
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 9 2572 – 2579

2572
IJRITCC | September 2014, Available @ http://www.ijritcc.org

Resolving Load Balancing Issue of Grid Computing through Dynamic Approach

Er. Roma Soni

M-Tech Student

Dr. Kamal Sharma

Prof. & Director of E.C.E. Deptt.

EMGOI , Badhauli.

Er. Sharad Chauhan

Asst. Prof. in C.S.E. Deptt.

EMGOI , Badhauli

Abstract--Load balancing has been a key concern for traditional multiprocessor systems. The emergence of computational grids extends this

challenge to deal with more serious problems, such as scalability, heterogeneity of computing resources and considerable transfer delay. Due to

the dynamic property of grid environment, fixed-parameter prediction model cannot exert its forecast capability completely. To improve the

global throughput of computational grid, effective and efficient load balancing algorithms are fundamentally important. A computational grid

differs from traditional high-performance computing system in the heterogeneity of computing nodes, as well as the communication links that

connect the different nodes together.

A dynamic and decentralized load balancing algorithm for computationally intensive jobs on a heterogeneous distributed computing platform is

required. The time spent by a job in the system is considered as the main issue that needs to be minimized.

A resource queue length based solution to the grid load balancing problem has been proposed in this dissertation. An algorithm that is

dynamic, decentralized and distributed for load balancing among the aggregated processing elements in the grid has proposed .The

proposed algorithm balances the load in the grid based on the queue length of each processing element and transfer the task to the processing

element having minimum queue length. The proposed Algorithm is implemented with the help of GridSim toolkit. The Simulations are

performed for number of users and processing elements.

__*****___

1 .INTRODUCTION

This is an introduction to grid computing in the terms of its

characteristics, problem areas, Grid architecture, load

balancing, advantages, disadvantages, objective of

dissertation and organization of dissertation.

1.1 GRID COMPUTING

The term grid is increasingly appearing in computer

literature, generally referring to some form of system

framework into which hardware or software components can

be plugged, and which permits easy configuration and

creation of new functionality from existing components.

Grids enable the sharing, selection, and aggregation of a wide

variety of resources including supercomputers, storage

systems, data sources, and specialized devices that are

geographically distributed and owned by different

organizations for solving large-scale computational and data

intensive problems in science, engineering, and commerce.

The term grid is chosen as an analogy to the electric power

grid that provides consistent, pervasive, dependable,

transparent access to electricity, irrespective of its source.

Such an approach to network computing is known by several

names: meta computing, scalable computing, global

computing, Internet computing, and more recently Peer-to-

Peer computing.

The concept of grid computing [1] started as a project to link

geographically dispersed supercomputers, but now it has

grown far beyond its original intent. The grid infrastructure

[2] can benefit many applications, including collaborative

engineering, data exploration, high throughput computing,

distributed supercomputing, and service-oriented computing.

1.2 GRID ARCHITECTURE

Grids are usually heterogeneous networks.Grid nodes,

generally individual computers that consist of different

hardware and use a variety of operating systems and

networking to connecting them vary in bandwidth. It is a

type of parallel and distributed system that enables the

sharing, selection and aggregation of resources distributed

across multiple domains based on their resources

availability, capability, performance, cost and users

requirement.

The components that are necessary to form a Grid (shown

in Figure 1.3) are as follows:-

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 9 2572 – 2579

2573
IJRITCC | September 2014, Available @ http://www.ijritcc.org

Figure 1.2. A layered Grid architecture and components

It is a system formed to share the resources among the

various local domains and which owns the resources. These

resources are used among the various projects. This forms

the system as the aggregation of resources for a particular

task i.e. virtual organization.

2. LOAD BALANCING PHENOMENA

This Chapter gives an overview of Load balancing,

motivation for load balancing, its schemes, policies and

challenges of Grid Computing.

2.1 INTRODUCTION

Distributed network computing environments have become

a cost effective and popular choice to achieve high

performance and to solve large scale computation problems.

Unlike past supercomputers a cluster or grid or peer-to-peer

system can be used as multipurpose computing platform to

run diverse high performance parallel applications. Cluster

computing [17] environment consist of Personal Computers

that are interconnected using high speed networks and are

located at same location where as grid computing involves

coupled and coordinated use of geographically distributed

resources for purposes such as large scale computation and

distributed data analysis [18] [19].

A peer-to-peer system [20] is composed of participants that

make a portion of their resources (such as processing power,

disk storage, and network bandwidth) available directly to

their peers without intermediary network hosts or servers.

Peers are both suppliers and consumers of resources, in

contrast to the traditional client-server model where only

servers supply, and clients consume.

 A collection of autonomous intelligent devices connected

through a communication link is called Distributed System

[21]. A major advantage of using distributed system is

resource sharing. A major shareable resource is Central

Processing Unit cycles. A distributed scheduler is a resource

management component of a distributed operating system

that focuses on redistributing the load of the system among

the individual devices, such that the overall performance of

the system is optimized.

Load Balancing in a distributed system is a process of

sharing computational resources by transparently

distributing system workload. A distributed computing

system consists of software programs and data resources

dispersed across independent devices. A workstation user

may not use the machine all the time, but may require more

than it can provide while actively working.Some devices

may be heavily loaded, while other remains idle.

Performance enhancement is one of the most important

issues in distributed system. The performance of the system

can often be improved to an acceptable level simply by.

3. GRIDSIM: GRID MODELING AND SIMULATION

TOOLKIT

The GridSim toolkit provides a comprehensive facility for

simulation different classes of heterogeneous resources,

users, applications, and resource brokers. In Grid -like

environment, resource brokers perform resource selection

and aggregation depending on users requirements and hence

they are user-centric in nature. Whereas, in single

administrative domain PDC systems such as clusters,

resource schedulers manage whole resource and hence they

are generally system –centric in nature as they aim to

optimize system throughput for enhancing utilization of the

entire system[38].The GridSim toolkit can be used for

simulating application schedulers for different parallel and

distributed computing systems such as clusters and grids.

3.1 FEATURES OF GRIDSIM TOOLKIT

Salient features of the GridSim toolkit include the following:

 It allows modeling of heterogeneous types of

resources.

Grid
Fabric

Core Grid
Middleware

User-Level Grid
Middleware

Grid Application and portals

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 9 2572 – 2579

2574
IJRITCC | September 2014, Available @ http://www.ijritcc.org

 Resources can be modeled operating under space-or

time -shared mode.

 Resource capability can be defined (in the form of

MIPS as per SPEC benchmark).

 Resources can be located in any time zone.

 Weekends and holidays can be mapped depending on

resource’s local time to model non- Grid (local)

workload.

 Resources can be booked for advance reservation.

 Applications with different parallel application models

can be simulated.

 Application tasks can be heterogeneous and they can

be CPU and/or I/O intensive.

 It does not limit number of application tasks that can

be submitted to a resource.

 Multiple user entities can submit tasks for

execution simultaneously in the same

resource, which may be time -shared or

space-shared. This feature helps in

building schedulers that can use different

market-driven economic models for

selecting services competitively.

 Network speed between resources can be specified.

 It supports simulation of both static and dynamic

schedulers.

 Statistics of all or selected operations can be recorded

and they can be analyzed using GridSim statistics

analysis methods.

4. PROPOSED METHODOLGY

This chapter gives an introduction to generic model for

Computational grid, proposed algorithm and working of

proposed algorithm.

 Generic Model for Computational Grid

Figure 4.1: Generic Model for Computational grid

The Generic model for computational grid consists of Grid

Information Server (GIS), users and processing elements.

4.1.1User

Each instance of the User entity represents a Grid user. Each

user may differ from the rest of users with respect to the

following characteristics:

 types of job created, e.g. job execution time, number of

parametric replications, etc.;

 scheduling optimization strategy, e.g. minimization of

cost, time, or both;

 activity rate, e.g. how often it creates new job;

 time zone; and

 absolute deadline and budget

4.1.2 Processing Element

Each instance of the Processing element entity represents a

Grid processing element. Each processing element may

differ from the rest of the processing element with respect to

the following characteristics:

• number of processors;

• cost of processing;

• speed of processing;

• internal process scheduling policy, e.g. time-shared

or space-shared;

• local load factor; and

• time zone.

The processing element speed and the task execution time

can be defined in terms of the ratings of standard

benchmarks such as MIPS and SPEC. They can also be

defined with respect to the standard machine. Upon

obtaining the processing element contact details from the

Grid information service, balancers can query processing

elements directly for their static and dynamic properties.

4.1.3 Grid Information Server

Providing processing element registration services and

keeping track of a list of processing elements available in

the Grid. The brokers can query this for processing element

contact, configuration, and status information.

4.2 PROPOSED ALGORITHM

A Dynamic load balancing algorithm has been proposed

that handles heterogeneous grid sites. Here, the

heterogeneity only refers to the processing power of sites.

The proposed algorithm balances the load in the grid based

on the queue length of each processing element and transfer

the job to the processing element having minimum queue

length. The proposed algorithm is implemented using

GridSim Toolkit.

The proposed algorithm for Dynamic load balancing in

computational grid is as follows:

1. Begin the GridSim Toolkit Package.

2. Initialize the number of users and processing

elements.

3. Generate users from 1 to 75.

4. Generate processing elements from 1 to 20.

5. Create tasks of each users.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 9 2572 – 2579

2575
IJRITCC | September 2014, Available @ http://www.ijritcc.org

6. Initialize the Queuelength of each processing

element=0.

7. Now, Processing elements registers their

information to Grid Information Server(GIS).

8. GIS checks the availability of processing elements

and users send requests to processing elements to

send its characteristics.

9. Afterwards, users are waiting to receive processing

elements characteristics.

10. After receiving the processing element

characteristics, the users find the

 processing element with minimum Queuelength.

a) Initially assign the Queuelength of first

processing element to the temporary

variable (temp).

b) for (i=2;i<total processing elements;i++)

c) Check IF temp > Queuelength of next

element THEN

temp contains Queuelength of next

processing element ELSE there is no

change in temp value.

11. Allocate the task of user to Processing element

(PE) with minimum Queuelength.

12. Queuelength of Processing element(PE) will

become

Queuelength PE=Queuelength PE +1.

13. Print the Submission time of User’s task to the

allocated processing element(PE).

Submission time_task=GridSim.clock().

14. Nextuser=Nextuser+1.

15. Print the Execution time of user’s task.

Execution time_task=GridSim.clock()-

Submission time_task.

16. After Completion of Execution of above task. Now,

Check for the arrival of any new task T’ from

processing element PE’.

17. IF no task arrives to the processing element PE’

THEN go to step 19.

18. Queuelength of processing element PE’ will

become Queuelength PE’=Queuelength PE’ -1.

19. Repeat steps 10 to 16 until Nextuser<=Number of

users.

20. Print the Execution time of all tasks.

5. SIMULATION & RESULTS

This Chapter covers the different parameters considered for

simulations and results analyzed through simulations for

Dynamic Approach.

5.1 SIMULATION PARAMETERS

The performance of proposed algorithm under different

system parameters using GridSim toolkit are studied.

Following parameters are used during simulation of

Dynamic load balancing algorithm:

Table 5.1: Simulation parameters

Simulation Runs 4

No. of Processing

elements

5 – 20

No. of Users 10 – 75

No. of tasks 10 – 75

Gridlet Size (In MI) 10,000,000 -

750,000,000

Processing Power of

processing elements (In

MIPS)

100 – 400

The Execution time of tasks corresponding to different users

using Dynamic Approach and Static Approach is shown in

Figure 5.1 and Figure 5.2. The graph shows the Execution

time of tasks under Static approach is more than that of

execution time of tasks with Dynamic Approach.

5.2 SIMULATION RESULTS

The Execution time of Dynamic Approach are analyzed for

various users and processing elements for number of

Simulations.

Table 5.2: Execution times of users when number of processing elements = 3

Processing Elements =3

Number of Users 10 25 50 75

Execution time of

Dynamic Approach

2376104 11318257 35760370 82361354

Execution time of Static

Approach

2980199 15610357 46021349 89670786

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 9 2572 – 2579

2576
IJRITCC | September 2014, Available @ http://www.ijritcc.org

Figure 5.1: Execution times of users when number of processing elements = 3

Table 5.3: Execution times of users when number of processing elements = 5

 Processing elements=5

Number of users 10 25 50 75

Execution time of Dynamic

Approach

1753265 7312567 21678340 53612308

Execution time of Static

Approach

2374163 8289650 27469234 59234871

Figure 5.2: Execution time of users when number of processing elements = 5

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

90000000

100000000

10 25 50 75

Dynamic Approach

Static Approach

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

10 25 50 75

Dynamic Approach

Static Approach

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 9 2572 – 2579

2577
IJRITCC | September 2014, Available @ http://www.ijritcc.org

The execution time of tasks corresponding to different

processing elements using Dynamic Approach and Static

Approach is shown in Figure 5.3 and Figure 5.4. The graph

shows that execution time of tasks under Dynamic Approach

is still less as compared to Static Approach even when

number of processing elements are increased due to

selection of only those processing elements which has

minimum load.

Table 5.4: Execution times of processing elements when number of users = 25

 Number of Users = 25

Number of PE’s

(Processing elements)

5 10 15 20

Execution time of Dynamic

Approach

7376540 4523189 3741653 3467251

Execution time of Static

Approach

8256471 5824198 4672587 4359823

 Figure 5.3: Execution times of processing elements when number of users= 25

Table 5.5: Execution times of processing elements when number of users = 50

 Number of Users = 50

Number of PE’S

(Processing elements)

5 10 15 20

Execution time of Dynamic

Approach

22674905 13570349 10116890 83564216

Execution time of Static

Approach

26537828 17823487 16583891 89346271

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

5 10 15 20

Dynamic Approach

Static Approach

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 9 2572 – 2579

2578
IJRITCC | September 2014, Available @ http://www.ijritcc.org

Figure 5.4: Execution times of processing elements when number of users= 50

The results show that Dynamic Approach is better than the Static Approach in all scenarios.

6. CONCLUSION AND FUTURE SCOPE

6.1 CONCLUSION

In Grid Environment, poor performance results due to

uneven distribution of load among nodes in the system.

Therefore, to fully exploit the computing power of such

systems, it is crucial to employ a judicious load balancing

strategy for proper allocation and sequencing of tasks on the

computing nodes.

In this dissertation, effect of load balancing on tasks in terms

of execution time is analyzed. Results show that the

execution time of Dynamic Approach is less as every time

the processing element with minimum queue length is

selected for execution as compared to the execution time

with Static Approach. The algorithm is tested under various

load conditions in terms of task length varying from

10,000,000 - 750,000,000 (MI). The performance of

Dynamic Approach is also better when the system is lightly

loaded in terms of increasing the processing elements and

keeping the number of users as fixed.

6.2 FUTURE SCOPE

The Simulations are performed for number of users and

processing elements and results shows that our Dynamic

Approach Algorithm works better than static approach. This

dissertation work can later be extended for different

simulation parameters and more better load balancing results

can be achieved.

7. REFERENCES

[1] Yulai Yuan, Yongwei Wu, Guangwen Yang, and Weimin

Zheng,” Adaptive Hybrid Model for Long Term Load

Prediction in Computational Grid,” 8th IEEE International

Symposium on Cluster Computing and the Grid, pp.340-

347, August 2008.

[2] Youchan Zhu, Lei An, Shuangxi Liu,” A Resource

Discovery Method of Grid Based on Resource

Classification,” Proceedings of First International

Conference on Intelligent Networks and Intelligent

Systems, pp. 716-719, August 2008.

[3] C. Xu and F. Lau, “Load Balancing in Parallel Computers:

Theory and Practice,” Kluwer, Boston, MA, 1997.

[4] Yajun Li, Yuhang Yang, and Rongbo Zhu,” A Hybrid

Load Balancing Strategy of Sequential Tasks for

Computational Grids,” International Conference on

Networking and Digital Society (ICNDS), 2009.

[5] M. Baker, R. Buyya, and D. Laforenza, “Grids and grid

technologies for wide area distributed computing,”

International Journal of Software: Practice and Experience

(SPE), vol. 32(15), 2002.

[6] B. Yagoubi, and M. Medebber, “A load balancing model

for grid environment,” Proceeding of 22nd International

Symposium on Computer and Information Sciences

(ISCISC 2007), pp. 1-7, 7 November 2007.

[7] C. Kim and H. Kameda,” An algorithm for optimal static

load balancing in distributed computer systems,” IEEE

Transaction on Computers, vol. 41(3), pp. 381-384, March

1992.

[8] K. Lu, R. Subrata, and A. Zomaya, “An Efficient Load

Balancing Algorithm for Heterogeneous Grid Systems

Considering Desirability of Grid Sites,” Journal of

Computer and System Sciences, vol. 73(8), pp. 1191-

1206, December 2006.

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

90000000

100000000

5 10 15 20

Dynamic Approach

Static Approach

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 9 2572 – 2579

2579
IJRITCC | September 2014, Available @ http://www.ijritcc.org

[9] K. Lu, and A. Zomaya, “A Hybrid Policy for Job

Scheduling and Load Balancing in Heterogeneous

Computational Grids,” Proceeding of 6th International

Symposium on Parallel and Distributed Computing, pp.

19-26, 5 July 2007.

[10] M. Dobber, R. Mei, and G. Koole,” Dynamic Load

Balancing and Job Replication in a Global-Scale Grid

Environment: A Comparison,” IEEE Transaction on

Parallel and Distributed Systems, vol. 20(2), pp. 207- 218,

February 2009.

[11] J. Cao, D.P. Spooner, S. A. Jarvi, and G.R. Nudd,” Grid

Load Balancing Using Intelligent Agents,” Future

Generation Computer Systems, vol. 21(1), pp. 135-149,

January 2005.

[12] Bin Lu, and Hongbin Zhang,” Grid Load Balancing

Scheduling Algorithm Based on Statistics Thinking,”

IEEE 9th International Conference, pp. 288-292, 2008.

