
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 6 1713 – 1717

1713
IJRITCC | June 2014, Available @ http://www.ijritcc.org

A Database Forensic Approach to Detect Tamper Using B+-Trees

Tanushree Shelare
Student, Information Technology

Maharashtra Institute of Technology

Pune, India

tanushree.shelare@gmail.com

Varsha Powar
Assistant Professor, Information Technology

Maharashtra Institute of Technology

Pune, India

varsha.powar@mitpune.edu.in

Abstract – Data is the most valuable thing today from an individual to an organization. Because of its large volume and useful information

database contains, it is vulnerable and are more prone to attacks. Database Forensic is a new and important field which helps to analyze, identify

attacks made in the database and make provisions to prevent databases from such attacks by making use of Database Forensic tools. Few tools

are available for database forensics which is time consuming. In this paper, I will show how B+-trees and database forensic is related. We will

define the efficient use of B+-trees in database forensic. B+-trees are data structures which are widely used in storage engines can explore

history. B+-trees are fast indexing method which reduces time of a database forensic tool and increase performance.
Keywords: forensic, B+-trees, database.

__*****___

I. INTRODUCTION

 Digital forensics is a branch of forensic

science encompassing the recovery and investigation of

material found in digital devices, often in relation

to computer crime [12].

The branches of digital forensics are:

 Computer forensics: Computer forensics deals with

computers. It finds evidence from storage medium or

electronic document.

 Mobile device forensics: Mobile device forensicsdeals

with mobiles. It reecovers and extract the data which can

serve as evidence from a mobile device. Investigations

can be done by analyzing call data and communications

through SMS or email. GPS based mobile devices helps

in finding location information.

 Network forensics: Network forensic deals with the

computer network.Computer network traffic both local

and WAN/internet, are monitored and analysed in search

of evidence.

 Forensic data analysis: Structured data are examined and

analysed to find patterns of suspicious activities under

forensic data analysis.

 Database forensics: Database systems have become the

integral part of today’s society. The information

databases systems contain are sensitive to organization.

The organization must be aware of any tampering done

with the database in the organization. To protect

organizational database, efforts have been taken. But still

records are breached. Database forensic is the branch of

digital forensics which relates to the information found

on the database. Database forensics aim is to find what

happen and when and to prevent unauthorized access.

Database attacks can be detected and analyzed by

database forensic. Database Forensic is an emerging and

new field in research area. Very few tools and literature

is available till date. Traditional digital investigations

always excluded databases even if evidence can be

obtained from them. The field is still in its early years

but it is an important part of many investigations due to

the increased volume of information. This information

may be helpful in solving different crimes and the large

number of risks associated with the information stored

on many databases. The ability to retrace the operations

performed on a database and reconstruct deleted or

compromised information on the database is of great

importance. There should be some mechanism by which

database transactions could be monitored continuously.

So a track of unauthorized accesses can be kept. By

keeping the track of the users activities the culprit can be

held responsible.

Figure 1 shows the database forensic model which includes

three major steps;

 First step involves acquisition of raw data. Data can be

obtained from multisource. It can be clinical, operational

or financial data.

 Second step involves proper integration and organization

of data .

 Third and important step is to work out with data, i.e. to

analyze the data and take appropriate action. This can be

done by applying proper data mining or inference rules.

Figure 1. Database Forensic Model

Data in the digital forensic investigation is viewed in four

steps [10]:

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 6 1713 – 1717

1714
IJRITCC | June 2014, Available @ http://www.ijritcc.org

 In the form of tree, data to be analyzed is viewed. The

critical data structure can be the root from which all

other data can be reached.

 Metadata can be used to locate all data objects [4].

Metadata refers to data about the data that is stored

within a source of digital evidence [11]. There are many

levels at which metadata can be defined. They are system

metadata, file system metadata, application metadata,

document metadata, email metadata, business metadata,

geographical metadata etc. A particular type of metadata

provides information at certain context. The information

enables in easy handling and management of the data

contained.

 Database stores information regarding each data object.

In-memory databases are used by some tools, and others

use external SQL databases.

 Carving is used by some tools to locate data objects that

cannot be reached from the root. Deleted data or partial

file data is useful in investigation which gave rise to the

new field of data carving. Carving is the process of

identifying the file types using a string of bytes, called

magic numbers, from an image and matching with a

database of known magic numbers to recover deleted or

partially deleted files[11].

Forensic analysis can be done of table storage, transaction

logs and indexes [5].

In B+-trees indexes, disk representation reveals expired data

and information about history of operation. Today’s

database systems are more prone to modifications due to the

huge amount of data. Engines like InnoDB for MySQL

stores manipulations statement in log files. The traditional

database forensic approach becomes ineffective if someone

removes the tracks of manipulations from log files. B+-

Trees are used to handle large amounts of data. B+-Trees

can detect manipulations of data by a malicious

administrator. A database is organized to support updates,

retrieval, and management the data. Databases must support

operations, such as retrieval, deletion and insertion of data.

Databases are usually large and cannot be maintained

entirely in memory. B+-trees are used to index the data and

to provide fast access. We will deal with forensic aspects of

B+-Trees.

Thus, we tried to relate trees and database forensics. Some

work has been done in database forensic area using B+-trees

data structure.

II. RELATED WORK

 Database Forensic is an important area which must need

special research attention. A good amount of work is not

done due to the complexity of databases. From forensic

point of view databases are inherently multidimensional.

The paper “InnoDB Database Forensics” [6] shows that

tables were built in the .frm files format in MySQL. The

main purpose was to determine and detect database

inconsistencies. The various researchers have worked in the

area of database forensic and the summary of their work is

described in the paper “Database Security Threats and

Challenges in Database Forensic” [2]. The research paper on

“Analysis of B-tree data structure and its usage in computer

forensics” [9] summarizes that B-tree is a fast indexing

method in which indexes are organized into a set of nodes,

where each node contains indexed data. Nodes are

multilevel. B-tree is used in databases and file systems.

Numbers of disc accesses are reduce by using B-trees. B-

tree is reorganized after deletion of files or directories and

entries of the deleted value is overwritten. It appears to be

deleted but actually is overwritten. The main disadvantage

described in this paper is that B-trees that there seems to be

a temporary intermediate state where the entry is present in

tree but is rendered invalid. The work on “Using the

Structure of B+-Trees for Enhancing Logging Mechanisms

of Databases” [7] describes the various methods to prevent

unauthorized access and modifications in database

management systems. But still modifications can be made in

the database. By using signature of a B+-Tree, the logging

mechanism in databases is supported. By defining the

signature of a B+-Tree, the actual structure of a B+-Tree is

stored separately from the data. Using transaction logs,

changes in the data can be retrieved. Thus, on each

transaction, the structure of tree is compared with the tree

signature. This mechanism is useful for forensic analysis

applied to the underlying B+-Tree-structure of an index.

This mechanism can be very useful in the case of defining a

Forensic-Aware database. We can easily reconstruct the old

versions of the tree. The limitation of this approach is that it

is expensive. When each changes in the underlying structure

is logged, only than transaction is assured. This will result in

some additional space needed, as well as an additional

logging operation after each transaction. The paper “Trees

cannot lie: using data structures for forensics purposes”[8],

put forward the possibilities of using B+-trees data structure

in database forensic. Although database forensic lie in its

generalization which should be applicable for all types of

operations, B+-tree does not give much information about

this is the disadvantage described in the paper.

III. DATABASE FORENSIC AND B+-TREES

A B
+
-tree comes under the family of multi-way search trees.

These trees were first proposed by Bayer and McCreight in

1972. It has replaced almost all large file access methods

other than hashing. These multi-way balanced search trees

are now the standard file organization for applications

requiring insertion, deletion, and key range searches. They

have the following advantages:

 B-trees are always height balanced, with all leaf nodes at

the same level

 Update and search operations affect only a few disk

pages, so performance is good.

 B-trees keep related records on the same disk page,

which takes advantage of locality of reference.

 B-trees guarantee that every node in the tree will be full

at least to a certain minimum percentage. This improves

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 6 1713 – 1717

1715
IJRITCC | June 2014, Available @ http://www.ijritcc.org

space efficiency while reducing the typical number of

disk fetches necessary during a search or update

operation over many thousands of records.

A B+-tree is a generalization of a binary search tree (BST)

in some aspects. The nodes of a B+-tree point to many

children nodes. It minimizes disk accesses whenever we are

trying to locate records. A B+-tree of order m is a tree where

each internal node contains up to m branches i.e. children

nodes and thus store up to m-search key values in a BST,

only one key value is needed. At the leaf nodes, the B+-tree

stores records and pointers to actual records and they all are

a found at the same level in the tree. Therefore the tree is

always height balanced.

The time to retrieve from external memory is thousands of

times greater than high-speed memory. To minimize the

disk access is the main goal.

Fast access to data records is very important in database. In

today’s computer systems, I/O operations are carried out

very slowly. We will focus on decreasing the amount of

time required for input output operations. In modern

database storage engines, use of index allows fast lookup of

records with a small amount of I/O operations. In InnoDB

which is a storage engine, the index is builds up a B+-Trees.

The index generates a highly structured tree. B+-trees have

performance advantages by reducing expensive I/O

operations as compared to B-trees. As I/O operations are

reduced, the time required for detecting anomalies in the

database is less.

A. B
+
-tree operations

To understand the B
+
-tree operations more clearly, assume

that there is a table whose primary is a single attribute and

that it has a B
+
-tree index organized on the PK attribute of

the table.

1) Searching

To retrieve records, queries are written with conditions

that describe the values that the desired records are to have.

The most basic search on a table to retrieve a single record

given its PK value K.

Search in a B
+
-tree is an alternating two-step process,

beginning with the root node of the B
+
-tree. Say that the

search is for the record with key value K -- there can only be

one record because we assume that the index is built on the

PK attribute of the table.

 Perform a binary search on the search key values in the

current node -- recall that the search key values in a node

are sorted and that the search starts with the root of the

tree. We want to find the key Ki such that Ki≤ K < Ki+1.

 If the current node is an internal node, follow the proper

branch associated with the key Ki by loading the disk

page corresponding to the node and repeat the search

process at that node.

 If the current node is a leaf, then:

o If K=Ki, then the record exists in the table and we

can return the record associated with Ki

o Otherwise, K is not found among the search key

values at the leaf, we report that there is no record in

the table with the value K.

2) Inserting into a B
+
-tree

Insertion in a B
+
-tree is similar to inserting into other search

trees, a new record is always inserted at one of the leaf

nodes. The complexity added is that insertion could

overflow a leaf node that is already full. When such

overflow situations occur a brand new leaf node is added to

the B
+
-tree at the same level as the other leaf nodes. The

steps to insert into a B
+
-tree are:

 Follow the path that is traversed as if a Search is being

performed on the key of the new record to be inserted.

 The leaf page L that is reached is the node where the new

record is to be indexed.

 If L is not full then an index entry is created that includes

the search key value of the new row and a reference to

where new row is in the data file. We are done; this is the

easy case!

 If L is full, then a new leaf node Lnew is introduced to

the B+-tree as a right sibling of L. The keys in L along

with the an index entry for the new record are distributed

evenly among L and Lnew. Lnew is inserted in the

linked list of leaf nodes just to the right of L. We must

now link Lnew to the tree and since Lnew is to be a

sibling of L, it will then be pointed to by the parent of L.

The smallest key value of Lnew is copied and inserted

into the parent of L -- which will also be the parent of

Lnew. This entire step is known as commonly referred to

as a split of a leaf node.

o If the parent P of L is full, then it is split in turn.

However, this split of an internal node is a bit

different. The search key values of P and the new

inserted key must still be distributed evenly among P

and the new page introduced as a sibling of P. In this

split, however, the middle key is moved to the
node above -- note, that unlike splitting a leaf node

where the middle key is copied and inserted into the

parent, when you split an internal node the middle

key is removed from the node being split and

inserted into the parent node. This splitting of nodes

may continue upwards on the tree.

o When a key is added to a full root, then the root

splits into two and the middle key is promoted to

become the new root. This is the only way for a B+-

tree to increase in height -- when split cascades the

entire height of the tree from the leaf to the root.

3) Deletion

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 6 1713 – 1717

1716
IJRITCC | June 2014, Available @ http://www.ijritcc.org

Deletion from a B
+
-tree again needs to be sure to maintain

the property that all nodes must be at least half full. The

complexity added is that deletion could underflow a leaf

node that has only the minimum number of entries allowed.

When such underflow situations take place, adjacent sibling

nodes are examined; if one of them has more than the

minimum entries required then, some of its entries are taken

from it to prevent a node from "under-flowing". Otherwise,

if both adjacent sibling nodes are also at their minimum,

then two of these nodes are merged into a single node. The

steps to delete from a B
+
-tree are:

 Perform the search process on the key of the record to be

deleted. This search will end at a leaf L.

 If the leaf L contains more than the minimum number of

elements (more than m/2 - 1), then the index entry for the

record to be removed can be safely deleted from the leaf

with no further action.

 If the leaf contains the minimum number of entries, then

the deleted entry is replaced with another entry that can

take its place while maintaining the correct order. To

find such entries, we inspect the two sibling leaf nodes

Lleft and Lright adjacent to L -- at most one of these may

not exist.

o If one of these leaf nodes has more than the

minimum number of entries, then enough records

are transferred from this sibling so that both nodes

have the same number of records. This is a

heuristic and is done to delay a future underflow as

long as possible; otherwise, only one entry need be

transferred. The placeholder key value of the parent

node may need to be revised.

o If both Lleft and Lright have only the minimum

number of entries, then L gives its records to one of

its siblings and it is removed from the tree. The

new leaf will contain no more than the maximum

number of entries allowed. This merge process

combines two subtrees of the parent, so the

separating entry at the parent needs to be removed -

- this may in turn cause the parent node to

underflow; such an underflow is handled the same

way that an underflow of a leaf node.

o If the last two children of the root merge together

into one node, then this merged node becomes the

new root and the tree loses a level.

IV. PROPOSED WORK

Figure 2 shows the system architecture of the tool in which

we are using B+-trees to detect anomalies in the database.

By using this tool we can detect modification made in the

database [3]. In our approach we will design a tool that first

identify and collect the databases i.e. text files, binary logs

and log files. Parsers are used to read huge files. Then

metadata is formed by collecting raw data. To build

inference rules for making decisions to extract useful

information from metadata, data mining techniques are used.

Then by using the theorem: let B be a B+-Tree with n > m

elements which are added in ascending order. Then it holds

true that the partition of the leafs of B has the following

structure [8]:

𝑛 = 𝑏
𝑝
𝑗=1 j,, with bj= m/2+1, ∀𝑗 ≠ 𝑝 𝑎𝑛𝑑bp≥ 𝑚/2.

According to the theorem above, B+-tree structure for the

database is created. When we start inserting elements in B+-

tree, we enter element into an empty root, on inserting the

next element we have to split the root and generate a new

one with two leafs. The new element is added to the

rightmost leaf. So the rightmost leaf contains m/2+1 element

and leftmost contains m/2 elements. Fill rate of the tree

structure is stored.

Figure 2 System Architecture of a tool which uses B+-trees

to detect anomalies in the database.

If a malicious administrator inserts a forged record, it would

then reside in the leaf that contains m/2+1 element. The fill

rate of leaf nodes in this tree is analyzed, and it will be

found that the record is located in a node that has a too high

REPORT GENERATION

DATA TREE

FILL RATE TABLE
FILL RATE

VALIDATION
DETECTOR

DATAMINING / INFERENCE RULES

METADATA

PARSER

DATA (log files, text files, binary logs)

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 6 1713 – 1717

1717
IJRITCC | June 2014, Available @ http://www.ijritcc.org

fill rate for strictly sorted inserts (i.e. >m/2+1 elements).

Thus modifications can be detected. Similarly, deletion of

the record can also be detected by checking fill rates if the

number of elements on the leaf node appears below m/2.

Report is generated of the anomalies detected which can be

useful in database forensics.

CONCLUSION

Database Forensic is a very new field which needs more

attention. The organizational data is very crucial. Even

minor modification in the database can result in great

damage to the organization. There are some tools available

which are used in organizations to provide security to the

database from any kind of tampering. Effective

implementations of search trees are necessary for any

databases. B+-Trees can be used effectively in database

forensic. We have chosen B+-Tree as it is one of the most

widely used data structure and is a fast indexing data

retrieval technique. In our approach we will use B+ -Tree to

give strong forensic evidence for many cases of retroactive

manipulation in tables, thus providing the investigator with

the new tool. We will focus on increasing the efficiency of

the tool by reducing expensive I/O operations.

REFERENCES

[1] B. Ooi and K. Tan, “B-trees: bearing fruits of all kinds,” in

Proceedings of the 13th Australasian database conference-

Volume 5. Australian Computer Society, Inc., 2002, pp. 13–

20. 285
[2] Harmeet Kaur Khanuja and Dr. D. S. Adane (2011), “Database

Security Threats and challenges in Database Forensic: A survey”,

Proceedings of 2011 International Conference on Advancements in
Information Technology (AIT 2011), available at

http://www.ipcsit.com/vol20/33-ICAIT2011- A4072.pdf

[3] Harmeet Kaur Khanuja and Dr. D. S. Adane (2011), “A
FRAMEWORK FOR DATABASE FORENSIC ANALYSIS”, An

International Journal (CSEIJ), Vol.2, No.3, June 2012

[4] Martin S. Olivier. (2009, March), “On metadata context in Database
Forensics, Digital Investigation”, Elsevier, www.sciencedirect.com,

Volume 5, Issues 3-4, Pages 115-123.

[5] Patrick Stahlberg, Gerome Miklau, and Brian Neil Levine, “Threats
to privacy in the forensic analysis of database systems”,

SIGMOD’07, June 11–14, 2007, Beijing, China.

[6] Peter Frühwirt, Markus Huber, Martin Mulazzani, Edgar R. Weippl,
”InnoDB Database Forensics”, Advanced Information Networking

and Applications (AINA), 2010 24th IEEE International Conference,

April 2010.
[7] Peter Kieseberg Sebastian Schrittwieser Lorcan Morgan Martin

Mulazzani Markus Huber Edgar Weippl, “Using the Structure of
B+-Trees for Enhancing Logging Mechanisms of Databases”, SBA

Research Vienna, Austria, 2011.

[8] Peter Kieseberg, Sebastian Schrittwieser, Martin Mulazzani, Markus
Huber and Edgar Weippl, “Trees Cannot Lie: Using Data Structures

for Forensics Purposes”, European Intelligence and Security

Informatics Conference, 2011
[9] P. Koruga and M. Baˇca, “Analysis of B-tree data structure and its

usage in computer forensics,” in Central European Conference on

Information and Intelligent Systems, 2010.
[10] Simson L. Garfinkel, “Digital forensics research: The next 10

years”, Digital Forensic Research Workshop, Elsevier Ltd, 2010.

[11] Sriram Raghavan,”Digital forensic research: current state of art”,
CSIT (March 2013) 1(1):91–114.

[12] http://en.wikipedia.org/wiki/Digital_forensics.

