
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 2 Issue: 9 2839 – 2850

2839

IJRITCC | September 2014, Available @ http://www.ijritcc.org

Hadoop Map Reduce Performance Evaluation and Improvement Using

Compression Algorithms on Single Cluster

Mr. Bhavin J. Mathiya PhD (Research Scholar)

Faculty of Computer Science

 C.U.Shah University

Wadhwan City, Gujarat, India.

bhavinmath@gmail.com

Dr. Vinodkumar L. Desai, Assistant Professor

Department of Computer Science

Government Science College

Chikhli, Navsari, Gujarat, India

vinodl_desai@yahoo.com

Abstract— In today's scenario a word 'Big Data' used by researchers is associated with large amount of data which requires more

resources likes processors, memories and storage capacity. Data can be structured and non-structured like text, images, and audio,

video, social media data. Data generated by various sensor devices, mobile devices, social media. Data is stored into repository on

the basis of their attributes like size, colours name. Data requires more storage space. In this paper we have evaluated performance

of Hadoop MapReduce examples like TeraGen, TeraSor, TeraValidate. We have evaluated Hadoop Map Reduce performance by

configuring compression related parameter and different compression algorithm like DEFLATE, Bzip2, Gzip , LZ4 on single

Cluster through Word Count example. After evaluating compression algorithm through Word Count Example we found job

elapsed time, I/O time and storage space requirement is reduced marginally along with increase in the CPU computation time.

 Keywords-TeraGen; TeraSort; WordCount; DEFLATE; Bzip2; Gzip; LZ4

__*****___

I. INTRODUCTION

Recently growth of data is increased radically. Internet

produces Terabytes of data in day. Data generated by various

form like web site click, social networking site, various sensor,

various scientific instruments, mobile phones. Currently

databases like DBMS and RDBMS are use to store data and

process it but RDBMS faces some challenges how to store

huge volume data and how to process it.

Huge amount of data is called ―Big Data‖ having attributes

like volume, variety, velocity. Volume can be amount of data

in size to store like Petabytes, Zotabyte, Yotta bytes. Variety

can be structured data, unstructured data and semi structure

data. Velocity can be growth of data generated.

Compression is used to compress data to improve overall

performance like increase in response time, increase I/O

performance and decrease storagerequirement.

The Apache Hadoop is open source framework for storing

and processing huge amount of data across clusters [1].

Hadoop divided in two parts. HDFS and Map Reduce. HDFS

means Hadoop Distributed File System. HDFS divides input in

number of file with block size and store on distributed

computer in data node. Map Reduce is a programming model

which divides job which is processed by Mapper and Reducer

function through programming. Hadoop provide various

configuration file in xml format so that user can customize

framework according to the requirement.

The rest of paper is organized as follows. Section I

INTRODUCTION, Section II RELATED WORK, Section III

ARCHITECTURE OF HADOOP YARN, Map Reduce

Execution Flow, Introduction of TeraGen, TeraSort,

TeraValidate, Explains various compression algorithm,

Execution flow of Hadoop MapReduce WordCount

with/without compression algorithm, Section IV

EXPERIMENTAL SETUP, Section V EXPERIMENTS AND

RESULTS, Section VI CONCLUSION AND FUTURE

WORK.

II. RELATED WORK

Jeffrey Dean and Sanjay Ghemawat introduced Map Reduce

programming model for processing and generating huge

amount data. Map Reduce provide environment in which user

can write program in Map Reduce functions which is

automatically run across large clusters of machine. Map

Reduce can process Petabytes of data [2].

Yanpei Chen etl developed a decision making algorithm which

decide that compression is required or not based on evaluating

configuration parameter of Hadoop MapReduce framework.

Yanpei Chen etl. Find that some job using compression save

energy up to 60% and improve datacentre energy efficiency

[3].

Benjamin Welton, created a set of compression servervices for

compression and decompression of dataset and evaluate

performance of I/O using various data sets on a high

performance computing cluster [4].

Shrinivas B. Joshi evaluated Hadoop Performance by different

parameter configuration related to hardware and software and

tune hadoop performance by parameter configuration [5].

Vinod Kumar Vavilapallietl designed and developed new

Apache Hadoop Architecture called Hadoop Yarn. Yarn also

knows as Yet another Resource Negotiator. Hadoop Yarn

provides resource manager infrastructure, container per

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 2 Issue: 9 2839 – 2850

2840

IJRITCC | September 2014, Available @ http://www.ijritcc.org

application, data node, name node, secondary name node,

node manager, resource manager. Hadoop Yarn is base to

MapReduce(Batch Processing), Tez (Interactive application

processing),Storm(Streaming), Spark(In-Memory)[6].

Xuelian Lin etl, Introduced Predator, an experience guided

configuration optimizer. Xuelian Lin classifies hadoop

parameter in to different groups by tunable level [7].

Aggarwal, S etl, examined metrics generated by Hadoop

Framework after job execution like no not byte read and write,

job counters, job configuration parameter with value while job

execution. Hadoop framework generates metrics for every

MapReduce job, such as number of map and reduces tasks,

number of bytes read/written to local file system and HDFS

etc. Aggarwal, S etl, use these metrics and job configuration

features such as format of the input/output files, type of

compression used etc to find similarity among Hadoop jobs.

Aggarwal, S etl, study the centroids and densities of these job

clusters [8].

III. ARCHITECTURE OF HADOOP YARN

Architecture of Hadoop Yarn

Vinod Kumar Vavilapalli etl, design and developed next

generation of Hadoop called YARN (Yet Another Resource

Negotiator). YARN is based for Dryad, Giraph, Hoya, Hadoop

MapReduce, REEF, Spark, Storm,Tez. Hadoop Yarn can be

deployed on Single cluster or Multi Cluster node in

distributed. DFS Means Distributed File System (Hadoop

Distributed File System). Yarn has two part job tracker

(Resource Manager) and task tracker (Application Manager).

Figure 1 is Hadoop Yarn Architecture implemented on single

Cluster environment on local host.

Fig. 1 Hadoop Yarn Architecture on Local host [6]

 Client

Client submits Hadoop Map Reduce to the Resource Manager.

Resource pass accepted job to scheduler to run. If scheduler

has enough number of resource then run the job and job is

running.

 The Resource Manager

Resource Manager is called Job Tracker. The Resource

Manager receives job which are submitted by client. Resource

Manager has Application Manager. The application master is

responsible job. Application manager manages resources for

job increase and decrease resource for job and managing fault

tolerance of job.

 Node Manager (NM)

Node Manager is worker for Yarn. Node Manager Manages

container and monitor execution of container and provide set

of service to the container.

 Name Node

Name node is manages location of file in different data node.

Name node is store directory structure for all file. Job Tracker

Resource Manager runs on a Name Node.

 Data Node

Data node is on which task tracker and data node manager is

run. Task tracker is responsible for execution of task.

Map Reduce Execution Flow

Fig.2 Map Reduce Execution Flow

User submit job to resource manager. Job is divided into no of

block, map task and reduce task and distributed across the

cluster.

Map

The Map receive task as a key and value pair and

process key, value as per written program and generate

intermediate data.

Shuffle and Sort

Shuffle and sort is intermediate data from map to

reducer. Shuffle and sort is use to interchange; merge data

internally to reduce computation.

Reduce

Reduce receive input as intermediate key, value pair

generated by either by map or by shuffle and sort. And

generate final output based on intermediate output.

Output

Output is given to the user who submitted job.

Local host

Client

DFS (HDFS)

Secondary Name

Node

Name Node

Yarn

Data Node

Node Manager

Resource Manager

Input Map
Shuffle

& Sort Reduce Output

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 2 Issue: 9 2839 – 2850

2841

IJRITCC | September 2014, Available @ http://www.ijritcc.org

Hadoop Yarn Map Reduce Word Count Example

Input Map

(Key,

Value

Shuffle & Sort

(Intermediate

Key, Value)

Reduce Output

(Key =

Word

and

value =

no of

repetitio

n

Hi

How

Are

You?

Hi,1

How,1

Are,1

You?,1

Hi,1

How,1

Are,1

You?,2

I,2

Am,2

Fine,2

And,1

Also,1

I

Am

Fine

And

You?

I,1

Am,1

Fine,1

And,1

You?,1

I

Am

Also

Fine

I,1

Am,1

Also,1

Fine,1

Fig. 3 Hadoop Yarn MapReduce WordCount Example

TeraSort benchmark suite

Fig. 4 TeraSort benchmark suites Example [10]

TeraSort is hadoop benchmark. TeraSort is use to sort 1TB or

any amount of data. TeraSort benchmark has three steps [10].

TeraGen

 TeraGen is use to generating any amount of data.

Syntax

hadoop jar hadoop-*examples*.jar teragen <number

of 100-byte rows> <output dir>

Example

jar/usr/local/hadoop/share/hadoop/mapreduce/hadoop

-mapreduce-examples-2.4.1.jar teragen 10737418

/user/hduser/1gbteragen

Above example will generate 1GB data

TeraSort

 TeraSort is use to sort data as per given input.

TeraSort takes input from TeraGen and Sort data.

Syntax

hadoop jar hadoop-*examples*.jar terasort <input

dir> <output dir>

Example

hadoop jar

/usr/local/hadoop/share/hadoop/mapreduce/hadoop-

mapreduce-examples-2.4.1.jar terasort

/user/hduser/1gbteragen /1gbsortoutput

Above example will sort 1GB data which are

generated by TeraGen

TeraValidate

 TeraValidate is to validate sorted data output.

TeraValidate is validated output that sort output is globally

acceptable.

Syntax

hadoop jar hadoop-*examples*.jar teravalidate

<terasort output dir (= input data)> <teravalidate output dir>

 Example

hadoop jar

/usr/local/hadoop/share/hadoop/mapreduce/hadoop-

mapreduce-examples-2.4.1.jar teravalidate /1gbsortoutput

/1gbteravalidate

COMPRESSION

Compression reduced physical file size and requires less

storage space compare to uncompressed file. Compression

increase I/O Performance, Elapsed Time. Compressions are in

various compression formats, tools and algorithms with each

with different features.

Below table lists some of comparisons Hadoop compression

algorithm Compression formats, tool, algorithms and other

attributes.

Table 1. A summary of compression formats [9]

Codec

Codec means compression and decompression. In

Hadoop, a codec is an algorithm which is implementation of

the Compression Codec Interface.

Compressio

n format
Hadoop Compression Codec

DEFLATE
org.apache.hadoop.io.compress.DefaultC

odec

gzip
org.apache.hadoop.io.compress.GzipCode

c

bzip2
org.apache.hadoop.io.compress.BZip2Cod

ec

LZO com.hadoop.compression.lzo.LzopCodec

Table 2. Hadoop compression codecs [9]

Compression

format
Tool Algorithm

Filename

extension

Mul
tiple

files

Splitt

able

DEFLATE N/A DEFLATE .deflate No No

gzip Gzip DEFLATE .gz No No

ZIP Zip DEFLATE .zip Yes

Yes,
at

file

boun
darie

s

bzip2
bzip

2
bzip2 .bz2 No Yes

LZO Lzop LZO .lzo No No

TeraGen TeraSort TeraValidate

Map

Map

Map

Reduce

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 2 Issue: 9 2839 – 2850

2842

IJRITCC | September 2014, Available @ http://www.ijritcc.org

mapred-default.xml [1]

Parameter

Name

Description Default

value

Possible value

mapreduce.outp

ut.fileoutputfor
mat.compress

This parameter is

use to decide job
reduce output

compressed or

not?

false true

false

mapreduce.outp

ut.fileoutputfor

mat.compress.ty
pe

If job reduce

output

compressed then
in which format

compressed one

of
NONE,RECORD

or BLOCK

RECORD NONE

RECORD

BLOCK.

mapreduce.outp

ut.fileoutputfor
mat.compress.c

odec

If the job outputs

are compressed
then which code

algorithm used.

org.apache.

hadoop.io.c
ompress.De

faultCodec

org.apache.hadoop.io

.compress.DefaultCo
dec

org.apache.had

oop.io.compres

s.GzipCodec

org.apache.had

oop.io.compres

s.BZip2Codec

com.hadoop.com

pression.lzo.L

zopCodec

mapreduce.map.

output.compress

This parameter is

use to decide job

map output
compressed or

not?

false true

false

mapreduce.map.

output.compress

.codec

If the job map

outputs are
compressed then

which code

algorithm used.

org.apache.

hadoop.io.c

ompress.De
faultCodec

org.apache.hadoop.io
.compress.DefaultCo

dec

org.apache.had

oop.io.compres

s.GzipCodec

org.apache.had

oop.io.compres

s.BZip2Codec

com.hadoop.com

pression.lzo.L

zopCodec

Table 3 Compression related Configuration parameter in Hadoop [1]

Figure 5 explain flow of Hadoop MapReduce WordCount job

Execution flow. Input is generated by TeraGen. User can

count of word by two ways 1 Word Count Example without

Compression Algorithm and 2 Word Count Example with

Compression Algorithm. If user selects 1
st
 way then

WordCount takes input as TeraGen without doing any

compression and count number of word. If user selects 2
nd

 way

then WordCount takes input as TeraGen with Compression

algorithm and first make compression and decompression

while calculating no of WordCount. User also has to select by

which algorithm input data can be compress and decopressed.

Execution flow of Hadoop MapReduce WordCount

with/without compression algorithm

Fig. 5 Execution flow of Hadoop ReduceCount with/without compression

algorithm Example

Section IV EXPERIMENTAL SETUP

In this section, we evaluated the performance of Hadoop

Framework through Hadoop Map Reduce examples such as

TeraGen, TeraSort, TeraValidate, and WordCount on a Single

Cluster. Table 4 shows the software and hardware

configuration of system on which performance is evaluated.

Our focus is to evaluate performance metrics like Job

Counters (Elapsed Time, Average Map Time), Map-Reduce

Framework Counters(Map CPU time spent, Reduce CPU time

spent, Total CPU time spent) , File System Counters(FILE:

Number of bytes read/write) and Compression ratio of file

through Hadoop Map Reduce Examples.

We evaluated performance of Hadoop Framework through

different input data size from 1 GB up to 5GB of data and

various compression algorithms using Hadoop Map Reduce

Examples.

Sr.

No

Hardware

/Software

Command to know

Installed

Hardware/Software in

Computer (Ubuntu)

Installed

Hardware/Software

Version in Computer

1 Operating

System

cat /etc/*-release Ubuntu 12.04.4 LTS

VERSION_ID="12.04"

2 Java java -version java version "1.7.0_55"

3 Hadoop hadoop version Hadoop 2.4.1

3 openssh-server - openssh-server

4 CPU

information of
Machine

cat /proc/cpuinfo model name : Intel(R)

Core(TM)2 Duo
CPU T5870 @

2.00GHz

Stepping: 13
cpu MHz: 2001.000

cpu cores: 2

Table 4. Environment Setup Information already installed

TeraGen

Word Count Example

without Compression

Algorithm

Word Count Example

with Compression

Algorithms

Word with Count how

many time repeats

DEFLATE

LZ4

Gzip

Bzip

2

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 2 Issue: 9 2839 – 2850

2843

IJRITCC | September 2014, Available @ http://www.ijritcc.org

Fig.6 Display hadoop version which already installed

Running Hadoop

Format the namenode

$ hdfs namenode –format

$ start-dfs.sh

$ start-yarn.sh

$ mr-jobhistory-daemon.sh start historyserver

Check installation for localhost:

$ jps

Fig. 7 Display status of hadoop started services

Check web interfaces of different services

YARN: http://localhost:8088

Fig. 8 Display Nodes of the cluster

Fig. 9 Display no of applications

Namenode: http://localhost:50070

Fig. 10 Display Data Node Overview

Fig. 11 Display Data Node Information

Fig. 12 Display no of file created in HDFS

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 2 Issue: 9 2839 – 2850

2844

IJRITCC | September 2014, Available @ http://www.ijritcc.org

Section V EXPERIMENTS AND RESULTS

In this section, we present our analysis on the experiments

performed on the Hadoop Map Reduce Framework on Single

Cluster through various Hadoop Map Reduce Examples. In

experiment, we compare compression algorithms namely

DEFLATE, gzip, bzip2 LZO. Our focus is on studying the

effects of different input data size and compression algorithms

on the overall execution time and throughput of Hadoop Map

Reduce Single Cluster.

A. Effect of Different Bytes Written using Hadoop Map

Reduce TeraGen Example

Job Counters

Map-

Reduce

Framework
Counters

Bytes Written
Elapsed Time

(Min .Sec)

Average Map Time

(Min .Sec)

CPU time

spent (ms)

1(GB) 1.15 1.11 39100

2(GB) 2.13 2.9 68520

3(GB) 3.2 3.11 99810

Table 5 Job Counters of TeraGen Bytes Written

0 0.5 1 1.5 2 2.5 3 3.5

1
(G

B
)

2
(G

B
)

3
(G

B
)

Job Counters

Average Map Time (Min.Sec) Elapsed Time(Min.Sec)

Fig. 13 Job Counters of TeraGen Bytes Written

When Byte Written Size increased respectively Elapsed Time

, Average Map increased as shown in table 5 and Figure 13.

0 20000 40000 60000 80000 100000 120000

1
(G

B
)

2
(G

B
)

3
(G

B
)

Map-Reduce Framework Counters

CPU time spent (ms)

Fig. 14 CPU Time Spent of TeraGen Bytes Written

When Byte Written Size increased respectively CPU time spent

increased as shown in table 5 and Figure 14.

B. Effect of Different Bytes Sort using Hadoop Map

Reduce TeraSort Example

Job Counters

Bytes

Sort

Elapsed

(Min.Sec)

Average

Map

Time
(Min.Sec)

Average

Reduce

Time
(Min.Sec)

Average
Shuffle Time

(Min.Sec)

Average
Merge Time

(Min.Sec)

1(GB) 8.45 2.54 1.39 3.18 0

2(GB) 18.2 3.37 3.45 9.26 1. 17

3(GB) 26.2 3.48 4.45 16.24 0.48

Table 6 Job Counters by TeraSort

0 10 20 30

1
(G

B
)

2
(G

B
)

3
(G

B
)

Average Merge Time
(Min.Sec)

Average Shuffle
Time (Min.Sec)

Average Reduce
Time(Min.Sec)

Average Map
Time(Min.Sec)

Elapsed(Min.Sec)

Figure 15 Job Counters of TeraSort

When Bytes Sort increased respectively Elapsed, Average

Map Time, Average Reduce Time, Average Shuffle increased

as shown in table 6 and Figure 15.

Map-Reduce Framework Counters

Bytes Sorts
Map CPU time

spent (ms)

Reduce CPU time

spent (ms)

Total CPU time

spent (ms)

1(GB) 127590 50780 178370

2(GB) 259550 123860 383410

3(GB) 375960 196390 572350

Table 7 Map-Reduce Framework Counters of TeraSort

Fig. 16 Map-Reduce Framework Counters of TeraSort

When Bytes Sort increased respectively Map CPU time spent,

Reduce CPU time spent, Total CPU time spent increased as

shown in table 7 and Figure 16.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 2 Issue: 9 2839 – 2850

2845

IJRITCC | September 2014, Available @ http://www.ijritcc.org

C. Effect of Different Bytes Validated Sorted output

using Hadoop Map Reduce TeraValidate Example

In this, we evaluated performance of Hadoop Map Reduce

Framework Different Bytes Validated Sorted output using

Hadoop Map Reduce TeraValidate Example.

Job Counters

Validate

Sorted output

Elapsed

Time

(Min.
Sec)

 Average

Map

Time (Min
.Sec)

 Average

Reduce Time

(Min
.Sec)

 Average

Shuffle Time

(Min
.Sec)

 Average

Merge
Time

(Min.

Sec)

1(GB) 1.23 0.48 0.1
0.24

0sec

2(GB) 1.57 1.36 0.1 0.13 0sec

3(GB) 2.8 1.52 0.1 0.8 0sec

Table 8 Job Counters of TeraValidate

Fig.17 Job Counters of TeraValidate

When TeraSort output Validate size increased respectively

Elapsed Time, Average Map Time increased as shown in table

8 and Figure 17.

Map-Reduce Framework Counters

Validate Sorted

output

Map CPU time

spent (ms)

Reduce CPU time

spent (ms)

Total CPU time

spent (ms)

1(GB) 20030 1280 21310

2(GB) 37560 1270 38830

3(GB) 56300 1310 57610

Table 9 Map-Reduce Framework Counters by TeraValidate

Fig.18 Map-Reduce Framework Counters by TeraValidate

When TeraSort output Validate size increased respectively

Map CPU time spent, Total CPU time spent increased as

shown in table 9 and Figure 18.

D. Effect of compression algorithm using Hadoop

MapReduce Word Count Example

In this, we evaluated performance of Hadoop Map Reduce

Framework through with/without various Compression

algorithms using Hadoop Map Reduce Word Count Example.

File System Counters(FILE: Number of bytes read)

WordCount of 1GB Data
Generated By TeraGen

(Without Compression/With

Compression Map output)

Map Number of

bytes read

Reduce

Number of
bytes read

Total Number

of bytes read

Without Compression 1349851854 1349777949 2699629803

DEFLATE 301863933 302070640 603934573

Bzip2 200756866 201072316 401829182

Gzip 301864221 302070736 603934957

LZ4 641458168 641577529 1283035697

Table 10 File System Counters (FILE: Number of bytes read)

Fig. 19 File System Counters (FILE: Number of bytes read) by WordCount of

1GB Data Generated by TeraGen (Without Compression/With Compression

Map output)

Without compress data required more data to read as

compared to compressed data as showed in table 10 and

Figure 19. Bzip2 algorithm requires less data to read as

compared to other compression algorithm as shown in table 10

and Figure 19.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 2 Issue: 9 2839 – 2850

2846

IJRITCC | September 2014, Available @ http://www.ijritcc.org

File System Counters (FILE: Number of bytes written)

WordCount of

1GB Data
 Generated By

TeraGen

(Without
Compression

/With

Compression Map
output)

Map
Number of

bytes

written

Reduce
Number of

bytes

written

Total Number

of bytes
written

Bzip2 402574222 202736347 605310569

DEFLATE 604679629 304523725 909203354

Gzip 604679997 304523819 909203816

LZ4
128378072

9
646683007 1930463736

Without
Compression

270037486
7

1360416251 4060791118

Table 11 File System Counters (FILE: Number of bytes written) by

WordCount of 1GB Data Generated By TeraGen (Without Compression
/With Compression Map output)

Fig. 20 File System Counters (FILE: Number of bytes written) by WordCount

of 1GB Data Generated by TeraGen (Without Compression /With

Compression Map output)

Without compress data required more data to written as

compared to compressed data as showed in table 11 and

Figure 20. Bzip2 algorithm requires less data to written as

compared to other compression algorithm as shown in table 11

and Figure 20.

Job Counters

WordCount
of 1GB Data

 Generated

By TeraGen
(Without

Compressio

n / With

Compressio

n Map

output)

Elapsed

(Min
.Sec)

Average
MapTi

me

(Min.

sec)

Average

Reduce

Time
(Min

.Sec)

Average

Shuffle

Time
(Min

.Sec)

Average
Merge

Time

(Min.

Sec)

LZ4 9.26 3.2 1.5 2.54 0

DEFLATE 9.31 4.2 1.39 3.17 0

Gzip 10.25 4.31 1.42 3.2 0.2

Without

Compressio

n

12.53 4.19 2.12 5.36 0

Bzip2 26.16 11.4 4.23 9.4 0.1

Table 12 Job Counters by WordCount of 1GB Data Generated By TeraGen

(Without Compression / With Compression Map output)

Bzip2 Compression data required more Elapsed for

WordCount as Compared to others as shown table 12 and

Figure 21. Bzip2 Compression requires more computation as

compared others.

Fig. 21 Job Counters by WordCount of 1GB Data Generated By TeraGen

(Without Compression / With Compression Map output)

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 2 Issue: 9 2839 – 2850

2847

IJRITCC | September 2014, Available @ http://www.ijritcc.org

Map-Reduce Framework Counters

WordCount of 1GB Data
 Generated By TeraGen

(Without Compression

/With Compression Map
output)

Map CPU

time spent

(ms)

Reduce

CPU time

spent (ms)

Total CPU

time spent

(ms)

LZ4 183080 33790 216870

Without Compression 185110 38860 223970

Gzip 443960 152230 596190

DEFLATE 444190 153780 597970

Bzip2 1533160 792520 2325680

Table 13 Map-Reduce Framework Counters by WordCount of 1GB Data

Generated By TeraGen (Without Compression /With Compression Map

output)

Bzip2 Compression data Map CPU time spent, Reduce CPU

time spent, Total CPU time spent are more as compared to

others as shown table 13 and Figure 22. Bzip2 Compression

requires more computation as compared others.

Fig. 22 Map-Reduce Framework Counters by WordCount of 1GB Data

 Generated by TeraGen (Without Compression /With Compression Map
output)

Job Counters

WordCount of

1GB Data
Generated By

TeraGen

(Without
Compression

/With

Compression
Map +Reduce

output)

Elapsed
(Min.Sec)

 Average

Map Time

(Min.Sec)

 Average

Reduce Time

(Min.Sec)

Average

Shuffle
Time

(Min.Sec)

LZ4 6.33 2.37 1 2.29

Gzip 9.52 3.5 2.39 2.59

DEFLATE 10.42 4.13 2.39 3.15

Without

Compression
12.53 4.19 2.12 5.36

Bzip2 35.17 11.34 13.39 8.58

Table 14 Job Counters by WordCount of 1GB Data Generated By TeraGen

(Without Compression /With Compression Map + Reduce output)

Bzip2 Compression data required more Elapsed for

WordCount as Compared to others as shown table 14 and

Figure 23. Bzip2 Compression requires more computation as

compared others.

Fig. 23 Job Counters by WordCount of 1GB Data Generated By TeraGen
(Without Compression /With Compression Map + Reduce output)

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 2 Issue: 9 2839 – 2850

2848

IJRITCC | September 2014, Available @ http://www.ijritcc.org

Map-Reduce Framework Counters

WordCount of 1GB

Data Generated By

TeraGen (Without
Compression /With

Compression Map

+Reduce output)

Map CPU

time spent

(ms)

Reduce CPU

time spent

(ms)

Total CPU

time spent

(ms)

LZ4 182500 32930 215430

Without Compression 185110 38860 223970

DEFLATE 439510 38530 478040

Gzip 441930 38160 480090

Bzip2 1527480 232560 1760040

Table 15 Map-Reduce Framework Counters by WordCount of 1GB Data
Generated by TeraGen (Without Compression /With Compression Map +

Reduce output)

Bzip2 Compression data Map CPU time spent, Reduce CPU

time spent, Total CPU time spent are more as compared to

others as shown table 15 and Figure 24. Bzip2 Compression

requires more computation as compared others.

Fig. 24 Map-Reduce Framework Counters by WordCount of 1GB Data

Generated by TeraGen (Without Compression /With Compression Map +

Reduce output)

File System Counters (FILE: Number of bytes read)

WordCount of 1GB Data

Generated By TeraGen (Without
Compression /With

Compression Map +Reduce

output)

Map Number

of bytes read

Reduce

Number of
bytes read

Total

Number of
bytes read

Bzip2 200756866 201072316 402574214

DEFLATE 301863933 302070640 603934573

Gzip 301864221 302070736 603934957

LZ4 641458168 641577529 1283035697

Without Compression 1349851854 1349777949 2699629803

Table 16 File System Counters (FILE: Number of bytes read) By WordCount

of 1GB Data Generated by TeraGen (Without Compression /With

Compression Map + Reduce output)

Without compress data required more data to read as

compared to compressed data as showed in table 16 and

Figure 25. Bzip2 algorithm requires less data to read as

compared to other compression algorithm as shown in table 16

and Figure 25.

Fig. 25 File System Counters (FILE: Number of bytes read) by WordCount of

1GB Data Generated by TeraGen (Without Compression /With Compression
Map + Reduce output)

File System Counters (FILE: Number of bytes Written)

WordCount of 1GB Data

Generated By TeraGen (Without

Compression /With Compression
Map +Reduce output)

Map

Number of

bytes
Written

Reduce

Number of

bytes Written

Total

Number of

bytes
Written

Bzip2 402574214 202736346 605310560

DEFLATE 604679613 304523723 909203336

Gzip 604680005 304523820 909203825

LZ4 1283780681 646683001 1930463682

Without Compression 2700374867 1360416251 4060791118

Table 17 File System Counters (FILE: Number of bytes Written) by

WordCount of 1GB Data Generated by TeraGen (Without Compression /With

Compression Map + Reduce output)

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 2 Issue: 9 2839 – 2850

2849

IJRITCC | September 2014, Available @ http://www.ijritcc.org

Without compress data required more data to Written as

compared to compressed data as showed in table 17 and

Figure 26. Bzip2 algorithm requires less data to read as

compared to other compression algorithm as shown in table 17

and Figure 26.

Fig.26 File System Counters (FILE: Number of bytes Written) by WordCount

of 1GB Data Generated by TeraGen (Without Compression /With
Compression Map + Reduce output)

E. Compression Ratio

In this, we calculate compression ratio of file using various

compression algorithms.

Formula to calculate compression ratio:

Compression ratio: (Uncompressed data size - compressed

data size)/uncompressed data size percentage. For example:

(500 -400)/500 = 0.2, or 20%

Compression ratio

WordCount of 1GB

 Data Generated By

TeraGen (Without
Compression

 /With Compression Map

Compression
ratio of 1 GB

Byte Read

(%)

Compr
ession

ratio of

1 GB
Byte

Write

(%)

Compressi

on ratio of

1 GB Byte
Read +

Write

Without Compression 0 0 0.00

LZ4 52.47 52.46 52.47

Gzip 77.63 77.61 77.62

DEFLATE 77.63 77.61 77.62

Bzip2 85.12 85.09 85.10

Table 18 File Compression ratio by WordCount of 1GB Data Generated By

TeraGen (Without Compression /With Compression Map output)

When Compression is applied using specified algorithms,

compression ratio of 1 GB Byte in read, write and read + write

is increased as shown in table 18 and Figure 27. Compression

ratio of LZ4, Gzip, DEFLATE, Bzip2 are 52.47 %, 77.62%,

77.62%, 85.10% respectively as shown in table 18 and Figure

27.Compression ratio of Bzip2 algorithm is 85.10% as

compared to others. Bzip2 algorithm data require less data

storage as compared to others. Compression reduces file size

as compared to uncompressed data. Compressed data requires

less storage as compared to uncompressed data.

Fig. 27 File Compression ratio by WordCount of 1GB Data Generated By

TeraGen (Without Compression /With Compression Map output)

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 2 Issue: 9 2839 – 2850

2850

IJRITCC | September 2014, Available @ http://www.ijritcc.org

VI. CONCLUSIONS AND FUTURE WORK

When size of data increased respectively storage, CPU time

increased. Uncompressed data required more storage; data I/O

(read/write) decreased and required more CPU Computational.

Compression algorithm compressed data so it requires less

size for storage as compare to uncompressed data. Bzip

algorithm compression ratio is 85.10% as shown in table 18

and Figure 27 so that it required less storage space to store

data; amount of I/O (Read/Write) is low as compared to

others. Bzip algorithm required more computation as

compared to others.

Bzip2 algorithms Map CPU time spent, Reduce CPU time

spent, Total CPU time spent, Elapsed time, Average

MapTime, Average Reduce Time, Average Shuffle Time is

more as compared to other algorithms as shown in table 12, 13

and figure 21, 22.

In this paper only 1GB data and Hadoop MapReduce Yarn

WordCount example is used for performance evaluation of

compression algorithms. We are in process with other

examples having high volume of data and computation to

evaluate performance.

REFERENCES

[1] http://hadoop.apache.org/
[2] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data

processing on large clusters. Commun. ACM, 51(1):107–113, 2008.

[3] Yanpei Chen, Archana Ganapathi, and Randy H. Katz. 2010. To
compress or not to compress - compute vs. IO tradeoffs for mapreduce

energy efficiency. In Proceedings of the first ACM SIGCOMM

workshop on Green networking (Green Networking '10). ACM, New
York, NY, USA, 23-28. DOI=10.1145/1851290.1851296

http://doi.acm.org/10.1145/1851290.1851296

[4] Benjamin Welton, Dries Kimpe, Jason Cope, Christina M. Patrick,
Kamil Iskra, and Robert Ross. 2011. Improving I/O Forwarding

Throughput with Data Compression. In Proceedings of the 2011 IEEE

International Conference on Cluster Computing (CLUSTER '11). IEEE
Computer Society, Washington, DC, USA, 438-445.

DOI=10.1109/CLUSTER.2011.80

http://dx.doi.org/10.1109/CLUSTER.2011.80
[5] Shrinivas B. Joshi. 2012. Apache hadoop performance-tuning

methodologies and best practices. In Proceedings of the 3rd

ACM/SPEC International Conference on Performance Engineering
(ICPE '12). ACM, New York, NY, USA, 241-242.

DOI=10.1145/2188286.2188323

http://doi.acm.org/10.1145/2188286.2188323
[6] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad

Agarwal, Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe,

Hitesh Shah, Siddharth Seth, Bikas Saha, Carlo Curino, Owen
O'Malley, Sanjay Radia, Benjamin Reed, and Eric Baldeschwieler.

2013. Apache Hadoop YARN: yet another resource negotiator. In

Proceedings of the 4th annual Symposium on Cloud Computing (SOCC
'13). ACM, New York, NY, USA, Article 5, 16 pages.

DOI=10.1145/2523616.2523633

http://doi.acm.org/10.1145/2523616.2523633
[7] Xuelian Lin, Wenzhong Tang, and Kewen Wang. 2012. Predator — An

experience guided configuration optimizer for Hadoop MapReduce. In

Proceedings of the 2012 IEEE 4th International Conference on Cloud
Computing Technology and Science (CloudCom) (CLOUDCOM '12).

IEEE Computer Society, Washington, DC, USA, 419-426.

DOI=10.1109/CloudCom.2012.6427486

http://dx.doi.org/10.1109/CloudCom.2012.6427486

[8] Aggarwal, S.; Phadke, S.; Bhandarkar, M., "Characterization of

Hadoop Jobs Using Unsupervised Learning," Cloud Computing
Technology and Science (CloudCom), 2010 IEEE Second International

Conference on, vol., no., pp.748,753, Nov. 30 2010-Dec. 3 2010

doi:10.1109/CloudCom.2010.20

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=57085

26&isnumber=5708426
[9] Tom White. Hadoop: The Definitive Guide. O’Reilly, 3rd Edition,

2012.

[10] http://hadoop.apache.org/common/docs/r0.20.2/api/org/apache/hadoop/
examples/terasort/TeraGen.html

