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Abstract— In this paper, we describe GPU-Eclat algorithm, a GPU (General Purpose Graphics Processing Unit) enhanced implementation of 

Frequent Item set Mining (FIM). The frequent itemsets are extracted from a transactional database as it is a essential assignment in data mining 

field because of its broad applications in mining association rules, time series, correlations etc. The Eclat approach is the typically generate-and-

check approach to obtain frequent itemsets from a database with a given minimum support threshold value. OpenCL is a platform independent 

Open Computing Language for GPU computation. We tested our implementation with an Radeon Dual graphic processor and determine up to 

68X speedup as compared with sequential Eclat algorithm on a CPU. In order to map the Eclat algorithm onto the SIMD (Single Instruction 

Multiple Data) execution model, an array data structure is used to represent the input database and standard dataset is converted to the vertical 

data layout. In our implementation, we perform a parallelized version of the candidate generation and support counting phases on the GPU. 

Experimental results show that GPU-Eclat consistently outperforms CPU-based Eclat implementations. Our results reveal the potential for 

GPGPUs in speeding up data mining algorithms. 
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I. INTRODUCTION  

 
An incredible growth of data needs to be processed in 

business applications and scientific research areas. Extracting 

information from large amount of data is necessary in making 
correct and effective decisions. Different methods have been 

developed to determine the characteristics and inter-

relationships of data. Discovery of common and interesting 
patterns from databases is an important goal of frequent 

itemset mining. Finding frequent item sets [16] in a set of 
transaction is a prevalent method for market basket analysis, 

which aims at finding symmetries in the shopping activities of 

client of super market, online shop etc. Association rule 
learning, classification, clustering, and regression , decision 

support, financial forecast, marketing policies, even medical 

diagnosis and many other applications are commonly need to 
mine data. Association rules describe how often items are 

purchased together. For example, an association rules “beer, 
chips (80%)” states that four out of five customers that bought 

beer also bought chips. Such rules can be useful for decisions 

concerning product pricing, promotions, store layout and many 
others. 

The Frequent Itemset Mining (FIM) problem was 
introduced by Agrawal et al. [7, 8], as the first step to mine 
association rules in market basket data. Let I = {I1, I2, …., 
Im} be a set of m items, and T = {T1, T2, ….Tn} the 
transaction database, where Ti is a transaction containing a set 
of items from I. A k-itemset that consists of k items from I, is 
frequent if it occurs in T not less than s times, where s is a 
user-specified minimum support threshold. A FIM algorithm 
tests the database, possibly several times, and finds item-sets 
that occur in transactions equal or more frequently than a 
given minimum threshold. The frequency of items that are 
present in a transaction is called support. Apriori, Eclat and 
FP-Growth [4] these are the best known FIM algorithms. 
 

A GPU, [1, 5, 6] is a coprocessor to process an image, for 

games and to support the CPU for graphics processing 
applications such as matrix multiplication and distributed 
computing projects including Folding@home and 
Seti@home.. There are thousands of computing units in a 
GPU; each unit is a simplified core of CPU. The number of 
GPU cores is more than that of CPU cores, so GPU is suitable 
for parallel computing. General-purpose computing on 
graphics processing units (GPGPU) was proposed to provide 
non-graphic computing capabilities to CPU. GPU is a high-
performance computing device which does not only reduce the 
deployment cost but also saves on maintenance. 
 

NVIDIA and ATI have been proposed as GPU 
programming language by CUDA and Stream respectively. 
Previous frameworks could only be used with the respective 
GPUs, e.g., CUDA could only be executed on NVIDIA's 
GPUs. The Khronos Group and many industry-leading 
companies created the OpenCL to deal with platform 
heterogeneity. OpenCL is an open and cross-platform parallel 
heterogeneous programming system which provides a uniform 
programming environment for developers to write efficient 
and portable codes in any system which is composed of 
different CPUs, GPUs, and other computing platforms and 
able to perform in different operating systems. The CPU and 
GPU can then communicate with each other and work together 
by applying the appropriate file for CPU and Kernel file for 
OpenCL on GPUs to perform parallel computation with GPU. 

 

II. RELATED WORK  
 

There has been much recent interest in implementing FIM 
algorithms. Best known FIM algorithms are Apriori [4, 8] & 
Eclat [4]. Apriori & Eclat iteratively generates K sized 
frequent item sets by joining frequent K-1 sized item sets. This 
step is called candidate generation. After generating each new 
set of candidates, algorithm scans the transaction database to 
count the no. of occurrences of each candidate. This step is 
called support counting. The primary difference between 
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Apriori & Eclat is the way they represent candidate & 
transaction data & the order that they scan the tree structure 
that stores the candidates. 
 
A. Sequential Implementation: 
 

There has been much recent interest in implementing FIM 
algorithms. Ferenc Bodon implemented Apriori using trie-
based data structure & candidate hashing [10], Christian 
Borgelt implemented Apriori in his work [16] using recursion 
pruning. The Borgelt Gelat is capable of detecting dataset 
characteristics & automatically choosing the best 
corresponding data representation (including Tidset, Bitset, 
Diffset..). 
 

Eclat [16] traverses the prefix tree in depth first order. It 
extends an item set prefix until it reaches the boundary 
between frequent & infrequent item sets and then backtracks 
to work on the next prefix. Eclat determines the support of an 
item set by constructing the list of identifiers of transactions 
that contain the item set. It does so by intersecting 2 lists of 
transaction identifiers of 2 item sets that differ only by one 
item & together form the item set currently processed. 
 
B. Message Passing Parallel Implementation: 
 

Ye et al. demonstrated a parallel Apriori Algorithm based 
on a revised Bodon implementation that achieved a 2x 
speedup with 8 processors [15]. Craus developed on MPI-
based parallel Apriori algorithm that distributed the transaction 
among computing nodes [17] .Another trie-based MPI 
implementation based on Bodon’s algorithm was developed by 
Ansari et al 
[18]. 
 
C. GPU Related Implementation: 
 

Fang developed a GPU implementation of Apriori [1]. In 
this case, two versions of their GPU implementation, one 
based on the “pure bitmap” representation & another based on 
the “trie-based bitmap” representation were described. In their 
approach the candidates & vertical transactions are coded into 
bitmaps & manipulated on the GPU. They used an NVIDIA 
Getforce GTX 280 GPU to test their algorithm. Their method 
achieved a speedup of 2x-10x as compared with a CPU-based 
serial Apriori implementation. 
 

Fan Zhang developed GPApriori, a GPU implementation 
of frequent itemset mining(FIM)[2].In order to map Apriori 
algorithm onto the SIMD execution model ,”Static bitset” 
memory data structure have been designed to represent input 
database, which improves upon traditional approach of vertical 
data layout. Support counting is performed parallely on GPU. 
GPApriori performs better than CPU-based Apriori 
implementation. 

Fan zhang Developed new parallel frequent itemset mining 
algorithm called “Frontier Expansion”[3]. High performance 
on a heterogeneous platform is achieved which consists of a 
shared memory multiprocessor and multiple GPU 
coprocessors. Frontier expansion is an improved data parallel 
algorithm derived from Eclat method. In this approach 4 
NVIDIA Tesla GPUs are used to achieve 6-30x speedups 
relative to sequential Eclat implementation executed on a 
multicore CPU. 
 

III. IMPLEMENTATION DETAILS 

 

A.Eclat Algorithm 
 

An Eclat is a depth-first search algorithm which refers set 
intersection. Vertical database layout is referred for 
illustration. i.e. all transactions are not listed explicitly but 
each item is stored together with its cover and uses the 
intersection based approach to compute the support of an 
itemset. The support of an itemset A can be easily calculated 
by cover’s intersection of any two subsets Y, Z  A, such that 
Y U Z = A. Candidate generation of Eclat uses only the join 
step of Apriori , since the item sets necessary for the prune 
step are not available. The size of tidsets is one of main factors 
affecting the running time and memory usage of Eclat. The 
bigger tidsets are, the more time and memory are needed.Fig.2 
shows representation of data: horizontal data layout and 
vertical data layout. And Fig.3 shows example which 
demonstrates working of Eclat algorithm. 

 
Fig. 1. Layouts for illustration of the data 

 

 
 

Fig.2 Illustrating example of Eclat algorithm 

B.Projected Algorithm: GPU-Eclat 

 

Input: a transaction database D and a minimum 
support threshold. 
Output: a complete set of frequent itemsets. 

----------------------------------------------------------------------- 

1. Accept Standard dataset and minimum threshold 
support from user.  

2. Generate vertical Tidlist by scanning D and store it 
on CPU Memory  

3. Start the CL program to be executed by the GPU.  
4. Allocate memory space in GPU for vertical Tidlist.  
5. Store Tidlist of each item into GPU memory  
6. Generate and verify first level frequent itemsets by 

counting and comparing support value of each tidlist 
with minimum threshold.  

7. Allocate memory space in GPU for candidate 
itemsets  

8. Perform launch kernel of clProg for candidate 
generation (on GPU)  
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a. Each Processing Element (PE) of GPU allocated 

for each item   
b. for each item in vertical data layout  
i. Processing Element computes candidates by 

intersecting tidlists of previous level frequent 
itemsets for GPU threads to process.  

ii. Each candidate is given to Processing Element 
for support counting  

9. Repeat the step 8 until all the same level candidate 
itemsets are done.  

10. Allocate memory space in GPU to save the results  
11. Perform launch kernel of clProg for support counting 

(on GPU)  
a. Each Processing Element (PE) of GPU allocated for 

a set of candidate itemsets (CIs)  

b. for each Candidate in CIs  

i. Processing Element computes the support of 

Candidate.  
ii. If support of Candidate is greater than or equal 

to minimum support threshold, then set it is 
frequent else set it is not frequent.  

12. Move to next level candidate set generation and 
perform Steps 8-11 until all level Candidates are 
generated and verified with minimum threshold.  

13. Verify time for GPU required finishing frequent 
itemset generation, retrieving the results to CPU 
memory.  

 

-------------------------------------------------------------------------  

 

C.Proposed  Approach: 
 

In this approach, we have implemented GPU-based FIM 
algorithm. GPUs are multi-threaded many-core processors on 
which, cores are virtualized, and GPU threads are executed in 
SIMD (Single Instruction, Multiple Data) and are managed by 
the hardware. Such a design simplifies GPU programming and 
improves program by making it scalable and portable. Apriori 
or Eclat implementation on the GPU [1],[2],[3]is a quite 
challengeable, an array data structure is used to represent 
transactions in this GPU-based Eclat FIM implementation. 
Specifically, the array is converted into the vector which stores 
the occurrences of items in transactions, and is efficient to be 
partitioned to SIMD processors. Vertical data layout is used to 
facilitate candidate generation and support counting operations 
in FIM, where support counting is the most time consuming 
component in the FIM algorithm. 
 

The proposed system is divided into three modules: 
vertical data representation, candidate generation and support 
counting. The standard dataset is converted into vertical data 
layout .In first level by counting cardinality of tidlist of each 
item , support is counted and compared with minimum support 
threshold for generating frequent itemsets. Then for next level, 
intersections of tidlists of previous frequent itemsets are 
considered for candidate generation. For each level tidlists are 
allocated to processing element of GPU in parallel thus 
parallelization is utilized. And for next level candidate 
generation, previous level tidlists are considered for 
intersection, thus synchronization is utilized. And support 
counting operation at each level is performed in parallel by 
allocating resultant tidlist to each processing element of GPU. 
In this approach, Eclat algorithm is implemented on CPU as 
well as on GPU by considering following hardware and 

software configuration. After execution of both the cases, the 
execution time , total number of frequent itemsets generated & 
total number of transactions present in selected dataset are 
displayed .And generated frequent itemsets with 
corresponding support count is saved in file whichever user 
have specified as resultant storage file. The speed-up ratio is 
calculated from calculated CPU execution time and GPU 
execution time, as a performance metric for the approach. 

 

III. RESULT ANALYSIS  

A.Data set 
 

The dataset is obtained from the FIMI (Frequent Itemset 
Mining Implementation) repository. The four standard datasets 
are used namely: Chess, Mushroom, Pumsb, Pumsb*.The 
dataset mushroom is a description of hypothetical samples 
corresponding to different species of mushrooms. This dataset 
consists of 8124 instances of 119 attributes which are derived 
from 24 species. It is a dataset containing long pattern with 
significant repetitions and overlaps between transactions, i.e., 
a dense dataset. The chess dataset is also a dense dataset 
containing of 3196 instances and 74 items. 
 

The synthetic data generator takes as input the parameters: 
The average length of a transaction, the number of items in a 
dataset, the number of transaction in the dataset. The 
characteristics of datasets are given below: 
 
 

TABLE 1. Experimental datasets 

 
 

B. Proposed Eclat Result: 

 
We evaluated the visualization performance of Eclat with 

different support thresholds, on the four Standard dataset 
taken from FIMI Repository namely, Chess, Mushroom, 
Pumsb & Pumsb* etc. The Speed up ratio is the performance 
parameter for whole system. Execution time for generation of 
frequent itemsets on inputs i.e. dataset and min. support 
threshold for sequential Eclat on CPU and parallel Eclat on 
GPU having a greater difference .GPU Eclat is faster than 
CPU Eclat algorithm as compared with parameter speed up 
ratio. 
 

TABLE 2: Support vs Speed-up ratio for standard 

datasets 
 

Speed-up ratio 

 

Support 

  

Chess 

  Mushroo

m 

  

Pumsb* 

  

Pumsb 

  
           

 0.1   94.4   90.112   92.55   94.09   

 0.2   93.85   89.425   92.19   94.07   

 0.25   93.2   82.362   90.87   87.59   

 0.3   92.9   81.288   87.29   87.43   

 0.35   92.89   78.713   86.92   89.71   

 0.4   92.8   77.17   82.51   89.64   

 0.45   92.761   35.825   76.57   86.09   

 0.5   92.688   35.67   76.18   56.371   
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 0.55   90.127   35.19   47.62   36.85   

 0.6   82.188   32.79   38.46   37.76   

 0.65   78.993   32.45   38.17   43.642   

 0.7   76.985   33.692   37.34   37.3   

 0.75   75.207   33.02   36.66   20.2   

 
        The result is tested for four datasets namely, chess , 
Mushroom and Pumsb* and Pumsb for various support 
values.And CPU time as well as GPU time is noted for each 
reading. And then Speed up ratio is calculated for various 
support values. 
 

 
Fig. 3: Graph for Support Vs Speed-up ratio on Chess, 

Mushroom, Pumsb, Pumsb* 
 

Mean speed up ratio for chess is calculated as 88.38, for 
mushroom as 56.75, for pumsb as 66.21 and for pumsb* as 
67.95. By comparison, it is proved that Chess dataset is giving 
the better speedup than other three. 
 

 
Fig. 4: Graph for F.I. generation on Chess dataset for 60% & 

70% support 
 
Above graph is plotted by considering total no. of 

transactions and no. of frequent itemsets generated. As the no. 
of transactions increases for both the support 60% & 70% on 
chess dataset, the numbers of frequent itemsets generated are 
increased as shown in graph. 

 

 
 

Fig. 5: Graph for 60% support on Chess dataset with varying 

no. of transactions 

  

Graph is plotted by considering no. of transactions & 

Execution time .As transactions are increasing, execution time 

required for frequent itemset generation also increases. 

 

 
 

Fig. 6: Graph for Chess dataset on different support 

values 

 
Above graph is plotted by considering support values & 

execution time for Chess dataset. It is observed that as the 
support value is increasing, the execution time is getting 
reduced .Because as the support value decreases, the number 
of frequent itemset generated are increasing, so execution time 
is larger in that case. 
 

For each support value , when execution time is compared 
for frequent itemset generation it is always less for GPU 
device for same input (dataset and support), thus performance 
is improved when it is compared with CPU execution time. 
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Fig.7: Graph for counting frequent Itemsets at five levels 

on Chess dataset 
 

Above graph is plotted by considering various levels of 
frequent itemsets & total  no. of frequent itemsets generated 
for Chess dataset on various support values. It is observed that 
for 55% support upto all five level frequent itemsets are 
generated, for 60%, 65% & 70% support upto 4 levels 
frequent itemsets are generated, for 75% support upto 3 levels 
frequent itemsets are generated. As the support value 
decreases, number of frequent itemsets generated is increased. 
 

 
Fig.8: Graph for Mushroom Dataset for different support 

values 

 

 
Above graph is plotted by considering support values & 

execution time for Mushroom dataset. It is observed that as the 
support value is increasing, the execution time is getting 
reduced. Thus support value is inversely proportional to 
execution time. 
 

For each support value , when execution time is compared 
for frequent itemset generation it is always less for GPU 
device for same input (dataset and support), thus performance 
is improved when it is compared with CPU execution time. 
 

 
Fig. 9: Graph for Pumsb dataset for different support 

values 

 
Above graph is plotted by considering support values & 

execution time for Pumsb dataset. It is observed that as the 
support value is increasing, the execution time is getting 
reduced. Thus support value is inversely proportional to 
execution time. 
 

For each support value , when execution time is compared 
for frequent itemset generation it is always less for GPU 
device for same input (dataset and support), thus performance 
is improved when it is compared with CPU execution time. 
 

It is observed that for support >=0.8, there are no any 
frequent itemsets are generated for Pumsb dataset. 
 
 

 
 

Fig.10: Graph for Pumsb_star dataset for different support 
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values 

 
Above graph is plotted by considering support values & 

execution time for Pumsb-star dataset. It is observed that as 
the support value is increasing, the execution time is getting 
reduced. Thus support value is inversely proportional to 
execution time. 
 

For each support value , when execution time is compared 
for frequent itemset generation it is always less for GPU 
device for same input (dataset and support), thus performance 
is improved when it is compared with CPU execution time. 
 

It is observed that for support >=0.8, there are no any 
frequent itemsets are generated for Pumsb-star dataset. 

 

IV. CONCLUSION AND FUTURE WORK 

 
We have implemented GPU-based implementation of Eclat 

algorithm for frequent itemset mining .The implementation 
employ an array data structure to encode the transaction 
database on the GPU and exploit the GPU's SIMD parallelism 
for support counting. The implementation stores the itemsets 
in an array, and runs entirely on the GPU. i.e. vertical 
transaction lists are represented using vectors across multiple 
threads on a GPU. The evaluation results show that the GPU-
implementation is up to 68x faster than CPU-based 
implementation of Eclat. Parallel Eclat algorithm using GPU is 
better than the Eclat CPU as the processing speed gets 
increased with efficient computation. 
 

It is a challenging to develop a buffering mechanism 
between the GPU memory and the CPU memory which will 
reduce computation time. It is the challenge for accelerating 
the frequent Itemset mining on GPU with Dynamic Dataset. 
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