
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 10 3038 – 3044

3038
IJRITCC | October 2014, Available @ http://www.ijritcc.org

Load Balancing Techniques in Cloud Computing

Asitha Micheal

 Department of Information Technology

 Shah & Anchor Kutchhi Engineering College

Mumbai,India

asithamicheal@gamil.com

 Jalpa Mehta

Department of Information Technology

line 2: name of organization, acronyms acceptable

Mumbai,India

jalpa03@yahoo.com

Abstract-As Cloud Computing is growing rapidly and clients are demanding more services and better results, load balancing for the Cloud has

become a very interesting and important research area. The top challenges and Issues faced by cloud Computing is Security, Availability,

Performance etc. The issue availability is mainly related to efficient load balancing, resource utilization & live migration of data in the server. In

clouds, load balancing, as a method, is applied across different data centres to ensure the network availability by minimizing use of computer

hardware, software failures and mitigating recourse limitations. Load Balancing is essential for efficient operations in distributed environments.

Hence this paper presents the various existing load balancing Technique in Cloud Computing based on different parameters.

Keywords- Cloud Computing, Distributed system, Dynamic Load balancing, Non-Distributed system
__*****___

I. INTRODUCTION

 Cloud computing is delivering software, Storage &

infrastructure as a provisioned service to end users, but the

underlying resource must be sufficiently scalable and robust.

Whenever there is increase in demands Cloud vendors are

based on automatic load balancing services, which allowed

entities to increase the number of CPUs or memories for their

resources to scale up according to their requirement. This

service is optional and depends on the entity's business needs.

Therefore load balancers served two important needs,

primarily to promote availability of cloud resources and

secondarily to promote performance.
Load Balancing is process of reassigning the total load to

the individual nodes of the collective system to make resource
utilization effective and to improve the response time of the
job, simultaneously removing a condition in which some of
the nodes are over loaded while some others are under loaded.
Thus Load balancing is a relatively technique that facilitates
networks and resources by providing a Maximum throughput
with minimum response time by dividing the traffic between
servers. Load balancing algorithms can be categorized mainly
into two groups. They are Static and Dynamic load balancing.

II. STATIC LOAD BALANCING ALGORITHMS

 Static Load balancing algorithms [1] assign the tasks to
the nodes based only on the ability of the node to process new
requests. The process is based solely on prior knowledge of
the nodes’ properties and capabilities. These would include the
node’s processing power, memory and storage capacity, and
most recent known communication performance.

 Although they may include knowledge of the
communication prior performance, static algorithms generally
do not consider dynamic changes of these attributes at run-
time. In addition, these algorithms cannot adapt to load
changes during run-time.

A. Round Robin and Randomized Algorithms

In the round robin [2], processes are divided evenly between

all processors. Each new process is assigned to new processor

in round robin order. The process allocation order is

maintained on each processor locally independent of

allocations from remote processors. With equal workload

round robin algorithm is expected to work well. Round Robin

and Randomized schemes work well with number of processes

larger than number of processors. Advantage of Round Robin

algorithm is that it does not require inter-process

communication. Round Robin and Randomized algorithm both

can attain the best performance among all load balancing

algorithms for particular special purpose applications. In

general Round Robin and Randomized are not expected to

achieve good performance in general case.

B. Central Manager Algorithm

In this algorithm [2], a central processor selects the host for

new process. The minimally loaded processor depending on

the overall load is selected when process is created. Load

manager selects hosts for new processes so that the processor

load confirms to same level as much as possible. From that

information on the system load state, central load manager

makes the load balancing judgment. This information is

updated by remote processors, which send a message each

time to the load manager on changes. This information can

depend on waiting of parent’s process of completion of its

children’s process, end of parallel execution. The load

manager makes load balancing decisions based on the system

load information, allowing the best decision when of the

process created. High degree of inter-process communication

could make the bottleneck state. This algorithm is expected to

perform better than the parallel applications, especially when

dynamic activities are created by different hosts.

C. Threshold Algorithm

According to this algorithm [2], the processes are assigned

immediately upon creation to hosts. Hosts for new processes

are selected locally without sending remote messages. Each

processor keeps a private copy of the system’s load. The load

of a processor can characterize by one of the three levels:

under loaded, medium and overloaded. Two threshold

parameters tunder and tupper can be used to describe these

levels.

Under loaded - load < tunder

Medium - tunder ≤ load ≤ tupper

Overloaded - load > tupper

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 10 3038 – 3044

3039
IJRITCC | October 2014, Available @ http://www.ijritcc.org

Initially, all the processors are considered to be under loaded.

When the load state of a processor exceeds a load level limit,

then it sends messages regarding the new load state to all

remote processors, regularly updating them as to the actual

load state of the entire system.
If the local state is not overloaded then the process is

allocated locally. Otherwise, a remote under loaded processor
is selected, and if no such host exists, the process is also
allocated locally. Thresholds algorithm have low inter process
communication and a large number of local process
allocations. The later decreases the overhead of remote process
allocations and the overhead of remote memory accesses,
which leads to improvement in performance.

III. DYNAMIC LOAD BALANCING ALGORITHMS

Dynamic load balancing algorithms [1] take into account the

different attributes of the nodes’ capabilities and network

bandwidth. Most of these algorithms rely on a combination of

Knowledge based on prior gathered information about the

nodes in the Cloud and run-time properties collected as the

selected nodes process the task’s components. These

algorithms assign the tasks and may dynamically reassign

them to the nodes based on the attributes gathered and

calculated. Such algorithms require constant monitoring of the

nodes and task progress and are usually harder to implement.

However, they are more accurate and could result in more

efficient load balancing. Dynamic load balancing can be done

in two different ways: distributed and non-distributed.

A. Distributed system

In the distributed one, the dynamic load balancing algorithm is

executed by all nodes present in the system and the task of

load balancing is shared among them. The interaction among

nodes to achieve load balancing can take two forms:

cooperative and non-cooperative. In the first one, the nodes

work side-by-side to achieve a common objective, for

example, to improve the overall response time, etc. In the

second form, each node works independently toward a goal

local to it, for example, to improve the response time of a local

task. Dynamic load balancing algorithms of distributed nature,

usually generate more messages than the non-distributed ones

because, each of the nodes in the system needs to interact with

every other node. A benefit, of this is that even if one or more

nodes in the system fail, it will not cause the total load

balancing process to halt; it instead would affect the system

performance to some extent.

B. Non-Distributed System

In non-distributed type, either one node or a group of nodes do

the task of load balancing. Non-distributed dynamic load

balancing algorithms can take two forms: centralized and

semi-distributed. In the first form, the load balancing

algorithm is executed only by a single node in the whole

system: the central node. This node is solely responsible for

load balancing of the whole system. The other nodes interact

only with the central node. In semi-distributed form, nodes of

the system are partitioned into clusters, where the load

balancing in each cluster is of centralized form. A central node

is elected in each cluster by appropriate election technique

which takes care of load balancing within that cluster. Hence,

the load balancing of the whole system is done via the central

nodes of each cluster. Centralized dynamic load balancing

takes fewer messages to reach a decision, as the number of

overall interactions in the system decreases drastically as

compared to the semi-distributed case. However, centralized

algorithms can cause a bottleneck in the system at the central

node and also the load balancing process is rendered useless

once the central node crashes. Therefore, this algorithm is

most suited for networks with small size.

1) Central Queue Algorithm

Central Queue Algorithm [2] works on the principle of

dynamic distribution. It stores new activities and unfulfilled

requests as a cyclic FIFO queue on the main host. Each new

activity arriving at the queue manager is inserted into the

queue. Then, whenever a request for an activity is received by

the queue manager, it removes the first activity from the queue

and sends it to the requester. If there are no ready activities in

the queue, the request is buffered, until a new activity is

available. If a new activity arrives at the queue manager while

there are unanswered requests in the queue, the first such

request is removed from the queue and the new activity is

assigned to it. When a processor load falls under the threshold,

the local load manager sends a request for a new activity to the

central load manager. The central load manager answers the

request immediately if a ready activity is found in the process-

request queue, or queues the request until a new activity

arrives.

2) Local Queue Algorithm

Main feature of this algorithm is dynamic process migration

support. The basic idea of the local queue algorithm [2] is

static allocation of all new processes with process migration

initiated by a host when its load falls under threshold limit, as

a user-defined parameter of the algorithm. The parameter

defines the minimal number of ready processes the load

manager attempts to provide on each processor. Initially, new

processes created on the main host are allocated on all under

loaded hosts. The number of parallel activities created by the

first parallel construct on the main host is usually sufficient for

allocation on all remote hosts. From then on, all the processes

created on the main host and all other hosts are allocated

locally. When the host gets under loaded, the local load

manager attempts to get several processes from remote hosts.

It randomly sends requests with the number of local ready

processes to remote load managers. When a load manager

receives such a request, it compares the local number of ready

processes with the received number. If the former is greater

than the latter, then some of the running processes are

transferred to the requester and an affirmative confirmation

with the number of processes transferred is returned.

3) Honeybee Foraging Algorithm

This algorithm [3] is derived from the behavior of honey bees

for finding and reaping food. There is a class of bees called the

forager bees which forage for food sources, upon finding one,

they come back to the beehive to advertise this using a dance

called waggle dance. The display of this dance, gives the idea

of the quality or quantity of food and also its distance from the

beehive. Scout bees then follow the foragers to the location of

food and then began to reap it. They then return to the beehive

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 10 3038 – 3044

3040
IJRITCC | October 2014, Available @ http://www.ijritcc.org

and do a waggle dance, which gives an idea of how much food

is left and hence results in more exploitation or abandonment

of the food source.

In case of load balancing, as the webservers demand increases

or decreases, the services are assigned dynamically to regulate

the changing demands of the user. The servers are grouped

under virtual servers (VS), each VS having its own virtual

service queues. Each server processing a request from its

queue calculates a profit or reward, which is analogous to the

quality that the bees show in their waggle dance. One measure

of this reward can be the amount of time that the CPU spends

on the processing of a request. The dance floor in case of

honey bees is analogous to an advert board here. This board is

also used to advertise the profit of the entire colony.

Each of the servers takes the role of either a forager or a scout.

The server after processing a request can post their profit on

the advert boards with a probability of pr. A server can choose

a queue of a VS by a probability of px showing forage/explore

behavior, or it can check for advertisements (see dance) and

serve it, thus showing scout behavior. A server serving a

request, calculates its profit and compare it with the colony

profit and then sets its px. If this profit was high, then the

server stays at the current virtual server; posting an

advertisement for it by probability pr. If it was low, then the

server returns to the forage or scout behavior.

4) Biased Random Sampling

Here a virtual graph is constructed, with the connectivity of

each node (a server is treated as a node) representing the load

on the server. Each server is symbolized as a node in the

graph, with each in degree directed to the free resources of the

server. Regarding job execution and completion,

 Whenever a node does or executes a job, it deletes an

incoming edge, which indicates reduction in the

availability of free resource.

 After completion of a job, the node creates an incoming

edge, which indicates an increase in the availability of

free resource.

The addition and deletion of processes is done by the process

of random sampling. The walk starts at any one node and at

every step a neighbor is chosen randomly. The last node is

selected for allocation for load. Alternatively, another method

can be used for selection of a node for load allocation, that

being selecting a node based on certain criteria like computing

efficiency, etc. Yet another method can be selecting that node

for load allocation which is under loaded i.e. having highest in

degree. If b is the walk length, then, as b increases, the

efficiency of load allocation increases. This defines a threshold

value of b, which is generally equal to log n experimentally.

A node upon receiving a job, will execute it only if its current

walk length is equal to or greater than the threshold value.

Else, the walk length of the job under consideration is

incremented and another neighbor node is selected randomly.

When, a job is executed by a node then in the graph, an

incoming edge of that node is deleted. After completion of the

job, an edge is created from the node initiating the load

allocation process to the node which was executing the job.

Finally a directed graph is achieved. The load balancing

scheme used here is fully decentralized, thus making it apt for

large network systems like that in a cloud [3].

5) Active Clustering

Active Clustering [3] is considered in as a self-aggregation

algorithm to rewire the network. This algorithm works on the

principle of grouping similar nodes together and working on

these groups. Many load balancing algorithms only work well

where the nodes are aware of “like” nodes and can delegate

workload to them. The process involved is:

 A node initiates the process and selects another node

called the matchmaker node from its neighbours

satisfying the criteria that it should be of a different type

than the former one.

 The so called matchmaker node then forms a connection

between neighbors of it which is of the same type as the

initial node.

 The matchmaker node then detaches the connection

between itself and the initial node.

The above set of processes is followed iteratively.

IV. EXISTING LOAD BALANCING TECHNIQUES IN

CLOUDS

Following load balancing techniques are currently prevalent in

clouds

A. Decentralized content aware

H. Mehta et al. [4] proposed a new content aware load

balancing policy named as work-load and client aware policy

(WCAP). It uses a parameter named as USP to specify the

unique and special property of the requests as well as

computing nodes. USP helps the scheduler to decide the best

suitable node for processing the requests. This strategy is

implemented in a decentralized manner with low overhead. By

using the content information to narrow down the search, it

improves the searching performance overall performance of

the system. It also helps in reducing the idle time of the

computing nodes hence improving their utilization.

B. CARTON

R. Stanojevic et al. [4] proposed a mechanism CARTON for

cloud control that unifies the use of LB and DRL. LB (Load

Balancing) is used to equally distribute the jobs to different

servers so that the associated costs can be minimized and DRL

(Distributed Rate Limiting) is used to make sure that the

resources are distributed in a way to keep a fair resource

allocation. DRL also adapts to server capacities for the

dynamic workloads so that performance levels at all servers

are equal. With very low computation and communication

overhead, this algorithm is simple and easy to implement.

C. Compare and Balance

Y. Zhao et al. [4] addressed the problem of intra-cloud load

balancing amongst physical hosts by adaptive live migration

of virtual machines. A load balancing model is designed and

implemented to reduce virtual machines’ migration time by

shared storage, to balance load amongst servers according to

their processor or IO usage, etc. and to keep virtual machines’

zero-downtime in the process. A distributed load balancing

algorithm COMPARE AND BAL-ANCE is also proposed that

is based on sampling and reaches equilibrium very fast. This

algorithm assures that the migration of VMs is always from

high-cost physical hosts to low-cost host but assumes that each

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 10 3038 – 3044

3041
IJRITCC | October 2014, Available @ http://www.ijritcc.org

physical host has enough memory which is a weak

assumption.

D. Event-driven

V. Nae et al. [4] presented an event-driven load balancing

algorithm for real-time Massively Multiplayer Online Games

(MMOG). This algorithm after receiving capacity events as

input, analyzes its components in context of the resources and

the global state of the game session, thereby generating the

game session load balancing actions. It is capable of scaling up

and down a game session on multiple resources according to

the variable user load but has occasional QoS breaches.

E. Scheduling strategy on LB of VM resources [SS on LB of

VM resource]

J. Hu et al. [4] proposed a scheduling strategy on load

balancing of VM resources that uses historical data and current

state of the system. This strategy achieves the best load

balancing and reduced dynamic migration by using a genetic

algorithm. It helps in resolving the issue of load imbalance and

high cost of migration thus achieving better resource

utilization.

F. CLBVM

A. Bhadani et al. [4] proposed a Central Load Balancing

Policy for Virtual Machines (CLBVM) that balances the load

evenly in a distributed virtual machine/cloud computing

environment. This policy improves the overall performance of

the system but does not consider the systems that are fault-

tolerant.

G. LBVS

H. Li. [4] proposed a load balancing virtual storage strategy

(LBVS) that provides a large scale net data storage model and

Storage as a Service model based on Cloud Storage. Storage

virtualization is achieved using an architecture that is three-

layered and load balancing is achieved using two load

balancing modules. It helps in improving the efficiency of

concurrent access by using replica balancing further reducing

the response time and enhancing the capacity of disaster

recovery. This strategy also helps in improving the use rate of

storage resource, flexibility and robustness of the system.

H. Task Scheduling based on LB

Y. Fang et al. [4] discussed a two-level task scheduling

mechanism based on load balancing to meet dynamic

requirements of users and obtain high resource utilization. It

achieves load balancing by first map-ping tasks to virtual

machines and then virtual machines to host resources thereby

improving the task response time, resource utilization and

overall performance of the cloud computing environment.

I. Honeybee Foraging Behavior

M. Randles et al. [4] investigated a decentralized honeybee-

based load balancing technique that is a nature-inspired

algorithm for self-organization. It achieves global load

balancing through local server actions. Performance of the

system is enhanced with increased sys-tem diversity but

throughput is not increased with an increase in system size. It

is best suited for the conditions where the diverse population

of service types is required.

J. Biased Random Sampling

M. Randles et al. [4] investigated a distributed and scalable

load balancing approach that uses random sampling of the

system domain to achieve self-organization thus balancing the

load across all nodes of the system. The performance of the

system is improved with high and similar population of

resources thus resulting in an in-creased throughput by

effectively utilizing the increased sys-tem resources. It is

degraded with an increase in population diversity.

K. Active Clustering

M. Randles et al. [4] investigated a self-aggregation load

balancing technique that is a self-aggregation algorithm to

optimize job assignments by connecting similar services using

local re-wiring. The performance of the system is enhanced

with high resources thereby in-creasing the throughput by

using these resources effectively. It is degraded with an

increase in system diversity.

L. ACCLB

Z. Zhang et al. [4] proposed a load balancing mechanism

based on ant colony and complex network theory (ACCLB) in

an open cloud computing federation. It uses small-world and

scale-free characteristics of a complex network to achieve

better load balancing. This technique overcomes

heterogeneity, is adaptive to dynamic environments, is excel-

lent in fault tolerance and has good scalability hence helps in

improving the performance of the system.

M. (OLB + LBMM)

S.-C. Wang et al. [4] proposed a two-phase scheduling

algorithm that combines OLB (Opportunistic Load Balancing)

and LBMM (Load Balance Min-Min) scheduling algorithms to

utilize better executing efficiency and maintain the load

balancing of the system. OLB scheduling algorithm, keeps

every node in working state to achieve the goal of load balance

and LBMM scheduling algorithm is utilized to minimize the

execution time of each task on the node thereby minimizing

the overall completion time. This combined approach hence

helps in an efficient utilization of resources and enhances the

work efficiency.

N. VectorDot

A. Singh et al. [4] proposed a novel load balancing algorithm

called VectorDot. It handles the hierarchical complexity of the

data-center and multidimensionality of resource loads across

servers, network switches, and storage in an agile data center

that has integrated server and storage virtualization

technologies. VectorDot uses dot product to distinguish nodes

based on the item requirements and helps in removing

overloads on servers, switches and storage nodes.

O. Server-based LB for Internet distributed services [Server

Based LB for IDS]

A. M. Nakai et al. [4] proposed a new server-based load

balancing policy for web servers which are distributed all over

the world. It helps in reducing the service response times by

using a protocol that limits the redirection of requests to the

closest remote servers without overloading them. A

middleware is described to implement this protocol. It also

uses a heuristic to help web servers to endure overloads.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 10 3038 – 3044

3042
IJRITCC | October 2014, Available @ http://www.ijritcc.org

P. Join-Idle-Queue

Y. Lua et al. [4] proposed a Join-Idle-Queue load balancing

algorithm for dynamically scalable web services. This

algorithm provides large-scale load balancing with distributed

dispatchers by, first load balancing idle processors across

dispatchers for the availability of idle processors at each

dispatcher and then, assigning jobs to processors to reduce

average queue length at each processor. By removing the load

balancing work from the critical path of request processing, it

effectively reduces the system load, incurs no communication

overhead at job arrivals and does not increase actual response

time.

Q. Lock-free multiprocessing solution for LB [LF

multiprocessing solution for LB]

X. Liu et al. [4] proposed a lock-free multiprocessing load

balancing solution that avoids the use of shared memory in

contrast to other multiprocessing load balancing solutions

which use shared memory and lock to maintain a user session.

It is achieved by modifying Linux kernel. This solution helps

in improving the overall performance of load balancer in a

multi-core environment by running multiple load-balancing

processes in one load balancer.

V. METRICS FOR LOAD BALANCING IN CLOUDS [5]

The existing load balancing techniques in clouds consider

various parameters like performance, response time,

scalability, throughput, resource utilization, fault tolerance,

migration time and associated overhead. But, for an energy-

efficient load balancing, metrics like energy consumption

and carbon emission should also be considered.

A. Overhead Associated

Overhead Associated determines the amount of overhead

involved while implementing a load-balancing algorithm. It is

composed of overhead due to movement of tasks, inter-

processor and inter-process communication. This should be

minimized so that a load balancing technique can work

efficiently.

B. Throughput

Throughput is used to calculate the no. of tasks whose

execution has been completed. It should be high to improve

the performance of the system

C. Performance

It is used to check the efficiency of the system. It has to be

improved at a reasonable cost e.g. reduce response time while

keeping acceptable delays.

D. Resource Utilization

Resource Utilization is used to check the utilization of

resources. It should be optimized for an efficient load

balancing.

E. Scalability

Scalability is the ability of an algorithm to perform load

balancing for a system with any finite number of nodes. This

metric should be improved.

F. Response Time

Response Time is the amount of time taken to respond by a

particular load balancing algorithm in a distributed system.

This parameter should be minimized.

G. Fault Tolerance

Fault Tolerance is the ability of an algorithm to perform

uniform load balancing in spite of arbitrary node or link

failure. The load balancing should be a good fault-tolerant

technique.

H. Migration time

It is the time to migrate the jobs or resources from one node to

other. It should be minimized in order to enhance the

performance of the system.

I. Energy Consumption (EC)

EC determines the energy consumption of all the resources in

the system. Load balancing helps in avoiding overheating by

balancing the workload across all the nodes of a Cloud, hence

reducing energy consumption.

J. Carbon Emission (CE)

CE calculates the carbon emission of all the resources in the

system. As energy consumption and carbon emission go hand

in hand, the more the energy consumed, higher is the carbon

footprint. So, for an energy-efficient load balancing solution,

it should be reduced.

Based on the above metrics, the existing load balancing techniques have been compared in Table 1

TABLE 1: METRICS CONSIDERED BY EXISTING LOAD BALANCING TECHNIQUES [4]

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 10 3038 – 3044

3043
IJRITCC | October 2014, Available @ http://www.ijritcc.org

TECHNIQUES PERFORMANCE RESPONSE SCALABILITY OVERHEAD THROUGHPUT RESOURCE

UTILIZATION
FAULT

TOLERANCE
MIGRATION

TIME
EC CE

DECENTRALIZED

CONTENT AWARE

CARTON

COMPARE &

BALANCE

EVENT-DRIVEN

SS ON LB OF VM

CLBVM

LBVS

TASK

SCHEDULING

BASED ON LB

HONEY BEE

FORAGING

BEHAVIOUR

BIASED RANDOM

SAMPLING

ACTIVE

CLUSTERING

ACCLB

OLB+LBMM

VECTOR DOT

SERVER BASED

LB FOR IDS

JOIN-IDLE QUEUE

LF

MULTIPROCESSING

SOLUTION FOR LB

VI. CONCLUSION

This paper presented different load balancing techniques of

Cloud Computing and comparative analysis between them. It

also surveyed multiple load balancing algorithms. The

proposed algorithms were based on one or more techniques. It

was noted that there are no algorithm which can achieve all the

metrics of Load Balancing. Each and every algorithm was

designed to achieve specific objective, such as Biased Random

Sampling algorithm has efficient performance & scalability

but poor Fault tolerance. Therefore, such algorithm must be

designed which can handle different types of workload and

suitable for all types of enviorment.

REFERENCES

[1] Klaithem Al Nuaimi, Nader Mohamed, Mariam Al Nuaimi and Jameela
Al-Jaroodi “A Survey of Load Balancing in Cloud
Computing:Challenges and Algorithms” 2012 IEEE Second Symposium
on Network Cloud Computing and Applications

[2] Sandeep Sharma, Sarabjit Singh, and Meenakshi Sharma, “Performance
Analysis of Load Balancing Algorithms” World Academy of Science,
Engineering and Technology 14 2008

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 10 3038 – 3044

3044
IJRITCC | October 2014, Available @ http://www.ijritcc.org

[3] Ram Prasad Padhy and P Goutam Prasad Rao, “Load Balancing In Cloud
Computing Systems” Thesis submitted in partial fulfillment of the
requirements for the degree of Bachelor of Technology NIT Rourkela
May, 2011

[4] Nidhi Jain Kansal, Inderveer Chana “Cloud Load Balancing Techniques :
A Step Towards Green Computing ” IJCSI International Journal of
Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012

[5] Nidhi Jain Kansal* and Inderveer Chana , “Existing Load Balancing
Techniques In Cloud Computing: A Systematic Re-View” ISSN: 0976-
8742, E-ISSN: 0976-8750, Volume 3, Issue 1, 2012

