/Separation_of_concerns
http://en.wikipedia.org/wiki/Separation_of_concerns
http://en.wikipedia.org/wiki/Module_%28programming%29
http://en.wikipedia.org/wiki/Interface_%28computer_science%29
http://en.wikipedia.org/wiki/Mock_object
http://en.wikipedia.org/wiki/Tracing_%28software%29

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 10 3291 – 3296

3295
IJRITCC | October 2014, Available @ http://www.ijritcc.org

themselves contain test assertions that can make the

test fail, for example, if the person's name and other

data are inconsistent. Fake and mock object

methods that return data, ostensibly from a data

store or user, can help the test process by always

returning the same, realistic data that tests can rely

upon. They can also be set into pre-defined fault-

modes so that error handling routines can be

developed and reliably tested.

A corollary of this approach is that the actual database or

other external-access code is never tested by the TDD

process itself. To avoid this, other tests are needed that

instantiate the test-driven code with the 'real'

implementations of the interfaces discussed above. Many

developers find it useful to keep these tests quite separate

from the TDD unit tests, and refer to them as integration

tests. There will be fewer of them, and they need be run less

often than the unit tests. They can nonetheless be

implemented using the same testing framework, for example

xUnit.

Integration tests that alter any persistent store or database

should always be careful to leave them in a state ready for

re-use, even if any test fails. This can be achieved using

some combination of the following techniques where

relevant and available to the developer:

 the TearDown method integrated into many test

frameworks

 try...catch...finally exception handling structures

where available

 database transactions where a transaction

atomically includes perhaps a write, a read and a

matching delete operation.

 Taking a "snapshot" of the database before running

any tests and rolling back to the snapshot after each

test run. This may be automated using a framework

such as Ant or NAnt.

10. Testing methods

Software testing methods are traditionally divided into black

box testing and white box testing. These two approaches are

used to describe the point of view that a test engineer takes

when designing test cases.

 Black box testing

Black box testing treats the software as a black-box without

any understanding of internal behavior. It aims to test the

functionality according to the requirements. Thus, the tester

inputs data and only sees the output from the test object.

This level of testing usually requires thorough test cases to

be provided to the tester who then can simply verify that for

a given input, the output value (or behavior), is the same as

the expected value specified in the test case. Black box

testing methods include: equivalence partitioning, boundary

value analysis, all-pairs testing, fuzz testing, model-based

testing, traceability matrix etc.

 White box testing

White box testing, however, is when the tester has access to

the internal data structures, code, and algorithms.

 Types of white box testing

The following types of white box testing exist:

 code coverage - creating tests to satisfy some

criteria of code coverage. For example, the test

designer can create tests to cause all statements in

the program to be executed at least once.

 mutation testing methods.

 fault injection methods.

 static testing - White box testing includes all static

testing.

a) 10.1 Code Completeness Evaluation

White box testing methods can also be used to evaluate the

completeness of a test suite that was created with black box

testing methods. This allows the software team to examine

parts of a system that are rarely tested and ensures that the

most important function points have been tested

Two common forms of code coverage are:

 function coverage, which reports on functions

executed

 and statement coverage, which reports on the

number of lines executed to complete the test.

They both return a coverage metric, measured as a

percentage.

http://en.wikipedia.org/wiki/XUnit
http://en.wikipedia.org/wiki/Exception_handling
http://en.wikipedia.org/wiki/Database_transactions
http://en.wikipedia.org/wiki/Atomicity
http://en.wikipedia.org/wiki/Apache_Ant
http://en.wikipedia.org/wiki/NAnt
http://en.wikipedia.org/wiki/Black_box_testing
http://en.wikipedia.org/wiki/Black_box_testing
http://en.wikipedia.org/wiki/Black_box_testing
http://en.wikipedia.org/wiki/White_box_testing
http://en.wikipedia.org/wiki/Black_box_testing
http://en.wikipedia.org/wiki/Equivalence_partitioning
http://en.wikipedia.org/wiki/Boundary_value_analysis
http://en.wikipedia.org/wiki/Boundary_value_analysis
http://en.wikipedia.org/wiki/Boundary_value_analysis
http://en.wikipedia.org/wiki/All-pairs_testing
http://en.wikipedia.org/wiki/Fuzz_testing
http://en.wikipedia.org/wiki/Model-based_testing
http://en.wikipedia.org/wiki/Model-based_testing
http://en.wikipedia.org/wiki/Traceability_matrix
http://en.wikipedia.org/wiki/White_box_testing
http://en.wikipedia.org/wiki/Code_coverage
http://en.wikipedia.org/wiki/Mutation_testing
http://en.wikipedia.org/wiki/Fault_injection
http://en.wikipedia.org/wiki/Static_testing
http://en.wikipedia.org/wiki/Function_points

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 10 3291 – 3296

3296
IJRITCC | October 2014, Available @ http://www.ijritcc.org

 Grey Box Testing

In recent years the term grey box testing has come into

common usage. This involves having access to internal data

structures and algorithms for purposes of designing the test

cases, but testing at the user, or black-box level.

Manipulating input data and formatting output do not

qualify as grey-box because the input and output are clearly

outside of the black-box we are calling the software under

test. This is particularly important when conducting

integration testing between two modules of code written by

two different developers, where only the interfaces are

exposed for test. Grey box testing may also include reverse

engineering to determine, for instance, boundary values.

 Non Functional Software Testing

Special methods exist to test non-functional aspects of

software.

 Performance testing checks to see if the software

can handle large quantities of data or users.

 Usability testing is needed to check if the user

interface is easy to use and understand.

 Security testing is essential for software which

processes confidential data and to prevent system

intrusion by hackers.

 internationalization and localization is needed to

test these aspects of software, for which a

pseudolocalization method can be used.

Testing Measuring software testing

Usually, quality is constrained to such topics as correctness,

completeness, security,[citation needed] but can also include

more technical requirements as described under the ISO

standard ISO 9126, such as capability, reliability, efficiency,

portability, maintainability, compatibility, and usability.

There are a number of common software measures, often

called "metrics", which are used to measure the state of the

software or the adequacy of the testing.

Conclusion : I have discussed the procedure to develop a

software. When testing is to be done, when it is to be

stopped. Which type of testing should be done at which

level. Which method of testing is to used? Normally we

familiar with only levels of testing but not with test driven

process or cycle.Later ,I will discuss best practices of

testing.

References

1. Nuewkirk, JW and Vorontsov, AA. Test-Driven

Development in Microsoft .NET, Microsoft Press,

2004.

2. Feathers, M. Working Effectively with Legacy

Code, Prentice Hall, 2004

3. a b Beck, K. Test-Driven Development by

Example, Addison Wesley, 2003

4. Erdogmus, Hakan; Morisio, Torchiano. On the

Effectiveness of Test-first Approach to

Programming. Proceedings of the IEEE

Transactions on Software Engineering, 31(1).

January 2005. (NRC 47445). Retrieved on 2008-

01-14.

5. Proffitt, Jacob. TDD Proven Effective! Or is it?.

Retrieved on 2008-02-21.

6. Clark, Mike. Test-Driven Development with JUnit

Workshop. Clarkware Consulting, Inc..Retrieved

on 2007-11-01.

http://en.wikipedia.org/wiki/Integration_testing
http://en.wikipedia.org/wiki/Reverse_engineering#Reverse_engineering_of_software
http://en.wikipedia.org/wiki/Reverse_engineering#Reverse_engineering_of_software
http://en.wikipedia.org/wiki/Reverse_engineering#Reverse_engineering_of_software
http://en.wikipedia.org/wiki/Software_performance_testing
http://en.wikipedia.org/wiki/Load_testing
http://en.wikipedia.org/wiki/Usability_testing
http://en.wikipedia.org/wiki/Security_testing
http://en.wikipedia.org/wiki/Backdoor_%28computing%29
http://en.wikipedia.org/wiki/Backdoor_%28computing%29
http://en.wikipedia.org/wiki/Backdoor_%28computing%29
http://en.wikipedia.org/wiki/Hacker_%28computer_security%29
http://en.wikipedia.org/wiki/Internationalization_and_localization
http://en.wikipedia.org/wiki/Pseudolocalization
http://en.wikipedia.org/wiki/Correctness
http://en.wikipedia.org/wiki/Computer_security_audit
http://en.wikipedia.org/wiki/Wikipedia:Citation_needed
http://en.wikipedia.org/wiki/International_Organization_for_Standardization
http://en.wikipedia.org/wiki/ISO_9126
http://en.wikipedia.org/wiki/Reliability
http://en.wikipedia.org/wiki/Algorithmic_efficiency
http://en.wikipedia.org/wiki/Porting
http://en.wikipedia.org/wiki/Maintainability
http://en.wikipedia.org/wiki/Usability
file:///C:\Documents%20and%20Settings\Administrator\Desktop\Test-driven_development.htm%23cite_ref-Beck_2-0
file:///C:\Documents%20and%20Settings\Administrator\Desktop\Test-driven_development.htm%23cite_ref-Beck_2-1
http://iit-iti.nrc-cnrc.gc.ca/publications/nrc-47445_e.html
http://iit-iti.nrc-cnrc.gc.ca/publications/nrc-47445_e.html
http://iit-iti.nrc-cnrc.gc.ca/publications/nrc-47445_e.html
http://iit-iti.nrc-cnrc.gc.ca/publications/nrc-47445_e.html
http://en.wikipedia.org/wiki/2008
http://en.wikipedia.org/wiki/January_14
http://theruntime.com/blogs/jacob/archive/2008/01/22/tdd-proven-effective-or-is-it.aspx
http://en.wikipedia.org/wiki/2008
http://en.wikipedia.org/wiki/February_21
http://clarkware.com/courses/TDDWithJUnit.html
http://clarkware.com/courses/TDDWithJUnit.html
http://en.wikipedia.org/wiki/2007
http://en.wikipedia.org/wiki/November_1

