
International Journal on Recent and Innovation Trends in Computing and Communication                                       ISSN: 2321-8169 
Volume: 2 Issue: 9                                                                                                                                                                        2642 – 2648 

_______________________________________________________________________________________________ 

2642 
IJRITCC | September 2014, Available @ http://www.ijritcc.org                                                                 

_______________________________________________________________________________________ 

A study of Black Box Testing to generate the test cases and Statement coverage 

criteria to reduce the test cases 
 

Nupur Gupta
1 
, Sudesh Kumar

2
 

1,2 
 Department of Computer Science 

BRCM college of Engineering and Technology, Bahal 

e-mail-  gupta.nupur063@gmail.com,ksudesh@brcm.edu.in 

                                             

Abstract: Software testing is too much important phase of software development life cycle and it is very expensive. Software testing is 

particularly expensive for developers of high-assurance software, such as software that is produced for commercial systems. It is well known 

that software testing is an important activity to ensure software quality because software quality is increasingly important factor in software 

marketing. When we test or retest the software then development organizations always desire to validate the software from different views. But 

exhaustive testing requires program execution with all combinations of values for program variables, which is impractical due to resource 

constraints. Test cases can be generated automatically for some of the applications by various testing techniques. But the number of test cases 

are very large and we have reduced the test cases to test the software efficiently. Test case reduction method reduced the test cases that is not 

necessary for testing the software. In this paper, we used Black box testing technique to generate the test cases and Statement coverage criteria 

for the reduction of test cases that reduced time and cost spent on testing. It reduces the test cases upto 95%.  

 

Keywords: software testing, test suite reduction, representative set. 

 __________________________________________________*****_________________________________________________ 

 

1. Introduction 

 

Software testing is an important but expensive phase of 

Software Development Life Cycle (SDLC). Exhaustive testing 

provides more confidence about the quality and reliability of 

the developed software during maintenance phase. In this 

technique, Test manager executes the programs with all 

infinite combinations of values for program variables [1]. 

Generally the domain of a program is infinite and cannot be 

used as a test data. Exhaustive testing requires every statement 

in the program and every possible path combination to be 

executed at least once. According to Rothermel et.Al.  the 

product of about 20,000 lines of code requires seven weeks to 

run its entire test case [2]. A test case is defined in IEEE 

standard as: "A set of test inputs, execution, and expected 

results developed for a particular objective, such as to exercise 

a particular program path or to verify compliance with a 

specific requirement"[3]. 

While a test suite is a collection of test script or test cases that 

are used for validating bug fixes (or finding new bugs) within 

a logical or physical area of product. 

Test suite minimization is an optimization problem with the 

following goal: To find a minimally-sized subset of the test 

cases in a suite that exercises the same set of coverage 

requirements as the original suite. The key idea behind 

minimization techniques is to remove the test cases in a suite 

that have become redundant in the suite with respect to the 

coverage of some particular set of program requirements. 

The minimization problem can be formally stated as follows: 

The Test Suite Minimization Problem Given: a set (test suite) 

T of candidate test cases t1, t2, ..., tn and some set of coverage 

requirements R, where each test case covers a set of software 

requirements r1, r2, ..., rn, respectively, such that r1 ∪ r2 ∪ ... ∪ 

rn = R 

Problem: find a minimally-sized subset of test cases T′ ⊆ T, 

comprised of tests t′1, t′2, ..., t′m, each test covering a set of 

software requirements r′1, r′2, ..., r′m , respectively, such that 

r′1 ∪ r′2 ∪……. ∪ r′m = R 

The test suite minimization problem is an instance of the more 

general set-cover problem,  which when given as input a 

collection S of sets, each set covering a particular group of 

entities, is to find a minimally-sized subset of S providing the 

same amount of entity coverage as the original set S.  

It is often the case that software testers are subject to time and 

resource constraints when testing software. Due to such 

constraints being present for software retesting every time the 

software is modified, it is important to develop techniques that 

keep test suite sizes manageable for testers. When a collection 

of test suites becomes very large, a tester may not have enough 

time or resources available to test the software using every test 

case in each suite. In such a situation, the tester has no choice 

but to run fewer test cases to stay within the allowed time and 

resource constraints. The problem for the tester is then to 

decide which test cases are the most important and should 

therefore be run. This is where test suite minimization 

techniques become helpful. 



International Journal on Recent and Innovation Trends in Computing and Communication                                       ISSN: 2321-8169 
Volume: 2 Issue: 9                                                                                                                                                                        2642 – 2648 

_______________________________________________________________________________________________ 

2643 
IJRITCC | September 2014, Available @ http://www.ijritcc.org                                                                 

_______________________________________________________________________________________ 

For practical purpose, we require test case selection strategy 

that can be easily adopted without heavy overhead or need of 

sophisticated tool support [4].  

Generally software are tested through a test case.  

 Large number of test suite is generated using automated tools. 

But the real problem is the selection of subset of test cases 

and/or high order test cases for validates the System Under 

Test (SUT). A test case Reduction (TCR) technique helps test 

manager to find out representative set of test cases at little 

cost. By doing so, we can reduce the test case execution, 

management, and storage cost [5]. 

In this paper, we propose a novel test reduction technique that 

selects test cases based on their statement-coverage therefore 

weight. Weight refers to the number of occurrences of a 

particular test case that cover different statement of the 

program under test. In This technique, first weight of all 

generated test cases is calculated. Next test cases with higher 

weight are selected and marked its entire corresponding 

requirement as satisfied. In case of test cases having same 

weight random selection strategy is used. 

     

2. Test Case Generation 

The test case generation results in a collection of test cases 

called a test suite. The generation may be done manually or 

automatically. After the test suite is produced, a test harness 

executes the test suite against the implementation under test. 

This produces a test result, which is compared to the expected 

result, prescribed by the specification, by a test oracle.. 

Ideally, the verdict of a test should be pass or fail. If all 

generated tests pass, then this shows conformance between the 

test and the specification. 

A failed test is a system failure, i.e., the system does not 

deliver the expected result (erroneous or with incorrect 

timing). If the test is carried out under the specified 

circumstances, then the failure shows that the system has an 

error, i.e., a design flaw.  

If a test has failed, the system (as a whole), does not conform 

to the test. The test itself might not conform to the 

specification, and in that case the test case should be changed 

and not the system. Further, the specification may not express 

the intention of the system. In this case the specification may 

be changed and the test cases rewritten.  

Often the expected test result can be incorporated into the test 

cases so that the test harness can make the verdict itself; in this 

case the oracle is a part of the test harness. This is especially 

good if the test cases consist of long sequences, because the 

test harness can stop further interaction and execute the next 

test case if it discovers an error. 

 

3.  Steps of Proposed Technique 

The reduction technique requires an association between the 

test cases and the testing requirements of the program. This 

technique identifies optimal test cases and selects the non-

redundant test cases based on their weights. In this study, we 

are interested in determining that at what percent it reduces the 

number of test cases? The procedure is as follows: 

 

Step1 

Inputs: 

Set of requirements (SR):  

                    SR = {Reqi ⃒i ∈ N, i < m} 

Set of test cases (STC): each test case completely satisfies one 

or more requirements.  

                     STC = {tci ⃒ i ∈ N, i ≤ n} 

Set of test suites (STS): 

                     STS = {TSi ⃒ i ∈ N, i ≤ m} 

Where each test suite in the set of test suites is a function from 

one or more test cases to exactly one requirement. i.e., 

               TSk: (tci,……., tcn → Reqk) 

TSk means that each test case tci,..., tcn, in the test suites 

satisfies the requirement Reqk. 

 

Output: Representative Set (RS):  

                   /* initially empty *∕ 

 

Step 2 

Arrange the test cases by any of black box testing technique 

i.e. boundary value analysis, Robustness testing, worst-case 

testing technique. 

 

 Step3 

Using statement coverage, find out the test cases 

corresponding to every requirement . 

                  (tci,……., tcn → Reqk) 

  

Step4 

Calculate the weight of every test case. Where weight of a test 

case is the number of its occurances in set of test suite. The 

weight of a test case tck is: 

weight (tck)=  contain(domainn
i=1  (TSi ), tck) 

 

Step5 

Select the test case (tci) having maximum weight. In case of a 

tie between test cases, use random selection. 

Step6 

Move tci to RS, and mark all test suite from STS, which 

contain tci in domain. If all test suite of STS are marked then 

exit, otherwise go back to step 4. 

 

Step7 

 Finally, we get optimal number of test cases. 



International Journal on Recent and Innovation Trends in Computing and Communication                                       ISSN: 2321-8169 
Volume: 2 Issue: 9                                                                                                                                                                        2642 – 2648 

_______________________________________________________________________________________________ 

2644 
IJRITCC | September 2014, Available @ http://www.ijritcc.org                                                                 

_______________________________________________________________________________________ 

We can also find the percentage of reduction in test cases by 

using: 

% of reduced test cases  

           =  
𝑁𝑜 .  𝑜𝑓  𝑡𝑒𝑠𝑡  𝑐𝑎𝑠𝑒𝑠  𝑔𝑒𝑡  𝑟𝑒𝑑𝑢𝑐𝑒𝑑 ∗100

𝑇𝑜𝑡𝑎𝑙  𝑛𝑜 .  𝑜𝑓  𝑡𝑒𝑠𝑡  𝑐𝑎𝑠𝑒𝑠
            

Flow chart of procedure is shown in figure 1. 

 

Figure 1.Test Case Reduction Process 

 

Example: In this section we consider an example. We select 

quadratic equation program for this (Figure 2). This program 

basically accepts three positive integer values as input that 

represents the coefficients of quadratic equation ax
2
+bx+c=0 

from user and determine whether it is a valid quadratic 

equation or not. After that on the basis of input it will displays 

corresponding message as follow: 

 

If (b
2
-4ac) =0: Equal Roots 

If (b
2
-4ac) >0: Real Roots 

If (b
2
-4ac) <0: Imaginary Roots 

 #include <stdio.h> 

#include <conio.h> 

#include<math.h> 

int main() 

{ 

Int a,b,c; 

Printf(“enter the values „a‟,‟b‟,‟c‟ ”); 

Scanf(“%d,%d,%d”,&a&b&c); 

If((a>=0)&&(a<=0)&&(b>=0)&&(b<=100)&& 

(c>=0)&&(c<=100)) 

{ 

if(a==0) 

{ 

Printf(“not a quadratic equation”); 

} 

else 

{ 

If((b
2
-4ac)==0) 

{ 

Printf(“Roots are equal”); 

} 

Elseif  

{ 

((b
2
-4ac)>0) 

Printf(“roots are real”); 

} 

Else 

Printf(“Roots are imaginary”); 

Figure 2.Quadratic Equation Program 

 

We take worst test case testing technique to produce the test 

case. Total 125 test cases are developed using this technique. 

Table 1 shows the developed test cases input and 

corresponding expected outputs. Table 2 shows the statement 

coverage of the requirement. This table shows each statement 

as a separate testing requirement, and its associated test cases. 

There are total 8 statements, so we have total 8 requirements. 

Then we determine which test case is useful in validating these 

requirements. 

Note, the main assumption of this technique is that all 

generated test cases can independently test the corresponding 

requirement. So by picking any test case from a particular test 

suite can fully test that corresponding requirement. 

 

Set of Set of requirements (SR) 

SR = {Reqi ⃒i ∈ N, i < m} 

 

Set of test cases(STC) 

STC= STC = {tci ⃒ i ∈ N, i ≤ n} 

Set of test suites (STS): 

STS = {TSi ⃒ i ∈ N, i ≤ m} 

TSk: (tci,……., tcn → Reqk) 

Representative Set (RS): 

/* initially empty *∕ 

 

 

 

 

Calculate the weight of every test case.                                                       

weight (tck)=  contain(domainn
i=1  (TSi ), tck) 

 

Arrange test cases by any of 

black box testing technique 

Select the test case (tci) having 

maximum weight. 

Using statement coverage, find 

out the test cases corresponding 

to every requirement . 

(tci,……., tcn → Reqk) 

Move tci to RS, and mark all test suite 

from STS, which contain tci in domain. 

Is all test 

suites marked? 

Exit 



International Journal on Recent and Innovation Trends in Computing and Communication                                       ISSN: 2321-8169 
Volume: 2 Issue: 9                                                                                                                                                                        2642 – 2648 

_______________________________________________________________________________________________ 

2645 
IJRITCC | September 2014, Available @ http://www.ijritcc.org                                                                 

_______________________________________________________________________________________ 

Table 1. 

Total Test Cases With Expected Output 

 

Test case A B C 
Expected 

output 

1 100 0 0 Equal Roots 

2 100 0 1 Imaginary 

3 100 0 50 Imaginary 

4 100 0 99 Imaginary 

5 100 0 100 Imaginary 

6 100 1 0 Real Roots 

7 100 1 1 Imaginary 

8 100 1 50 Imaginary 

9 100 1 99 Imaginary 

10 100 1 100 Imaginary 

11 100 50 0 Real Roots 

12 100 50 1 Real Roots 

13 100 50 50 Imaginary 

14 100 50 99 Imaginary 

15 100 50 100 Imaginary 

16 100 99 0 Real Roots 

17 100 99 1 Real Roots 

18 100 99 50 Imaginary 

19 100 99 99 Imaginary 

20 100 99 100 Imaginary 

21 100 100 0 Real Roots 

22 100 100 1 Real Roots 

23 100 100 50 Imaginary 

24 100 100 99 Imaginary 

25 100 100 100 Imaginary 

26 99 0 0 Equal Roots 

27 99 0 1 Imaginary 

28 99 0 50 Imaginary 

29 99 0 99 Imaginary 

30 99 0 100 Imaginary 

31 99 1 0 Real Roots 

32 99 1 1 Imaginary 

33 99 1 50 Imaginary 

34 99 1 99 Imaginary 

35 99 1 100 Imaginary 

36 99 50 0 Real Roots 

37 99 50 1 Real Roots 

38 99 50 50 Imaginary 

39 99 50 99 Imaginary 

40 99 50 100 Imaginary 

41 99 99 0 Real Roots 

42 99 99 1 Real Roots 

43 99 99 50 Imaginary 

44 99 99 99 Imaginary 

45 99 99 100 Imaginary 

46 99 100 0 Real Roots  

47 99 100 1 Real Roots 

48 99 100 50 Imaginary 

49 99 100 99 Imaginary 

50 99 100 100 Imaginary 

51 50 0 0 Equal Roots 

52 50 0 1 Imaginary 

53 50 0 50 Imaginary 

54 50 0 99 Imaginary 

55 50 0 100 Imaginary 

56 50 1 0 Real Roots 

57 50 1 1 Imaginary 

58 50 1 50 Imaginary 

59 50 1 99 Imaginary 

Test case A B C 
Expected 

output 

60 50 1 100 Imaginary 

61 50 50 0 Real Roots  

62 50 50 1 Real Roots 

63 50 50 50 Imaginary 

64 50 50 99 Imaginary 

65 50 50 100 Imaginary 

66 50 99 0 Real Roots  

67 50 99 1 Real Roots 

68 50 99 50 Imaginary 

69 50 99 99 Imaginary 

70 50 99 100 Imaginary 

71 50 100 0 Real Roots  

72 50 100 1 Real Roots 

73 50 100 50 Equal Roots 

74 50 100 99 Imaginary 

75 50 100 100 Imaginary 

76 1 0 0 Imaginary  

77 1 0 1 Imaginary 

78 1 0 50 Imaginary 

79 1 0 99 Imaginary 

80 1 0 100 Imaginary 

81 1 1 0 Imaginary 

82 1 1 1 Imaginary 

83 1 1 50 Imaginary 

84 1 1 99 Imaginary 

85 1 1 100 Imaginary 

86 1 50 0 Real Roots 

87 1 50 1 Real Roots 

88 1 50 50 Real Roots 

89 1 50 99 Real Roots 

90 1 50 100 Real Roots 

91 1 99 0 Real Roots 

92 1 99 1 Real Roots 

93 1 99 50 Real Roots 

94 1 99 99 Real Roots 

95 1 99 100 Real Roots 



International Journal on Recent and Innovation Trends in Computing and Communication                                       ISSN: 2321-8169 
Volume: 2 Issue: 9                                                                                                                                                                        2642 – 2648 

_______________________________________________________________________________________________ 

2646 
IJRITCC | September 2014, Available @ http://www.ijritcc.org                                                                 

_______________________________________________________________________________________ 

96 1 100 0 Real Roots 

97 1 100 1 Real Roots 

98 1 100 50 Real Roots 

99 1 100 99 Real Roots 

100 1 100 100 Real Roots 

101 0 0 0 Not quadratic 

102 0 0 1 Not quadratic 

103 0 0 50 Not quadratic 

104 0 0 99 Not quadratic 

105 0 0 100 Not quadratic 

106 0 1 0 Not quadratic 

107 0 1 1 Not quadratic 

108 0 1 50 Not quadratic 

109 0 1 99 Not quadratic 

110 0 1 100 Not quadratic 

111 0 50 0 Not quadratic 

112 0 50 1 Not quadratic 

113 0 50 50 Not quadratic 

114 0 50 99 Not quadratic 

115 0 50 100 Not quadratic 

116 0 99 0 Not quadratic 

117 0 99 1 Not quadratic 

118 0 99 50 Not quadratic 

119 0 99 99 Not quadratic 

120 0 99 100 Not quadratic 

121 0 100 0 Not quadratic 

Test case A B C 
Expected 

output 

122 0 100 1 Not quadratic 

123 0 100 50 Not quadratic 

124 0 100 99 Not quadratic 

125 0 100 100 Not quadratic 

 

Initially it assumes Representative Set (RS) is empty. First of 

all it calculates the Weight of all test cases on the basis of the 

number of test suites each test case appears in, as shown in 

Table 2. 

TABLE 2. 

The Statement Coverage Requirements 

 

Statements Req

i 

TSj tck in 

Associated 

Set 

If((a>=0)&&(a<=100)

&&(b>=0)&&(b<=100

)&&(c>=0)&&(c<=10

0)) 

Req

1 

TS1 tc1-tc125 

If(a==0) Req

2 

TS2 tc1-tc125 

Printf(“not a quadratic 

equation”) 

Req

3 

TS3 tc101-tc125 

If((b
2
-4ac)==0) Req

4 

TS4 tc1-tc125 

Printf(“Roots are 

equal”) 

Req

5 

TS5 tc1,tc26, 

tc51,tc73,tc1

01-tc105 

If((b
2
-4ac)>0) Req

6 

TS6 tc1-tc125 

Printf(“roots are real”) Req

7 

TS7 tc6,tc11, 

tc12,tc16, 

tc17,tc21, 

tc22,,tc31,tc3

6,tc37,tc41 -

tc42, 

tc46,tc47,tc5

6,tc61,tc62,tc

66, 

tc67,tc71,tc7

2,tc86-tc100, 

tc106-tc125 

Printf(“roots are 

imaginary”) 

Req

8 

TS8 tc2-tc5, tc7-

tc10, tc13 -

tc15, 

tc18-tc20, 

tc23-tc25, 

tc27-tc30, 

tc32-tc35, 

tc38-tc40, 

tc43-tc45, 

tc48-tc50, 

tc52-tc55, 

tc57-tc60, 

tc63-tc65, 

tc68-tc70, 

tc74-tc85 

 

From Table 2 we get maximum weight is 6 that is of tc101-tc125 

and tc1-tc100 has weight 5. In this case we select tc101 as first 

test case in representative set(RS). Now RS is {tc101}. Next it 

marks TS1, TS2, TS3, TS4, TS5, and TS6 as satisfied and 

remove them from set of test suites, STS. Next it decrement 

the weight of all other test cases(i.e.,tc1 to tc125),which are in 

these test suites, i.e., TS1, TS2, TS3, TS4, TS5, and TS6. So the 

weight of  tc1, tc26, tc51, tc73, and tc101 to tc105 becomes zero, as 

their corresponding test suites are marked due to selection of 

tc101. Next it again calculates the weight of remaining test 

cases from unmarked test suites that are shown in Table3. 

 

TABLE 3 

Unmarked Test Suites 

 

Statements Reqi TSj tck in Associated Set 

Printf(“roots Req7 TS7 tc6,tc11,tc12,tc16,tc17,tc21, 



International Journal on Recent and Innovation Trends in Computing and Communication                                       ISSN: 2321-8169 
Volume: 2 Issue: 9                                                                                                                                                                        2642 – 2648 

_______________________________________________________________________________________________ 

2647 
IJRITCC | September 2014, Available @ http://www.ijritcc.org                                                                 

_______________________________________________________________________________________ 

are real”) tc22,,tc31,tc36,tc37,tc41-

tc42,tc46,tc47,tc56,tc61, 

tc62,tc66,tc67, tc71,tc72, 

tc86-tc100, tc106-tc125 

Printf(“roots 

are 

imaginary”) 

Req8 TS8 tc2-tc5,tc7-tc10,tc13-tc15, 

tc18-c20,tc23-tc25,tc27-

tc30,tc32-c35,tc38-tc40, 

tc43-tc45,tc48-c50,tc52-

tc55,tc57-tc60,tc63-c65, 

tc68-tc70,tc74-tc85 

 

 So new weights of all test cases as follows: 

 tc1                    :         5-5=0 

 tc2-tc100         :         5-4=1 

 tc101-tc125    :         6-6=0 

 

This technique removes all those test cases having weigh zero 

as their test suites are already covered. This leaves all the test 

cases with weigh of 1. Since tc2 is first maximum weight test 

case, so it is inserted into representative set. The resultant RS 

is {tc101, tc2}. After that this method mark TS8 as satisfied and 

remove it from STS, and then whole process is redone, it 

decrements the weight of test cases which are in similar test 

suite as of tc2 (i.e., TS8). Now it again calculates the weight of 

remaining test cases from Table 4 and ignores test cases with 

weight zero. 

 

TABLE 4 

Remaining Unmarked Test Suite 

Statements Reqi TSj tck in Associated Set 

Printf(“roots 

are real”) 

Req7 TS7 tc6,tc11,tc12,tc16,tc17,tc21, 

tc22,,tc31,tc36,tc37,tc41-

tc42,tc46,tc47,tc56,tc61, 

tc62,tc66,tc67, tc71,tc72, 

tc86-tc100, tc106-tc125 

 

In this example all the test case of TS7 now has the weight 

equal to one. So tc6 is the first having maximum weight so it 

pick tc6 as representative test case and inserts it into 

representative set {RS}. So RS is now {tc101, tc2, tc6}. Next it 

mark TS7 as satisfied and remove it from STS. This method 

then again calculate the weights of remaining test cases from 

unmarked test suites STS. Now, no test case is left with weight 

more than zero and also now we have an empty STS. This will 

end the process with final representative set RS: {tc101, tc2, 

tc6}.We can calculate the percentage of reduction as:- 

 

% of reduced test cases = 
𝟏𝟐𝟓−𝟑

𝟏𝟐𝟓
∗ 𝟏𝟎𝟎 =98% approx. 

So a significant reduction (approximately above 95%) in terms 

of test cases is achieved using this method. 

 

4. Conclusion 

 

In this paper , we have discussed about test case reduction by 

using weight criteria and Statement Coverage Method  . We 

have seen that we have reduced the number of test cases by 

using weight criteria. The result of our experimental study 

shows that we get maximum reduction in test cases by using 

this method. This reduction helps test manager in achieving 

nearly exhaustive testing level testing. Simultaneously it 

reduces the size of test suites by eliminating unnecessary test 

cases. This method also reduces the test case storage, 

management. Ultimately, it is beneficial to optimize time and 

cost spent on testing. In our experimental study, our approach 

consistently performed better on average than other test suite 

minimization techniques. This method is also applicable to 

object oriented languages like Java, VB, C++. 

5. References 

 

[1] Nupur Gupta,  Sudesh jakhar; “An empirical study od 

Statement Coverage Criteria to reduce the test cases-

A review”, in IJAIEM -2014-08-07-7,Vol. 3,Issue 

8,August 2014. 

[2] Saif-ur-rehman khan, Aamer Nadeem,A;”Testfilter:A 

statement-coverage based test case reduction 

technique”,in IEEE multitopic conference(inmc‟ 

06),pp.275-280,December 2006.  

[3] G. Rothermel, R.H. Untch, M.J. Harrold, "Prioritizing 

Test Cases for Regression Testing", In IEEE 

Transactions on Software Engineering (TSE'01), Vol. 

27, No. 10, pp. 929-948, October 2001. 

[4] J.V. Ronne, "Test Suite Minimization: An Empirical 

Investigation", Bachelors Thesis, June 1999. 

Retrieved from 

URL:http://www.ics.uci.edu/jronne/pubs/jvronne-

uhc-thesis.pdf.                    

[5] Zhi Quan Zhou, Arnaldo Sinaga, Lei Zhao, Willy 

Susilo, Kai-Yuan Cai , “Improved Software Testing 

Cost-Effectiveness Through Dynamic Paritioning”, In 

Proceedings of IEEE 9th International Conference on 

quality software,2009 

[6] Piyusha Tyagi, Sheetal K. Jain, Ravi Shankar 

Singhal,”The Enhanced Apporach for Test Suite 

Reduction”, In Proceedings of International 

Conference On Issues and Challenges in Networking, 

Intelligence and Computing Technologies,Sept 2011. 

[7] M.J. Harrold, R. Gupta, M.L. Soffa, "A Methodology 

for Controlling the Size of Test Suite", In ACM 

Transactions on Software Engineering and 

Methodology (TOSEM'93), NY USA, pp. 270-285, 

1993. 

[8] W.E. Wong, J.R. Horgan, A.P. Mathur, A. Pasquini, 

"Test Set Size Minimization and Fault Detection 

Effectiveness: A Case Study in a Space Application", 



International Journal on Recent and Innovation Trends in Computing and Communication                                       ISSN: 2321-8169 
Volume: 2 Issue: 9                                                                                                                                                                        2642 – 2648 

_______________________________________________________________________________________________ 

2648 
IJRITCC | September 2014, Available @ http://www.ijritcc.org                                                                 

_______________________________________________________________________________________ 

In Proceedings of IEEE 21s' International Conference 

on Computer Software and Applications Conference 

(COMPSAC '97), 1997. 

[9] G. Rothermel, M.J. Harrold, J. Ostrin, C. Hong, "An 

Empirical Study of the Effects of Minimization on the 

Fault Detection Capabilities of Test Suites", In 

Proceedings of IEEE International Test Conference 

on Software Maintenance (ITCSM'98), Washington 

D.C., pp. 34-43. November, 1998. 

[10] G. Rothermel, M.J. Harrold, J.V. Ronne, C. Hong, 

"Empirical Studies of Test Suite Reduction", In 

Journal of Software Testing, Verification, and 

Reliability, Vol. 12, No. 4, December 2002. 

[11] A. Kandel, P. Saraph, M. Last, "Test Cases 

Generation and Reduction by Automated Input-

Output Analysis", In Proceedings of 2003 IEEE 

International Conference on Systems, Man and 

Cybernetics (ICSMC'3), Washington, D.C., October 

5-8, 2003. 

[12] B. Vaysburg, L.H. Tahat, B. Korel, "Dependence 

Analysis in Reduction of Requirement Based Test 

Suites", In Proceedings of the 2002 ACM SIGSOFT 

International Symposium on Software Testing and 

Analysis (ISSTA'02), Roma Italy, pp. 107-111, 2002. 

[13] J.A. Jones, M.J. Harrold, "Test-Suite Reduction and 

Prioritization for Modified Condition/Decision 

Coverage", In IEEE Transactions on Software 

Engineering (TSE'03), Vol. 29, No. 3, pp. 195-209, 

March 2003 


