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Abstract— In this paper, flow past a circular cylinder is numerically simulated under the influence of a plane boundary. The vorticity-stream 

function formulation is used for a wide range of Reynolds numbers consistent of two-dimensional flow. The conventional finite difference 

implicit scheme is used by implementing the appropriate boundary conditions at all boundaries. The transition from twin vortex regime to vortex 

shedding regime is studied. The transition is delayed as the gap between the cylinder and wall decreases. The same is because of the interaction 
between the wake of the cylinder and the boundary wall vorticity. The results are compared with the previous observations of the inhibition of 

the vortex shedding for body placed inside a channel as well as near a plane wall. The unsteady vortex shedding regime from a pattern similar to 

the von-karman street when the cylinder is far from the plane wall to a single row of same sign vortices as the body approaches the wall. The 

separated vortex dynamics leading to this tropological modification is presented.   
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1.  INTRODUCTION  

The flow past a circular cylinder is characterized by the 

cylinder based Reynolds number Re=UD/, where U is the 

free stream velocity, D is the cylinder diameter and  is the 

kinematic viscosity. 

    The incompressible flow of Newtonian fluid around a 

circular cylinder near a plane boundary is studied in this work. 

   As the flow takes place past a circular cylinder, the shedding 

of near wake vortices occurs over a wide range of Reynolds 

numbers. These types of flow has been found in practical 

applications like heat exchanger tubes, hot wire anemometers, 

warm sensors etc. 

    The most relevant features of the flow, at Reynolds numbers 

close to 5, the separation of  boundary layer on the cylinder 

surface begins [1]. A pair of steady symmetric vortices 

develops behind the cylinder between Reynolds numbers 10 to 

40 [2]. In this range of Reynolds numbers, re circulation zone 

length grows linearly with the increase in Reynolds numbers 

[2]., The instability of the systematic wake occurs at moderate 

Reynolds number, around 49, followed by a time-periodic 

regime characteristics by alternate shedding of vortices at 

cylinder wake whose dimensional period depends on the 

Reynolds numbers. The shedding of vortices remains laminar 

for Reynolds number up to approximate 150 [2]. By further 

increasing Reynolds numbers, a transition to three dimensional 

flow starts at Reynolds numbers of around 180-194 and ends 

at Reynolds numbers equal to about 260 depending on 

experimental condition results in appearance of  fine scale 

three dimensional eddies [3].  

Many researchers have studied and investigated the effect 

of a plane boundary on the hydrodynamic forces, vortex 

shedding behavior experimentally. Most of the experiments 

were carried out at the Reynolds numbers in the sub-critical 

regime up to 1.5 x 10
-5

 [4]. In this range of Reynolds numbers, 

the boundary layer is laminar throughout the circumference of 

the cylinder until separation takes place. In the case of an 

unbounded cylinder, the vortex shedding is regular and the 

Strouhal number which measures the vortex shedding 

frequency remains unchanged. Many experimental work have 

been reported for the flow around a circular cylinder in the 

presence of a single plane wall at moderate Reynolds number 

in a turbulent regime [5-8]. These results have shown that the 

effects due to the presence of the wall are the modification of 

the forces on the body as it approaches the wall, a slight 

variation of Strouhal number, the shedding and vortex 

shedding suppression when the body is closer than a critical 

gap ratio G/D, where G is the gap and D is the cylinder 

diameter. Bearman and Zdravkovich [5] have shown that the 

wake structure and Strouhal number are about the same as the 

unbounded case until the cylinder close to the surface such 

that G/D is as small as 0.3-0.4. At smaller G/D ratio, the wake 

is almost steady and the periodic shedding is strongly 

inhibited. Price et al [6] studied the fluid flow around the 

cylinder using flow visualization, particle image velocimetry 

and hot-film anemometry for Reynolds number between 1200 

and 4960. The effect of changing gap ratio on lift and drag 

coefficient was studied by Dipankar and Sengupta [7], using 

an improved overset grid method to compare computed results 

with [6] for Re=1200 only. Some experimental works in this 

problem may be found in the paper of Lei et al [8]. This work 

focused on the dependence of vortex shedding and cylinder 

forces on the gap ratio. They have shown that the vortex 

shedding is inhibited at G/D ratio 0.2–0.3. They found that the 

drag co-efficient Cd increased with increasing gap raios 

because of the reduction of base pressure. The same trend of 

base pressure dependence had been observed by  Bearman and 

Zdravkovich [5]. Bearman and Zdravkovich [5] further found 

that the Strouhal number for G/D ≥ 0.3 was more or less 

constant in their experiments at Re = 4.8 x 10
-4

. Lei et al [8] 

also noted only slight fluctuation in Strouhal number 

computed from free stream velocity from a similar range of 

G/D ratios. However for G/D less than 0.3, vortex shedding 

was suppressed. Bearman and Zdravkovich [5] used a spectral 

analysis of hot wire signals in the cylinder wake whereas the 

method of Lei et al [8] was based on observation of the 

spectrum of the lift coefficient.  
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Zovatto and Pedriazzeti [9] in his study used a finite 

element method based on vorticity - stream function 

formulation to analyze flow around a circular cylinder placed 

eccentrically between parallel walls. They found that when the 

body is far enough from one wall, the vortex shedding similar 

to the Von- Karman vortex street. When the cylinder is closer 

to one wall, the two layers of opposite sign vorticity separated 

from the cylinder and from the wall for a pair of vortex which 

dissipate during the mutual induced stretching. As a result, in a 

unsteady regime, when the gap between cylinder and one wall 

smaller than the cylinder diameter the Von- Karman vortex 

street is substituted by a single row same sign vortices. 

Sahin & Owens [10], in their work investigated the lateral wall 

proximity effects on stability, strouhal number, hydrodynamic 

forces and wake structure behind the cylinder for a wide range 

of blockage ratio and Reynolds Number up to 280. Their work 

differs from the work of Zovatto and Pedrizzetti that they 

place the cylinder centrally and made the parallel walls closer 

to each other, whereas Zovatto and Pedrizzetti kept the 

distance between parallel wall fixed and the cylinder placed 

eccentrically. Sahin & Owens [10] used a finite volume based 

method on a velocity only formulation to solve the flow field 

around a circular cylinder confined in a channel. They found 

three separate curves of neutral stability, Hopt bifurcation of a 

symmetric state and Hopt bifurcation of a asymmetric state. 

Wen and Lin [11] in their experiment, investigated the 

relationship of two dimensional vortex shedding frequency 

with the Reynolds number ranging from 45 upto 560. Vortex 

shedding past a circular cylinder under the influence of 

buoyancy has been studied by Patnaik et. al. [12]. They have 

used finite element method with modified velocity correction 

procedure. They presented the influence of buoyancy on 

Nusselt number, wake structure etc. They found that at low 

Reynolds number about Re = 20-40 buoyancy opposing the 

flow could trigger vortex shedding.  

In the present work, the interaction between a laminar stream 

and a circular cylinder placed over a plane boundary is 

studied. In this study, the two dimension Navier-Stokes 

equations are solved in the finite difference implicit method 

with vorticity - stream function formulation such that 

continuity equation is satisfied exactly and pressure term is 

eliminated. This work aims at characteristics of the shedding 

of near wake vortices as the body approaches the plane wall as 

the Re varies in the range from the transition to the periodic 

shedding regime to values where the two-dimensional 

approximation is represented. The feature of the separated 

vorticity dynamics are analyzed at different conditions with a 

vigilances to the interaction between the cylinder wake and the 

induced separation on the plane walls. The presence of the 

plane wall influenced the shedding frequencies and their 

dependence of Re. 

 

2. PHYSICAL FLOW FIELD 

The flow domain of interest and boundary conditions are 

depicted in Figure 1. A rectangular flow field with bottom as 

solid plane wall, contains a circular cylinder of diameter D, 

whose position from bottom no-slip wall is defined by the gap 

G. The cylinder is located at 5D from the inflow boundary. 

The top lateral boundary is set at 11D from the bottom wall. 

The outflow boundary is located at 25D from the cylinder 

centre. 

      Consider an incompressible fluid, with density   and 

kinematics viscosity  , flowing with steady velocity U in the 

flow domain. The problem is made dimensionless by taking D 

as unit length, D/U as unit time and D
3
, as unit mass. The 

flow is governed by two dimensionless parameter: The 

Reynolds number and the gap ratio G/D. The gap ratio is a 

positive number which takes its minimum value zero as the 

cylinder touches the bottom wall. 
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Figure 1 Configuration of the flow field. 

 

3. MATHEMATICAL FORMULATION 

In this study a Cartesian systems of co-ordinates (x, y) with x-

axis along the bottom wall is considered. The governing 

equations are the Navier-stokes equations which are written in 

the vorticity-stream function formulation: 
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Vorticity and stream function are related by the poission’s 

equation: 
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Where   is the vorticity,   is the stream function and u, v 

denotes the components of velocity in x and y direction, which 

can be calculated from the stream function: 
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4. NUMERICAL METHOD 

     In order to solve the governing equation in a curvilinear co-

ordinate system, the following co-ordinate transformation is 

used: 

 

)y,x(),y,x(                                                        (4)                                                                                        

 

where ),(  is the co-ordinate system in the computational 

plane. Using above transformation, the derivatives in the 

physical and computational plane are related as follows: 
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The Laplace equations used as the generation system are: 

 

),(Pyyxx                                                               (5)                                                                                             

 

),(Qyyxx                                                             (6)                                                                                          

 

These equations are transformed to ),(   co-ordinates by 

interchanging the roles of dependent and independent 

variables which results following elliptic system of equations: 
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where,        22 yxA    
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 and           
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where J is the Jacobian of transformation. 
    

The source terms P and Q in equations (5) and (6) are 
considered according to Thomas and Middlecoff   [13]. 
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Now the vorticity – transport equation (1) in the computational 
plane are rewritten as: 
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The stream function equation (2) in the computational plane is 
rewritten as: 
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The velocities are rewritten as: 
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5.  BOUNDARY CONDITIONS AND INITIAL CONDITIONS  

 
 In this study, inflow boundary  is specified with an uniform 

longitudinal free stream velocity U, and zero transverse 
velocity which is equivalent to impose the boundary for stream 

function with y.U  and vorticity  0 . No-slip boundary 
conditions are imposed on wall and cylinder surfaces.  

The no slip boundary conditions for vorticity at cylinder 
surface and wall can be written as per Thom’s formula [14],  
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where (ic, jc) denotes the nodes on the cylinder surface and  

jc,ich  is the radial distance between cylinder surface and first 

body fitted node around the cylinder. 

        The no slip boundary condition is applied at the cylinder 

surface ie the velocity of the fluid is equal to zero on the 

surface of the cylinder. In the multiply connected domain, the 

value of stream function at the surface of cylinder is an 

unknown constant and vary with time. This constant must be 

determined and updated at each time step during computation. 

To calculate the value of stream function on the cylinder 

surface Liu Jian-Guo et al [15] suggested the use of the single 

valued condition of the pressure for the multiply connected 

domain. The pressure single-value condition is derived from 

the fact that the pressure is a scalar term.  

 

6. NUMERICAL SOLUTIONS. 

 In this study Thompson, Thames, Mastin (TTM) method 

of generation of automatic boundary fitted co-ordinate 

generation system is used to construct the grids of the physical 

flow field. The numerical results were obtained by the solution 

of equations by finite difference method. The mesh 

dependence study of an unbounded cylinder shows that 

considerable accurate results can be obtained with a 244 x 90 

mesh with 72 node in the circumferential direction. Grid 

around the cylinder and wall is refined with care. The typical 

size of smaller grid is considered as 0.002 and time step is 

considered as 0.002 to satisfy CFL condition. 

 The transformed equations in computational plane are 

solved numerically by tri-diagonal matrix algorithm in finite 

difference implicit method. The iterative process is carried out 

to reach the steady convergence. The first order backward in 

time and second order central in space finite difference method 

is used. The relaxation factor 0.2-0.5 is employed to promote 

smooth convergence. 

The following convergence criteria was used for the 

computations, 
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where f represents  &v,u,,   and n is the iteration number. 

 

7.  RESULTS AND DISCUSSION 

  
     Based on the above mentioned solution method a 

computer code is developed. The discretization process 
involves a certain amount of error which can be systematically 
reduced by grid refinement.  
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Figure 2 presents the mesh of the flow domain for a gap ratio 

of G/D = 0.5.  By (244 x 90) mesh, it is implied that there are 

244 nodes in the longitudinal and 90 nodes in the transverse 

direction, respectively, with 72 nodes on cylinder surface. In 

this study, calculations are performed with a non-dimensional 

time step of t = 0.002. The vorticity-transport equation is 

solved through second order central difference scheme. Stream 

function equation is solved through central difference. 

 

 
Figure 2 Mesh of the flow domain for a gap-ratio of G/D = 0.5. 

 

7.1  Flow about a circular cylinder near a plane wall 

    The flow about a circular cylinder in an unbounded domain 

has been discussed and flow feature has been explained. The 

solution is validated against the solutions from the other 

researchers. Good agreements are shown with the previous 

researchers.  

    The flow about a cylinder near a plane wall differs from its 

unbounded counterpart because of the effect of wall and shear 

in the incoming velocity profile and separation of vorticity 

from the wall. The case of a circular cylinder placed near a 

plane wall is studied numerically with the method discussed 

above. 

 
7.2.1 Vortex shedding  

 
To explain the interaction of wall boundary layer with the 

cylinder, a Reynolds number of 100 has been chosen for a gap 
ratio of G / D = 0.5 where G is the gap between the cylinder 
and the wall and D is the diameter of the cylinder. Time-
dependent behavior of streamlines and the mechanism of 
vortex shedding over a typical time cycle for G/D = 0.5 and Re 
= 100 is shown in Figure 3. The non-uniformity of streamlines 
around the cylinder strongly suggests the possibility of such an 
interaction. 

     The flow pattern around the cylinder is essentially 
periodic in nature i.e. a typical flow pattern is repeated after a 
fixed interval of time. If the flow in the upstream region of the 
unbounded cylinder is carefully observed, it will be seen that 
flow varies about the upstream divider streamline i.e. for half 
of the time period, there is crowding of the streamlines below 
the divider streamline, only to be followed later by expansion 
of the same. The same happens for flow above the divider 
streamline. It appears that during the whole time period, the 
divider streamline also changes its spatial position keeping the 
forward stagnation point apparently fixed. This time dependent 
flow dissimilarity in the upstream region of the cylinder is 
deemed to be responsible for temporal and spatial variation in 
flow quantities in the wake region leading to the phenomenon 
of “vortex shedding”. However, in this context, the proximity 
of the cylinder to a stationary plane is instrumental in 
introducing a bias in “flow switching”, in the upstream region. 

It is observed from Figure 3 that the movement of the divider 
streamline is now restricted between its time mean position 
(horizontal) and a slightly higher position compared to the 
time mean position. Since the “flow switching” in the 
upstream region is not symmetrical, the possibility of alternate 
vortex shedding does not arise. It now appears to be interesting 
to examine what happens in the wake region of the cylinder, 
particularly, against the backdrop of “biased” flow switching 
in the upstream region (refer Figure 3). At t = 0, streamlines, 
in the bottom half of the upstream region are “widening”. This 
expansion of streamlines continue up to about t = 2τ/6. This 
leads to gradual increase in pressure in the bottom region at 
the wake of the cylinder. Consequently, streamlines at the 
bottom try to reach out the upper wake of the cylinder (ref. 
Figure 3 at t = τ/6).  Due to strong curvature of the streamline, 
a small amount of fluid becomes entrapped between these 
streamlines and the cylinder (Ref Figure 3 at t = 2τ/6). As the 
streamlines in the upstream region gradually switches over to 
the compaction mode, the fluid velocity in the bottom wake 
region increases and pressure decreases. This lead to further 
re-structuring of streamlines in the wake and the entrapped 
region of fluid now moves away from the cylinder. 

 

      
 t = 0                                        t = τ/6                                                           

    

 

t = 2τ/6                                         t = 3τ/6 

     
 

                    t = 4τ/6                                        t = 5τ/6 

 

t = 6τ/6 

 
Figure 3 Vortex shedding around the cylinder in a time cycle 
for Re = 100, G/D = 0.5. 
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7.2.2 Vorticity isolines 

 
Figure 4 presents the vorticity contour plots for the 

Reynolds number Re = 150 and for G/D = 2.0,1.5,1.0, 0.8, 0.5, 
0.3. The positive (solid lines) and negative (dotted lines) 
vorticity contours are shown from values ±1 with a constant 
increase of ± 1 units for all the plots of different Reynolds 
numbers. The clockwise negative vorticity (dotted line) and 
anti- clockwise positive vortices (solid line) shed from the 
upper and lower surface of the cylinder and is convected in the 
downstream side. At gap ratios G/D = 2.0, 1.5, 1.0, 0.8, the 
structure of vorticity fields are analogous to the classic von 
Karman vortex street. The clockwise negative vortices sheds 
from upper side of the cylinder occupy the upper portion of the 
street and the anti clockwise positive vortices sheds from the 
lower side of the cylinder occupy the lower portion of the 
street. For these  gap-ratios, two rows of vortices (clockwise 
and anti-clockwise) are shed alternatively from the top and 
bottom surfaces of the cylinder. In this gap ratios, the wall 
effect is seems to be not very significant. For the gap-ratios 
G/D = 0.5 and 0.3, shedding of single row of vortices occur 
from the surface of the cylinder.  In fact, at these gap-ratios, 
relatively stronger and well defined negative vortices are shed 
only from the upper surface of the cylinder; leaving behind a 
single row of vortex street in the flow field. The single row of 
vortex street for the Reynolds number  
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Figure 4  Vorticity contours for Re = 150 and gap-ratios: (a) 

G/D = 2.0, (b) G/D = 1.5, (c) G/D = 1.0, (d) G/D = 0.8 (e) G/D 

= 0.5, (f) G/D = 0.3. 

 
Re = 150 and for a gap-ratio of G/D = 0.5 and 0.3 

corroborate this nature shown in Figure 4. The weaker positive 

vortex that is about to shed from the bottom surface of the 
cylinder at these gap-ratios is being counteracted by the  
negative wall vorticity. In other words, the cylinder is unable to 
shed vortices from the lower surface of the cylinder while the 
vortex from the upper part of the cylinder is shed at regular 
interval as evident from Figure 4.   

      The vorticity contours for flow in the steady-state regimes 

is presented in Figure 5, at Re = 40. Figure 5 presents vorticity 

contour for Re = 40, and (a) G/D = 2.0, (b) G/D = 1.5, (c) G/D 

= 1.0, (d) G/D = 0.5. The positive (solid lines) and negative 

(dotted lines) vorticity contours are shown from values +/- 1 

with a constant increase of +/- 1 units. In this steady flow 

regime where vortex shedding does not occur, the wake 

vorticity generates at the upper wall is negative and the same 

generates at the lower wall is positive. When the cylinder is 

placed far from the wall ie at gap ratio G/D = 2.0, the positive 

wake vorticity on the wall side elongates due to wall effect. As 

the cylinder approaches the wall, the wake vorticity on the 

wall side reduced in length. On the opposite face of the 

cylinder the wake elongates, smooths out and eventually 

combines with the oncoming vorticity. Decreasing the gap 

value, it can be seen that the wall - side wake couples with the 

wall boundary - layer vorticity of opposite sign while the 

actual wake is dominated by the vorticity shed from other side 

of the body. When G/D = 0.5, the wall side wake has almost 

disappeared  and the wake flow resembles that of a surface 

mounted obstacle.   
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Figure 5  Vorticity contour for Re = 40, and (a) G/D = 2.0, (b) 

G/D = 1.5, (c) G/D = 1.0, (d) G/D = 0.5. 

 

 

7.2.3  Velocity Vectors 

 
 Figures 6 presents the velocity vectors at Re =100 and 

200 for gap ratios G/D = 0.5. The plots clearly show the 

periodic nature of the flow pattern at the wake. The velicity 

lines clearly depicted the shedding pattern for Re=100 and 

Re=200 at the same gap ratio i.e. G/D = 0.5. 
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Figure 6  Velocity vectors G/D = 0.5, and (a) Re = 200,  

(b) Re = 100. 

 

8.  CONCLUSIONS 

      

The studies presented in this paper is relate to the shedding 
pattern of near wake vortices for flow past a circular cylinder in 
the vicinity of a plane wall. A non-isothermal case is 
considered for the flow a fluid is considered to flow past a  
circular cylinder near a plane wall. 

In this work, the two dimensional Navier-Stokes equations 
for time-dependent, viscous, incompressible flow along with 
continuity and energy equation are solved using vorticity-
stream function formulation by finite difference method.  

       
The major conclusions are as follows: 
 
The time-evolution of cylinder surface stream function also 

provides a measure of frequency of vortex shedding (Strouhal 
number) from the cylinder. 

The time dependent behavior of the stream function at the 
surface of the cylinder reveals that the magnitude of variation 
grows up as the Reynolds number increases; at the same time, 

the time period for a cycle decreases, implying that vortices are 
now shed with greater frequency 

Thermal boundary growth starts at the front stagnation and 
becomes thicker towards the aft. On the upstream side, the 
distribution is regular and packed, while in the downstream, the 
migration of these isotherms indicates the vortex shedding. 

For relatively higher gap-ratios, shedding of vortices takes 
place from either surface of the cylinder. The negative vortices 
sheds from upper surface of the cylinder and the positive 
vortices sheds from the lower surface of the cylinder. For 
smaller gap ratios, the flow field changes considerably. There is 
shedding from one side of the cylinder and from the other side. 
The positive vortices ceases to sheds from the lower surface of 
the cylinder due to the interaction with the negative vortices at 
the wall. 
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