
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 10 3216 – 3221

3216
IJRITCC | October 2014, Available @ http://www.ijritcc.org

__

Parallel FIM Approach on GPU using OpenCL

Sarika S. Kadam
Research Scholer

Department of Computer Engineering

Pimpri Chinchwad College of Engineering

Pune, India.

Email: sarikaengg.patil3@gmail.com

Prof. Sudarshan S.Deshmukh

Department of Computer Engineering

Pimpri Chinchwad College of Engineering

Pune, India.

Email:deshmukh.sudarshan@gmail.com

Abstract— In this paper, we describe GPU-Eclat algorithm, a GPU (General Purpose Graphics Processing Unit) enhanced implementation of

Frequent Item set Mining (FIM). The frequent itemsets are extracted from a transactional database as it is a essential assignment in data mining

field because of its broad applications in mining association rules, time series, correlations etc. The Eclat approach is the typically generate-and-

check approach to obtain frequent itemsets from a database with a given minimum support threshold value. OpenCL is a platform independent

Open Computing Language for GPU computation. We tested our implementation with an Radeon Dual graphic processor and determine up to

68X speedup as compared with sequential Eclat algorithm on a CPU. In order to map the Eclat algorithm onto the SIMD (Single Instruction

Multiple Data) execution model, an array data structure is used to represent the input database and standard dataset is converted to the vertical

data layout. In our implementation, we perform a parallelized version of the candidate generation and support counting phases on the GPU.

Experimental results show that GPU-Eclat consistently outperforms CPU-based Eclat implementations. Our results reveal the potential for

GPGPUs in speeding up data mining algorithms.

Keywords— Eclat, frequent Itemset mining ,GPU, SIMD, OpenCL.,Parallel computing

__*****___.

I. INTRODUCTION

An incredible growth of data needs to be processed in

business applications and scientific research areas. Extracting

information from large amount of data is necessary in making
correct and effective decisions. Different methods have been

developed to determine the characteristics and inter-

relationships of data. Discovery of common and interesting
patterns from databases is an important goal of frequent

itemset mining. Finding frequent item sets [16] in a set of
transaction is a prevalent method for market basket analysis,

which aims at finding symmetries in the shopping activities of

client of super market, online shop etc. Association rule
learning, classification, clustering, and regression , decision

support, financial forecast, marketing policies, even medical

diagnosis and many other applications are commonly need to
mine data. Association rules describe how often items are

purchased together. For example, an association rules “beer,
chips (80%)” states that four out of five customers that bought

beer also bought chips. Such rules can be useful for decisions

concerning product pricing, promotions, store layout and many
others.

The Frequent Itemset Mining (FIM) problem was
introduced by Agrawal et al. [7, 8], as the first step to mine
association rules in market basket data. Let I = {I1, I2, ….,
Im} be a set of m items, and T = {T1, T2, ….Tn} the
transaction database, where Ti is a transaction containing a set
of items from I. A k-itemset that consists of k items from I, is
frequent if it occurs in T not less than s times, where s is a
user-specified minimum support threshold. A FIM algorithm
tests the database, possibly several times, and finds item-sets
that occur in transactions equal or more frequently than a
given minimum threshold. The frequency of items that are
present in a transaction is called support. Apriori, Eclat and
FP-Growth [4] these are the best known FIM algorithms.

A GPU, [1, 5, 6] is a coprocessor to process an image, for

games and to support the CPU for graphics processing
applications such as matrix multiplication and distributed
computing projects including Folding@home and
Seti@home.. There are thousands of computing units in a
GPU; each unit is a simplified core of CPU. The number of
GPU cores is more than that of CPU cores, so GPU is suitable
for parallel computing. General-purpose computing on
graphics processing units (GPGPU) was proposed to provide
non-graphic computing capabilities to CPU. GPU is a high-
performance computing device which does not only reduce the
deployment cost but also saves on maintenance.

NVIDIA and ATI have been proposed as GPU
programming language by CUDA and Stream respectively.
Previous frameworks could only be used with the respective
GPUs, e.g., CUDA could only be executed on NVIDIA's
GPUs. The Khronos Group and many industry-leading
companies created the OpenCL to deal with platform
heterogeneity. OpenCL is an open and cross-platform parallel
heterogeneous programming system which provides a uniform
programming environment for developers to write efficient
and portable codes in any system which is composed of
different CPUs, GPUs, and other computing platforms and
able to perform in different operating systems. The CPU and
GPU can then communicate with each other and work together
by applying the appropriate file for CPU and Kernel file for
OpenCL on GPUs to perform parallel computation with GPU.

II. RELATED WORK

There has been much recent interest in implementing FIM
algorithms. Best known FIM algorithms are Apriori [4, 8] &
Eclat [4]. Apriori & Eclat iteratively generates K sized
frequent item sets by joining frequent K-1 sized item sets. This
step is called candidate generation. After generating each new
set of candidates, algorithm scans the transaction database to
count the no. of occurrences of each candidate. This step is
called support counting. The primary difference between

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 10 3216 – 3221

3217
IJRITCC | October 2014, Available @ http://www.ijritcc.org

__

Apriori & Eclat is the way they represent candidate &
transaction data & the order that they scan the tree structure
that stores the candidates.

A. Sequential Implementation:

There has been much recent interest in implementing FIM
algorithms. Ferenc Bodon implemented Apriori using trie-
based data structure & candidate hashing [10], Christian
Borgelt implemented Apriori in his work [16] using recursion
pruning. The Borgelt Gelat is capable of detecting dataset
characteristics & automatically choosing the best
corresponding data representation (including Tidset, Bitset,
Diffset..).

Eclat [16] traverses the prefix tree in depth first order. It
extends an item set prefix until it reaches the boundary
between frequent & infrequent item sets and then backtracks
to work on the next prefix. Eclat determines the support of an
item set by constructing the list of identifiers of transactions
that contain the item set. It does so by intersecting 2 lists of
transaction identifiers of 2 item sets that differ only by one
item & together form the item set currently processed.

B. Message Passing Parallel Implementation:

Ye et al. demonstrated a parallel Apriori Algorithm based
on a revised Bodon implementation that achieved a 2x
speedup with 8 processors [15]. Craus developed on MPI-
based parallel Apriori algorithm that distributed the transaction
among computing nodes [17] .Another trie-based MPI
implementation based on Bodon’s algorithm was developed by
Ansari et al
[18].

C. GPU Related Implementation:

Fang developed a GPU implementation of Apriori [1]. In
this case, two versions of their GPU implementation, one
based on the “pure bitmap” representation & another based on
the “trie-based bitmap” representation were described. In their
approach the candidates & vertical transactions are coded into
bitmaps & manipulated on the GPU. They used an NVIDIA
Getforce GTX 280 GPU to test their algorithm. Their method
achieved a speedup of 2x-10x as compared with a CPU-based
serial Apriori implementation.

Fan Zhang developed GPApriori, a GPU implementation
of frequent itemset mining(FIM)[2].In order to map Apriori
algorithm onto the SIMD execution model ,”Static bitset”
memory data structure have been designed to represent input
database, which improves upon traditional approach of vertical
data layout. Support counting is performed parallely on GPU.
GPApriori performs better than CPU-based Apriori
implementation.

Fan zhang Developed new parallel frequent itemset mining
algorithm called “Frontier Expansion”[3]. High performance
on a heterogeneous platform is achieved which consists of a
shared memory multiprocessor and multiple GPU
coprocessors. Frontier expansion is an improved data parallel
algorithm derived from Eclat method. In this approach 4
NVIDIA Tesla GPUs are used to achieve 6-30x speedups
relative to sequential Eclat implementation executed on a
multicore CPU.

III. IMPLEMENTATION DETAILS

A.Eclat Algorithm

An Eclat is a depth-first search algorithm which refers set
intersection. Vertical database layout is referred for
illustration. i.e. all transactions are not listed explicitly but
each item is stored together with its cover and uses the
intersection based approach to compute the support of an
itemset. The support of an itemset A can be easily calculated
by cover’s intersection of any two subsets Y, Z A, such that
Y U Z = A. Candidate generation of Eclat uses only the join
step of Apriori , since the item sets necessary for the prune
step are not available. The size of tidsets is one of main factors
affecting the running time and memory usage of Eclat. The
bigger tidsets are, the more time and memory are needed.Fig.2
shows representation of data: horizontal data layout and
vertical data layout. And Fig.3 shows example which
demonstrates working of Eclat algorithm.

Fig. 1. Layouts for illustration of the data

Fig.2 Illustrating example of Eclat algorithm

B.Projected Algorithm: GPU-Eclat

Input: a transaction database D and a minimum
support threshold.
Output: a complete set of frequent itemsets.

1. Accept Standard dataset and minimum threshold
support from user.

2. Generate vertical Tidlist by scanning D and store it
on CPU Memory

3. Start the CL program to be executed by the GPU.
4. Allocate memory space in GPU for vertical Tidlist.
5. Store Tidlist of each item into GPU memory
6. Generate and verify first level frequent itemsets by

counting and comparing support value of each tidlist
with minimum threshold.

7. Allocate memory space in GPU for candidate
itemsets

8. Perform launch kernel of clProg for candidate
generation (on GPU)

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 10 3216 – 3221

3218
IJRITCC | October 2014, Available @ http://www.ijritcc.org

__

a. Each Processing Element (PE) of GPU allocated

for each item
b. for each item in vertical data layout
i. Processing Element computes candidates by

intersecting tidlists of previous level frequent
itemsets for GPU threads to process.

ii. Each candidate is given to Processing Element
for support counting

9. Repeat the step 8 until all the same level candidate
itemsets are done.

10. Allocate memory space in GPU to save the results
11. Perform launch kernel of clProg for support counting

(on GPU)
a. Each Processing Element (PE) of GPU allocated for

a set of candidate itemsets (CIs)

b. for each Candidate in CIs

i. Processing Element computes the support of

Candidate.
ii. If support of Candidate is greater than or equal

to minimum support threshold, then set it is
frequent else set it is not frequent.

12. Move to next level candidate set generation and
perform Steps 8-11 until all level Candidates are
generated and verified with minimum threshold.

13. Verify time for GPU required finishing frequent
itemset generation, retrieving the results to CPU
memory.

C.Proposed Approach:

In this approach, we have implemented GPU-based FIM
algorithm. GPUs are multi-threaded many-core processors on
which, cores are virtualized, and GPU threads are executed in
SIMD (Single Instruction, Multiple Data) and are managed by
the hardware. Such a design simplifies GPU programming and
improves program by making it scalable and portable. Apriori
or Eclat implementation on the GPU [1],[2],[3]is a quite
challengeable, an array data structure is used to represent
transactions in this GPU-based Eclat FIM implementation.
Specifically, the array is converted into the vector which stores
the occurrences of items in transactions, and is efficient to be
partitioned to SIMD processors. Vertical data layout is used to
facilitate candidate generation and support counting operations
in FIM, where support counting is the most time consuming
component in the FIM algorithm.

The proposed system is divided into three modules:
vertical data representation, candidate generation and support
counting. The standard dataset is converted into vertical data
layout .In first level by counting cardinality of tidlist of each
item , support is counted and compared with minimum support
threshold for generating frequent itemsets. Then for next level,
intersections of tidlists of previous frequent itemsets are
considered for candidate generation. For each level tidlists are
allocated to processing element of GPU in parallel thus
parallelization is utilized. And for next level candidate
generation, previous level tidlists are considered for
intersection, thus synchronization is utilized. And support
counting operation at each level is performed in parallel by
allocating resultant tidlist to each processing element of GPU.
In this approach, Eclat algorithm is implemented on CPU as
well as on GPU by considering following hardware and

software configuration. After execution of both the cases, the
execution time , total number of frequent itemsets generated &
total number of transactions present in selected dataset are
displayed .And generated frequent itemsets with
corresponding support count is saved in file whichever user
have specified as resultant storage file. The speed-up ratio is
calculated from calculated CPU execution time and GPU
execution time, as a performance metric for the approach.

III. RESULT ANALYSIS

A.Data set

The dataset is obtained from the FIMI (Frequent Itemset
Mining Implementation) repository. The four standard datasets
are used namely: Chess, Mushroom, Pumsb, Pumsb*.The
dataset mushroom is a description of hypothetical samples
corresponding to different species of mushrooms. This dataset
consists of 8124 instances of 119 attributes which are derived
from 24 species. It is a dataset containing long pattern with
significant repetitions and overlaps between transactions, i.e.,
a dense dataset. The chess dataset is also a dense dataset
containing of 3196 instances and 74 items.

The synthetic data generator takes as input the parameters:
The average length of a transaction, the number of items in a
dataset, the number of transaction in the dataset. The
characteristics of datasets are given below:

TABLE 1. Experimental datasets

B. Proposed Eclat Result:

We evaluated the visualization performance of Eclat with

different support thresholds, on the four Standard dataset
taken from FIMI Repository namely, Chess, Mushroom,
Pumsb & Pumsb* etc. The Speed up ratio is the performance
parameter for whole system. Execution time for generation of
frequent itemsets on inputs i.e. dataset and min. support
threshold for sequential Eclat on CPU and parallel Eclat on
GPU having a greater difference .GPU Eclat is faster than
CPU Eclat algorithm as compared with parameter speed up
ratio.

TABLE 2: Support vs Speed-up ratio for standard

datasets

Speed-up ratio

Support

Chess

 Mushroo

m

Pumsb*

Pumsb

 0.1 94.4 90.112 92.55 94.09

 0.2 93.85 89.425 92.19 94.07

 0.25 93.2 82.362 90.87 87.59

 0.3 92.9 81.288 87.29 87.43

 0.35 92.89 78.713 86.92 89.71

 0.4 92.8 77.17 82.51 89.64

 0.45 92.761 35.825 76.57 86.09

 0.5 92.688 35.67 76.18 56.371

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 10 3216 – 3221

3219
IJRITCC | October 2014, Available @ http://www.ijritcc.org

__

 0.55 90.127 35.19 47.62 36.85

 0.6 82.188 32.79 38.46 37.76

 0.65 78.993 32.45 38.17 43.642

 0.7 76.985 33.692 37.34 37.3

 0.75 75.207 33.02 36.66 20.2

 The result is tested for four datasets namely, chess ,
Mushroom and Pumsb* and Pumsb for various support
values.And CPU time as well as GPU time is noted for each
reading. And then Speed up ratio is calculated for various
support values.

Fig. 3: Graph for Support Vs Speed-up ratio on Chess,

Mushroom, Pumsb, Pumsb*

Mean speed up ratio for chess is calculated as 88.38, for
mushroom as 56.75, for pumsb as 66.21 and for pumsb* as
67.95. By comparison, it is proved that Chess dataset is giving
the better speedup than other three.

Fig. 4: Graph for F.I. generation on Chess dataset for 60% &

70% support

Above graph is plotted by considering total no. of

transactions and no. of frequent itemsets generated. As the no.
of transactions increases for both the support 60% & 70% on
chess dataset, the numbers of frequent itemsets generated are
increased as shown in graph.

Fig. 5: Graph for 60% support on Chess dataset with varying

no. of transactions

Graph is plotted by considering no. of transactions &

Execution time .As transactions are increasing, execution time

required for frequent itemset generation also increases.

Fig. 6: Graph for Chess dataset on different support

values

Above graph is plotted by considering support values &

execution time for Chess dataset. It is observed that as the
support value is increasing, the execution time is getting
reduced .Because as the support value decreases, the number
of frequent itemset generated are increasing, so execution time
is larger in that case.

For each support value , when execution time is compared
for frequent itemset generation it is always less for GPU
device for same input (dataset and support), thus performance
is improved when it is compared with CPU execution time.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 10 3216 – 3221

3220
IJRITCC | October 2014, Available @ http://www.ijritcc.org

__

Fig.7: Graph for counting frequent Itemsets at five levels

on Chess dataset

Above graph is plotted by considering various levels of
frequent itemsets & total no. of frequent itemsets generated
for Chess dataset on various support values. It is observed that
for 55% support upto all five level frequent itemsets are
generated, for 60%, 65% & 70% support upto 4 levels
frequent itemsets are generated, for 75% support upto 3 levels
frequent itemsets are generated. As the support value
decreases, number of frequent itemsets generated is increased.

Fig.8: Graph for Mushroom Dataset for different support

values

Above graph is plotted by considering support values &

execution time for Mushroom dataset. It is observed that as the
support value is increasing, the execution time is getting
reduced. Thus support value is inversely proportional to
execution time.

For each support value , when execution time is compared
for frequent itemset generation it is always less for GPU
device for same input (dataset and support), thus performance
is improved when it is compared with CPU execution time.

Fig. 9: Graph for Pumsb dataset for different support

values

Above graph is plotted by considering support values &

execution time for Pumsb dataset. It is observed that as the
support value is increasing, the execution time is getting
reduced. Thus support value is inversely proportional to
execution time.

For each support value , when execution time is compared
for frequent itemset generation it is always less for GPU
device for same input (dataset and support), thus performance
is improved when it is compared with CPU execution time.

It is observed that for support >=0.8, there are no any
frequent itemsets are generated for Pumsb dataset.

Fig.10: Graph for Pumsb_star dataset for different support

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 10 3216 – 3221

3221
IJRITCC | October 2014, Available @ http://www.ijritcc.org

__

values

Above graph is plotted by considering support values &

execution time for Pumsb-star dataset. It is observed that as
the support value is increasing, the execution time is getting
reduced. Thus support value is inversely proportional to
execution time.

For each support value , when execution time is compared
for frequent itemset generation it is always less for GPU
device for same input (dataset and support), thus performance
is improved when it is compared with CPU execution time.

It is observed that for support >=0.8, there are no any
frequent itemsets are generated for Pumsb-star dataset.

IV. CONCLUSION AND FUTURE WORK

We have implemented GPU-based implementation of Eclat

algorithm for frequent itemset mining .The implementation
employ an array data structure to encode the transaction
database on the GPU and exploit the GPU's SIMD parallelism
for support counting. The implementation stores the itemsets
in an array, and runs entirely on the GPU. i.e. vertical
transaction lists are represented using vectors across multiple
threads on a GPU. The evaluation results show that the GPU-
implementation is up to 68x faster than CPU-based
implementation of Eclat. Parallel Eclat algorithm using GPU is
better than the Eclat CPU as the processing speed gets
increased with efficient computation.

It is a challenging to develop a buffering mechanism
between the GPU memory and the CPU memory which will
reduce computation time. It is the challenge for accelerating
the frequent Itemset mining on GPU with Dynamic Dataset.

REFERENCES
[1] Wenbin Fang, Mian Lu, QiongLuo, Xiangye Xiao

Frequent Itemset Mining on Graphics processors
[Proceedings of the fifth International workshop on
data management 2009]

[2] Fan Zhang, Yan Zhang, Jason D. Bakos GPApriori:
GPU – Accelerated Frequent Itemset Mining [2011
IEEE International Conference on Cluster Computing]

[3] Fan Zhang, Yan Zhang, Jason D. Bakos Accelerating
frequent itemset mining on graphics processing units
[2013 Springer Science+ Business Media New York]

[4] Pramod S., O.P.Vyas Survey on Frequent Item set
Mining Algorithms [International Journal of Computer
Applications (0975-8887) vol. 1-No.15]

[5] Jiayi Zhou, Kun-Ming Yu, Bin-Chang Wu Parallel
frequent Patterns Mining Algorithm on GPU [2010
IEEE National Science Council]

[6] Che-Yu Lin, Kun-Ming Yu, Wen Ouyang, Jiayi Zhou
An OpenCL Candidate Slicing Frequent Pattern Mining
Algorithm on Graphic Processing Units [2011 IEEE
National Science Council]

[7] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami.
Mining association rules between sets of items in large
databases. SIGMOD, 1993.

[8] Rakesh Agrawal and Ramakrishnan Srikant. Fast
algorithms for mining association rules.VLDB, 1994.

[9] Lamine M. Aouad, Nhien-An Le-Khac, and Tahar M.
Kechadi. Distributed frequent itemsets mining in
heterogeneous platforms. Journal of Engineering,
Computing and Architecture, 2007.

[10] Ferenc Bodon. A fast apriori implementation.FIMI,

2003.
[11] Shuai Che, Michael Boyer, Jiayuan Meng, David

Tarjan, Jeremy W. Sheafer, and Kevin Skadron . A
performance study of general-purpose applications on
graphics processors using cuda.[Journal of parallel and
Distributed Computing, 2008.]

[12] http://fimi.cs.helsinki.fi/. FIMI repository.
[13] http://www.adrem.ua.ac.be/goethals/software/files/aprio

ri.tgz. Apriori implementation from Bart Goethals.
[14] Shubhabrata Sengupta, Mark Harris, Yao Zhang, and

John D. Owens. Scan primitives for gpu computing.
Graphics Hardware, 2007.

[15] Yanbin Ye and Chia-Chu Chiang. A parallel apriori
algorithm for frequent itemsets mining. SERA, 2006.

[16] Christian Borgelt Efficient Implementation of Apriori
and Eclat [Dept. of Knowledge Processing]

[17] Craus M. A new parallel algorithm for the frequent
itemset mining problem.[International Symposium on
parallel & distributed computing, 2008, ISPDC ’08, PP
165-170]

[18] Ansari G, Dastghai Gifard G. Distributed Frequent
Itemset mining using trie data structure. [Int J
Computer Sci.35 (3): 377-381,2008]

