
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 9 2556 – 2559

2556
IJRITCC | September 2014, Available @ http://www.ijritcc.org

A New Distributed Load Balancing Algorithm

Md Firoj Ali

Department of Computer Science

Aligarh Muslim University

Aligarh, India

firojali.mca@gmail.com

Rafiqul Zaman Khan

Department of Computer Science

Aligarh Muslim University

Aligarh, India

rzk32@yahoo.co.in

Abstract— In this paper, we presented a load balancing algorithm in distributed computing system. We assumed that each node will maintain a

local load table to hold the load status of immediate neighbors. The aim of this algorithm is to achieve balanced load among the processors

according to their speed of computation and also to reduce communication over heads. This algorithm also targets most powerful nodes for load

transfer in the system. We measured the performance of this algorithm which shows better performance over previously existing Ni’s drafting

algorithm.

Keywords-distributed computing, load table, average response time, overheads

__*****___

I. INTRODUCTION

A distributed computer system is a collection of processors
connected through a network that works together for a
common purpose. The primary objective of a distributed
system is to proper utilization of the available resources in
distributed environment. The most crucial resource is CPU
speed and bandwidth of the underlying network. The low
bandwidth may bottleneck the CPU speed. So, most
commonly used mechanism is to share the load among the
nodes by transferring some of the loads from a heavily loaded
processor to a lightly loaded processor. The tasks may be
transferred either due to the processing time for a task in a
processor is expected to be sufficiently greater than that of
another remote processor or when the imbalance in the
workload at various processors is sufficiently large. The load
balancing improves the performance of the system by using
the processing power of the entire system more effectively.

The distribution of loads to the processing elements is
simply called the load balancing problem. In a system with
multiple nodes there is a very high chance that some nodes
will be idle while the other will be over loaded. The goal of
the load balancing algorithms is to maintain the load to each
processing element such that all the processing elements
become neither overloaded nor idle that means each
processing element ideally has equal load at any moment of
time during execution to obtain the maximum performance
(minimum execution time) of the system [2,3,4, 7, 9,10,11].
So the proper design of a load balancing algorithm may
significantly improve the performance of the system.

In the network there will be some fast computing nodes
and slow computing nodes. If we do not account the
processing speed and communication speed (bandwidth), the
performance of the overall system will be restricted by the
slowest running node in the network [11]. Thus load balancing
strategies balance the loads across the nodes by preventing the
nodes to be idle and the other nodes to be overwhelmed.
Furthermore, load balancing strategies removes the idleness of
any node at run time.

Load balancing is the way of distributing load units (jobs

or tasks) across a set of processors which are connected to a
network which may be distributed across the globe. The
excess load or remaining unexecuted load from a processor is
migrated to other processors which have load below the
threshold load [8]. Threshold load is such an amount of load to
a processor that any load may come further to that processor.
In a system with multiple nodes there is a very high chance
that some nodes will be idle while the other will be over
loaded. So the processors in a system can be identified
according to their present load as heavily loaded processors
(enough jobs are waiting for execution), lightly loaded
processors(less jobs are waiting) and idle processors (have no
job to execute). By load balancing strategy it is possible to
make every processor equally busy and to finish the works
approximately at the same time.

There are two fundamental approaches to the load
balancing algorithm design. In static load balancing design
approach the tasks are assigned on the basis of a priori
knowledge of the system and once the tasks are allocated on
the nodes do not change [1, 2]. The performance of the static
load balancing algorithms depends on the prior information
about the tasks and the system. The decision to transfer the
tasks does not depend on the system state change. So this
approach is best suited for homogeneous distributed
computing system. But the dynamic load balancing algorithms
take the decision to transfer the tasks depending on the current
state of the system. The tasks are transferred from heavily
loaded node to the lightly loaded node [1,2,5]. So the quality
of dynamic load balancing algorithms depends on the
collection of information on load on different nodes in the
system. So this approach is best suited for heterogeneous
distributed computing system.

In dynamic load balancing the information may be
collected either by centralized or distributed approach. In
centralized approach the information is collected by a
specially designed central node and in distributed approach
each node has the autonomy to collect the information about
the load of the system. It has been reported that the collection
of information by centralized approach about the system state
does not cause any performance degradation for a reasonably
large distributed computing systems [6].The drawback of this

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 9 2556 – 2559

2557
IJRITCC | September 2014, Available @ http://www.ijritcc.org

approach is that the performance of a globally distributed
system would be very poor and the cost of state information
collection would be too much and maintaining a huge
information by a single node will surely cause a performance
degradation. In the distributed information collection policy
the information is collected either by sender initiative or
receiver initiative algorithm. In sender initiative approach the
heavily loaded nodes search for lightly loaded nodes for
transferring extra load and the receiver initiative approach is
the converse of sender initiated approach [12, 13]. In this
approach either a sender or a receiver may poll all the nodes in
a network for load balancing causing huge overheads. To
reduce the overheads the sender or receiver nodes poll a
selected number of nodes like nearest neighbors [4,7,13].
Another performance problem with this approach is associated
with the inter-arrival times and service times.

II. COMPUTATIONAL MODEL AND ASSUMPTIONS

The distributed system is represented by an undirected
graph G = (P, E) where P refers to the set of processors and E
to the set of links. The communication link between any two
processors is assumed to be bidirectional. Thus if there is a link
(Pi, Pj) that joins Pi with Pj, then Pi is a neighbor of Pj and
they can send and receive information and load from each
other. We also assumed that there are N heterogeneous
processors Pn where n=2, 3,…..N.

Each processor maintains a local load table that holds the
three field of information: processor ID, status and load of
neighboring nodes. Status of a node is either -1,0 or +1. 0
implies for normal loaded, +1 for overloaded and -1 for lightly
loaded situation. A node will be lightly loaded if it’s ready
queue becomes less than half the ready queue length. From
load table a node will select a least loaded node. If still load
becomes excess, then select next least loaded node and so on.

A processor Pn of the system maintains two queues for its
tasks: a 'ready' queue and a 'waiting' queue as shown in Fig. 1.
A task or a job may come in as input to a processor directly
from outside or as a transfer from a neighbor. Two types of
tasks may thus be executed in a processor: local tasks and
remote tasks. A local task comes in as input to a particular
processor directly from outside the system. A remote task, on
the other hand, is received at a particular processor as a transfer
from one of its neighbors and has come into the system as input
at some other processor. The 'ready' queue has a buffer of finite
size of length six and all tasks in this queue are executed by the
respective processor. The 'waiting' queue has a buffer of fairly
large (infinite) length and holds the tasks that arrive into the
system externally. A task waiting in the 'local' queue is either
transferred to the 'ready' queue of the processor if the 'ready'
queue is not full or transferred to another processor. A
processor whose 'ready' queue is half filled is taken to be
lightly loaded. A processor is assumed to be heavily loaded if
its 'ready' queue is full and its 'local' queue is not empty. A task
from a heavily loaded processor when transferred to another
neighboring processor enters into the 'ready' queue of that
processor since it is assumed to be lightly loaded. A processor
which has its 'ready' queue full and the 'local' queue empty is
called normally loaded. The performance of the system is
measured in terms of its overall response time consisting of the
service time, the queuing time and the transmission time.

Figure 1. Simulation Model

III. SIMULATION STUDY

We considered a mesh topology of sixteen heterogeneous
nodes for the simulation purpose. Each queue follows the
M/M/1 queue model. Once a task is assigned in ready queue
cannot be migrated. Only the tasks from the waiting queue are
allowed to be migrated. We also considered a node as under
loaded if it has load below the half of the length of a ready
queue; a node is considered to be moderate loaded if its
waiting queue is empty but ready is not empty and a node is
over loaded if its waiting queue is not empty. Whenever a
node either becomes under loaded or over loaded, it informs
its status to its neighbors and the neighboring nodes would
immediately update their load tables. A over loaded node will
compare its amount of load with the loads from its load table
with -1 status. Once the over loaded node finds the under
loaded node having highest load deficiency, it will set an
agreement with that under loaded node that it wants to transfer
the load. If the under loaded node agrees then load would be
transferred. The over loaded node may transfer its load to
more than one nodes if its load is more than the load
deficiency of a single node. Figure 2 represents a situation of
node P6 and its neighbor P2, P5, P7 and P10. Each node
represents two numbers: first number shows the status and
second number shows the load. Table 1 represents the load
table at P6 for that moment. Suppose that P6 has total tasks 12,
and then it has extra 6 tasks which are to be transferred. 4 out
of 6 is transferred to P5 and rest 2 tasks is transferred to P2
node.

Figure2. Heterogeneous mesh topology of node 16

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 9 2556 – 2559

2558
IJRITCC | September 2014, Available @ http://www.ijritcc.org

Figure 3. Load Table

We measured the response time with the arrival rate and
we compared our algorithm with the algorithm without load
balancing and Ni’s drafting algorithm [14,15]. Figure 3 shows
the comparison below.

Figure 4. Average Response Time VS Arrival Rate

Figure 5. Number of Load Message VS Arrival Rate

IV. CONCLUSION

In this paper we presented a distributed load balancing

algorithm. In this algorithm each node maintains a load table

holding the current load situation of its neighbors. A new

concept in threshold load in each node avoids unexpected over

loading and also ensures more job allocation towards more

powerful nodes. As the nodes inform their load situation on

status change, the over loaded or under loaded nodes do not

need to poll for transfer of jobs or to invite the jobs from the

neighbors and thus causes low congestion in the network. We

measured response time and overheads by applying our

concept in mesh topology of sixteen nodes and compared our

algorithm with Ni’s drafting algorithm. Our algorithm

produces better response time and over heads with respect to

the arrival rate than Ni’s drafting algorithm.

REFERENCES

[1] Ahmad I., Ghafoor A. and Mehrotra K. “Performance Prediction of

Distributed Load Balancing on Multicomputer Systems”. ACM,

830-839, 1991.

[2] Ali M.F. and Khan R.Z. “The Study on Load Balancing Strategies

in Distributed Computing System”, International Journal of
Computer Science & Engineering Survey (IJCSES) Vol.3, No.2,

April 2012.

[3] Antonis K., Garofalakis J., Mourtos I., and Spirakis P., A

hierarchical adaptive distributed algorithm for load balancing,

Journal of Parallel and Distributed Computing, 64 (1) (2004) 151-

162.

[4] Arora M., Das S.K., Biswas R., “A de-centralized scheduling and

load balancing algorithm for heterogeneous Grid environments”,

Proceedings of the International Conference on Parallel Processing

Workshops, 18–21 August 2002, pp. 499–505.

[5] Barak and La'adan O., “The MOSIX multicomputer operating

system for high performance cluster computing”, Future

Generation Computer Systems, 13 (4-5) (1998) 361-372.

[6] Berenbrink P., Friedetzky T. and Steger A. “Randomized and

Adversarial Load Balancing”. CiteSeerx, 1997.

[7] Bernard G., Steve D. and Simatic M. “A Survey of Load Sharing in

Networks of Workstations”. The British Computerm Society, The

Institute of Electrical Engineers and IOP Publishing Ltd, 75-

86,1993.

[8] Berten V., Goossens J., and Jeannot E., “On the distribution of

sequential jobs in random brokering for heterogeneous

computational Grids”, IEEE Transactions on Parallel and

Distributed Systems, 17 (2) (2006) 113-124.

[9] Dandamudi S. P., Lo K. C. M., “A hierarchical load sharing policy

for distributed systems”, Proceedings of the Fifth International

Symposium on Modeling, Analysis, and Simulation of Computer

and Telecommunication Systems (MASCOTS '97), 12-15 Janauary

1997, pp:3 – 10.

[10] Eager D.L., Lazowska E.D., Zahorjan J., “The limited performance

benefits of migrating active processes for load sharing”, ACM

SIGMETRICS Performance Evaluation Review, 16 (1) (1988) 63–

72 .

[11] Gu D. Z., Yang L. and Welch L. R., A Predictive, Decentralized

Load Balancing Approach, in: Proceedings of the 19th IEEE

International Parallel and Distributed Processing Symposium,

Denver, Colorado, 04-08 April 2005.

[12] Khan R.Z. and Ali M.F. “An Efficient Local Hierarchical Load

Balancing Algorithm (ELHLBA) in Distributed Computing”,

IJCSET, Vol 3, Issue 11, 427-430, November 2013.

Node Status Load

P2 -1 2

P5 -1 1

P7 0 0

P10 1 2

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 9 2556 – 2559

2559
IJRITCC | September 2014, Available @ http://www.ijritcc.org

[13] Khan R.Z. and Ali M.F. “An Efficient Diffusion Load Balancing

Algorithm in Distributed System”, I.J. Information Technology and
Computer Science, Vol. 08, 65-71, July, 2014.

[14] Ni L.M., Xu C.W. and Gendreau T.B., “A Distributed Drafting

Algorithm for Load Balancing”, IEEE Trans. on Software

Engineering, Vol. SE-13, No. 10, October, 1985,pp.1153-1161.

[15] Suen T.T.Y and Wong J.S.K. “Efficient Task Migration Algorithm

for Distributed Systems”, IEEE trans. on Parallel and Distributed

systems Vol. 3, N0. 4, July, 1992.

