
International Journal on Recent and Innovation Trends in Computing and Communication                                       ISSN: 2321-8169 
Volume: 2 Issue: 9                                                                                                                                                                      2954 – 2956 

_______________________________________________________________________________________________ 

2954 
IJRITCC | September 2014, Available @ http://www.ijritcc.org                                                                 

_______________________________________________________________________________________ 

A Fast Data Structure for Anagrams 
 

1
Sk. Mohiddin Shaw, 

2
Hari Krishna Gurram, 

Department of Mathematics 

NarasaraoPet Engineering College, 

Narasaraopet, Guntur, Andhra  Pradesh, India 

Email: mohiddin_shaw26@yahoo.co.in., 

Department of Computer Sciences, 

UCEK, JNTU Kakinada, Andhra  Pradesh, India 

Email: harikrishna553@gmail.com., 

 
3
Rama Krishna Gurram, 

4
Dharmaiah Gurram, 

Department of MCA, NIT Warangal 

Email: Ramakrishna.nitw19@gmail.com., 

Department of Mathematics, 

Narasarao Pet Engineering College, Narasaraopet. 

Email: 10072014nec@gmail.com., 

 
Abstract: - In this paper, we are presenting a data structure, which stores the given dictionary data in a hash table called PRIME , by using 

fundamental theorem on Arithmetic to generate a key for each dictionary word, and stores the word in the hash table based on the key.  As 

compared to tree-based techniques PRIME table generates anagram for the given random word in O(1) time, time to construct a PRIME table 

depends on the number of words in the dictionary. If dictionary has „n‟ words then the time to develop the PRIME table is O(n). 

 

Categories and Subject descriptors: Problem solving, search and control methods. 

 

keywords: Algorithms, performance, Experimentation, fundamental theorem on Arithmetic, Hash map.  

 
__________________________________________________*****_________________________________________________ 

 
1. INTRODUCTION 

An anagram is the result of arranging the letters of a 

word to produce a new word, using all the letters in given 

word exactly once (example dgo is arranged as god, dog).  

Multiple anagramming is a technique used to solve some 

kinds of crypto programs such as permutation ciphers and 

transposition ciphers. According to, some historian 

anagrams originated in 4
th

 century BC. Other resources 

suggest that Pythorogous, in the 6
th

 century BC used 

anagrams to discover deep philosophical meanings. Many 

scientists such as Galileo, Robert Hooke often recorded their 

results in anagram form to stake their claim on discovery 

and prevent anyone else claiming the credit.     In recent 

decades, anagrams have become popular in a different role. 

They are often included in the clues for cryptic crosswords. 

We are proposing a data structure that works better than 

tree-based techniques like Anatree to get the anagram for a 

given word. As compared to Anatree, PRIME table is a 

simple hash table based data structure that works efficiently. 

 

2. TERMINOLOGY USED 

       Fundamental theorem of arithmetic states that every 

integer greater than 1 is either prime itself or the product of 

prime numbers and the prime factor decomposition of a 

number is unique.  It is also called as unique factorization 

theorem or unique-prime-factorization theorem. 

 

In computing, a hash map (also hash table) is a data 

structure used to implement an associative array, a structure 

that can map keys to values. A hash table uses a hash 

function to compute an index into an array of buckets or 

slots, from which the correct value can be found. 

 

3. DATA STRUCTURES 

There are number of data structures that support 

anagrams. The most basic data structure is alphabetic map. 

Alphabetic map takes the letters of the word and sort them 

into alphabetical order and produce a mapping from these 

sorted letters to the word that produced them. Unfortunately 

algorithms that are developed based on alphabetic map have 

to sort ever word to find the mapping in the Hash table. 

Anatree is another data structure for giving anagrams. 

Anatree is a directed tree which denotes a set of words W 

encoded as strings in some alphabet A.  Internal vertices are 

labeled with letters from A; edges are labeled with 

nonnegative integers; leaves contain subsets of W.  The 

efficiency of finding anagram of given word in Anatree is 

based on the tree construction, since each internal node in 

the Anatree represents an alphabet and based on the edge 

weight the tree traverse to the next level. Choosing a vertex 

label is most challenging problem in construction of 

Anatree. 

 

4. PRIME TABLE 

PRIME table is a Hashmap, each key in the hash map 

is the product of prime numbers that are related to each 

character of a given word. 

  

PRIME table is constructed in 2 stages. 

 

Stage 1: Find the key value for a given word. 

To find key value for the given word, first all the 

alphabets in the given language should assigned with 

weights of unique prime numbers. For every word in the 

dictionary the key is constructed by multiplying all the 

weighted values of each character in the given word. Key 

construction is explained in the below example. 

 

A B C D E F G H I J K 

2 3 5 7 11 13 17 19 23 29 31 

L M N O P Q R S T U V 

37 41 43 47 53 59 61 67 71 73 79 

W X Y Z 

83 89 97 101 

  Table 1: Index table for English Alphabet: 



International Journal on Recent and Innovation Trends in Computing and Communication                                       ISSN: 2321-8169 
Volume: 2 Issue: 9                                                                                                                                                                      2954 – 2956 

_______________________________________________________________________________________________ 

2955 
IJRITCC | September 2014, Available @ http://www.ijritcc.org                                                                 

_______________________________________________________________________________________ 

As shown in table 1 each character in English 

alphabet is assigned with distinct prime number.   English 

alphabet has 26 characters so we have taken first 26 distinct 

prime numbers. 

 

For the word:  god 

The key construction is 

 getKey (god) = 17 * 47 * 7 = 5593 

 Since the prime weight for the letter 'g ' is 17 

 prime weight for the letter 'o ' is 47 

 prime weight for the letter 'd' is 7 

 

Step 2: Store the word in hash map based on the key value. 

 

 Once the key generated for the given word the 

word is store in the Hash map based on the key value.  There 

is possibility that more than one word has same key value, 

in that case key value is pointed to all the words that have 

same key value. 

 

 Example god and dog has same key value 5593, 

then HashMap(5593) points to both the strings god, dog. 

I.e., HashMap (5593) returns both the words. 

 

4.1 ALGORITHM: 

 

Terminology used in algorithm: 

 

DictFile             : File containing all the words 

 

readNextWord()  : Reads next word in the given  

                            file 

 

getKey()     : Returns the key value for the  

                             given string 

 

str1.append(str2)  : Appends string str2 to the  

                              string str1 

 

put(key, string)    : Associates the specified  

       string with the specified key in this map. 

 

get(key)              : Returns the value to which   

        the specified key is mapped in this identity  

        hash map, or null if the map contains no  

         mapping for this key. 

alphaWeight array:       Array that has prime  number values 

for each character in the  

alphabet of given language 

 

findIndexValue() : Returns the prime number weight of 

given character. 

 

Length() : Returns the number of characters in given string 

 

search() : Returns the anagrams for the given random word 

 

charAt() : Returns a character at particular position the 

string 

 

HashMap<Integer Key,String Value> dictMap :  

 

A Hash structure with fields key of type integer and value of 

type string. 

  

/* Generate HashTable  for given set of words*/ 

processDictionary(DictFile) 

{ 

     do 

    { 

         String = readNextWord(DictFile); 

         Key    = getKey(String); 

         if((value = dictMap.get(key)) != null) 

        { 

             

              value.append(","+string); 

              dictMap.put(key, value); 

                          }  

           else 

          { 

               dictMap.put(key, string); 

                          } 

 

         }while(End Of File reached) 

   } 

 

/* Find the value of the alphabet from table/Array Index */ 

Intger findIndexValue() 

{ 

       return (value of the alphabet from the     

       alphaWeight array); 

       //value for A is 2 and H is 19 

} 

 

/* Return the key value of given string */ 

Integer getkey(String) 

{ 

 mulValue = 1 

 for I = 1 to length(string) 

 { 

                  indexValue =         

                  findIndex Value (string.charAt(i)); 

                 mulValue = mulValue * indexValue 

 } 

  return mulValue 

} 

 

String search (findAnagram) 

{ 

 keyValue = getkey (findAnagram) 

 return dictMap.get(key) 

} 

 

4.2 WORKING WITH PRIME TABLE 

 

Let us illustrate the use of PRIME table with an 

example algorithm.  A typical query is to find the anagrams 

of given string. This can be solved directly with PRIME 

table.  For example to find the anagram of „ptrulias’ we first 

find the key value of the string „ptrulias’, and retrieve the 

string mapped with this key value from the Hash Map. Here 

we are using Hashmap, so to find the Anagram of any given 



International Journal on Recent and Innovation Trends in Computing and Communication                                       ISSN: 2321-8169 
Volume: 2 Issue: 9                                                                                                                                                                      2954 – 2956 

_______________________________________________________________________________________________ 

2956 
IJRITCC | September 2014, Available @ http://www.ijritcc.org                                                                 

_______________________________________________________________________________________ 

string will takes constant time, that is, O(1). PRIME table 

also supports the complex queries. 

 

4.3 SPACE REQUIREMENTS 

 

 For PRIME table, let us assume 'N' be the number 

of words in dictionary.  Let 'K' be the total number of keys 

required to store the 'N' words in hash map. So the total 

space required for PRIME table is O(N+K).  

 

PRIME table supports solving following queries in constant 

time. 

 

Anagram: Determine whether a given string of letters has 

an anagram. For example, the input dgo should return true, 

since it is an anagram of god, while ulias should return false, 

since it has no anagram. 

 

All-words: List all words, which use only (but not 

necessarily all) of the letters of the input string. For 

example, from the input FOOT, we can make foot, oft, oof, 

oot, too, of, oo and to. To solve those kind of queries time 

taken by the PRIME table is equal to total number of 

combinations of given string. Let 'C' be the total number of 

combinations of given string, then the time required to get 

all the anagrams of given word is O(C). 

 

The drawback of PRIME table is it won't support the 

wildcards efficiently. 

 

Wildcard: Determine whether there is any letter than can be 

added to the input to produce an anagram. For example, FX 

should return a positive result, because the letter O can be 

added to produce fox. 

 

5. Conclusion and Future work 

Our primary conclusion is that the PRIME table is a 

powerful data structure for answering letter level equality 

and inequality queries. It gives the anagram of given random 

word in constant time. Its primary disadvantage is it won't 

give the wildcard of anagram efficiently. We believe that 

further optimization in this area is fruitful. 

 

REFERENCES 

[1] AHO, A. AND ULLMAN, J. “Foundations of 

Computer Science". W. H. Freeman, New York, 

1992, PP 542–545. 

[2] AKERS, S. B. “Binary decision diagrams”, IEEE 

Trans. Comput. 27, 6, (1978) PP 509–516. 

[3] APPEL, A. W. AND JACOBSON, G. J, “The 

world‟s fastest Scrabble program”, Comm. ACM 

31, (1988) 572–579. 

[4] BOLLIG, B., LBBING, M., ANDWEGENER, I, 

“Simulated annealing to improve variable orderings 

for OBDDs”. In Proceedings of the International 

Workshop on Logic Synthesis. 5(1995). 

[5] CURRAN, K.,WOODS, D., AND RIORDAN, B. 

O, “Investigating text input methods for mobile 

phones”, Telemat. Inf. 23, 1, (2006) PP1–21. 

[6] DICKSON, L. E. “Diophantine Analysis”. History 

of the Theory of Numbers Series, vol. 2. Chelsea, 

New York. 

[7] GORDON, S. A, “A faster Scrabble move 

generation algorithm”, Softw. Pract. Exp 24, (1994) 

PP219–232. 

[8] SHANNON, C. E, “Prediction and entropy of 

printed English”, Bell Syst. Techn. J. 30,        ( 

1951) 50–64. 

[9] WARD, D. J. AND MACKAY, D. J. C,  “Artificial 

intelligence: Fast hands-free writing by gaze 

direction”, Nature 418, (2002) 838–840. 

[10] CHARLES REAMS, “ Anatree: A Fast Data 

Structure for Anagrams”,  ACM Journal of 

Experimental Algorithmics, Vol. 17, No. 1, (2012). 

 


