
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 6 1638 – 1643

1638

IJRITCC | June 2014, Available @ http://www.ijritcc.org

Performance Evaluation of AES using Hardware and Software Codesign

Vilas V Deotare
1
, Dinesh V Padole

2
 Ashok S. Wakode

3

Research Scholar,Professor, GHRCE, Nagpur, India

vilasdeotare@gmail.com
1
, dvpadole@gmail.com

2
,samratasoka@yahoo.com

3

Abstract – Implementation of Advanced Encryption Standard (AES) algorithm is more intensive discussion from its starting publication

especially in terms of performance. However the studies of implementation of AES using hardware or software, the performance and cost are

high to low respectively. The propose method is implemented using hardware and software Co design. This paper presents AES implementation

on different platform like ARM7, micro- blaze, FPGA and compares the results with these performances. The target hardware used in this paper

is Spartan 3s400PQ208-4 FPGA from Xilinx. The performance is simulated and validated.

General Terms

Advanced Encryption Standard, Advance RISC machine, Xilinx Platform Studio, Soft core processor.

Keywords

Time evaluation, Substitution, Encryption, Decryption Plain text, cipher text, key operating frequency, FPGA, VHDL

__*****___

I. INTRODUCTION

The importance of cryptography applied to security in

electronic data transactions has acquired an essential

relevance during the last few years. Each day millions of

users generate and interchange large volumes of information

in various fields, such as financial and legal files, medical

reports, and bank services via Internet, telephone

conversations, and e-commerce transactions. These and

other examples of applications deserve a special treatment

from the security point of view, not only in the transport of

such information but also in its storage. This implementation

will be useful in wireless security like military

communication and mobile telephony where there is a

greater emphasis on the speed of communication. Low data

rate communication like Zigbee and industrial protocols like

WirelessHART and ISA100 protocols are also using this

AES security.

 In cryptography, the AES, also known as Rijndael, is a

block cipher adopted as an encryption standard by the US

government, which specifies an encryption algorithm

capable of protecting sensitive information [1,2]. The AES

algorithm is a symmetric block cipher that can encrypt

(encipher) and decrypt (decipher) information. Encryption

converts data to an unintelligible form called cipher-text.

Decryption of the cipher-text converts the data back into its

original form, which is called plaintext. The AES algorithm

is capable of using cryptographic keys of 128, 192, and 256

bits to encrypt and decrypt data in blocks of 128 bits. The

hardware implementation of the Rijndael algorithm can

provide either high performance or low cost for specific

applications. At backbone communication channels or

heavily loaded servers it is not possible to lose processing

speed, which drops the efficiency of the overall system

while running cryptography algorithms in software.

 On the other side, a low cost and small design can be

used in smart card applications, which allows a wide range

of equipment to operate securely. This paper is organized as

follows: description of Rijndael cipher, decipher, design

preliminaries, implementation on different platform and

comparing result. These results are summarized in table

form and finally concluded the result. Future scope is

mentioned for further development.

II. AES ALGORITHM

AES comes in three flavors, namely AES - 128, AES -

192, and AES-256, with the number in each case

representing the size (in bits) of the key used. All the modes

are done in 10, 12 or 14 round depends on the size of the

block and the key length chosen. AES merely allows a 128

bit data length that can be divided into four basic operation

blocks. These blocks operate on array of bytes and

organized as a 4*4 matrix that is called the state.

The algorithm begins with an Add round key stage

followed by nine rounds of four stages and a tenth round of

three stages which applies for both encryption and

decryption algorithm [1] [2] .

These rounds are governed by the following four stages:

• Substitute Bytes

• Shift rows

• Mix columns

• Add round key

The tenth round Mix columns stage is not included. The

first nine rounds of the decryption algorithm are governed

by the following four stages:

• Inverse Shift rows

• Inverse Substitute Bytes

• Add round key

• Inverse Mix columns

Again the tenth round Inverse Mix columns stage is not

included

mailto:samratasoka@yahoo.com

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 6 1638 – 1643

1639

IJRITCC | June 2014, Available @ http://www.ijritcc.org

Fig.1-AES Flow

Figure 1 explains the how AES encryption and decryption

goes through different stages as explained in above

paragraph.

A. Design Preliminaries

The input and output for the AES algorithm each consist of

sequences of 128 bits.[1] These sequences will sometimes

be referred to as blocks and the number of bits they contain

will be referred to as their length. The input, output and

cipher key bit sequences are processed as arrays of bytes

that are formed by dividing these sequences into groups of

eight contiguous bits to form arrays of bytes. The different

transformations operate on the intermediate result, called the

state, which is the intermediate cipher result. The state can

be pictured as a rectangular array of bytes. This array has

four rows; the number of columns is denoted by Nb and is

equal to the block length divided by 32. The cipher key is

similarly pictured as a rectangular array with four rows. The

number of columns of the cipher key is denoted by Nk and

is equal to the key length divided by 32. The number of

rounds is denoted by Nr and depends on the values Nb and

Nk. For the AES algorithm, the number of rounds to be

performed during the execution of the algorithm is

dependent on the key size. The number of rounds is

represented by Nr, where Nr = 10 when Nk = 4, Nr = 12

when Nk = 6, and Nr = 14 when Nk = 8. For both its cipher

and inverse cipher, the AES algorithm uses a round function

that is composed of four different byte-oriented

transformations: byte substitution using a substitution table

(S-box), shifting rows of the state array by different offsets,

mixing the data within each column of the state array, and

adding a round key to the state.

B)Encryption Algorithm:

Encryption(plaintext[128 bit], ciphertext[128bit],

keyexp[][128bit])

begin

 128bit state

state = plaintext

AddRoundKey(state, keyexp[0][128bit])

for round = 1 step 1 to 9

SubBytes(state)

 ShiftRows(state)

MixColumns(state)

AddRoundKey(state,keyexp[round][128bit]])

end for

SubBytes(state)

ShiftRows(state)

 AddRoundKey (state,keyexp[10][128bit])

ciphertext = state

end

C) Decryption Algorithm:
Decryption(ciphertext[128bit],plaintext[128bit], keyexp[][128bit])

 begin

 128bit state

 state = ciphertext

 AddRoundKey (state, keyexp[10][128bit])

 for round = 9 step -1 downto 1

 InvShiftRows(state)

 InvSubBytes(state)

 AddRoundKey(state,

 keyexp[round][128bit])

 InvMixColumns(state)

 end for

 InvShiftRows(state)

 InvSubBytes(state)

 AddRoundKey(state, keyexp[0][128bit])

 plaintext = state

 end

D) Total Overview of Work

1) AES on ARM7:

AES Encryption in Software(C Language)

ShiftRows(State)

SubByte(State)

Round<10

Plain Text Key

Cipher Text

AddRoundKey(PlainText,KeyExpansion[0])

Round=Round+1

AddRoundKey(State,KeyExpansion[round])

MixColumn(State)

AddRoundKey(State,KeyExpansion[round])

ShiftRows(State)

SubByte(State)

Key Expansion

Fig 2. AES Encryption in Software(C Language)

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 6 1638 – 1643

1640

IJRITCC | June 2014, Available @ http://www.ijritcc.org

In this figure,plain text matrix is given to add round key

stage where plain text are xored with expanded key which

comes from key expansion function.This output is called

state. This state is looped 9 times and at 10 th round it skips

mix column and finally cipher text are generated.

Fig 3. AES Decryption in Software(C Language)

In Figure 3 reverse process of encryption is explained to get

original plain text keeping same cipher key for process.

To create a demo of AES two human interface devices,

keyboard and hyper terminal is used. HyperTerminal can be

used as embedded console to show the details of demo of

AES. When system is powered ON, it will gives the

information and instructions to user to put the data for Plain

text as well as cipher text. All the data input to the AES

demo is in hex format with two ASCII separated by comma.

After feeding 16 byte ENTER is pressed .HyperTerminal is

configured for baud rate 115200, 8, N, 1.On ARM7 UART

2 is configured for 115200, 8, N, 1. Internal Timer of ARM7

is used for performance measurement. This timer works on

250 KHz. So numbers of counts are noted down for

Encryption and Decryption. So time taken by Encryption

calculated as: Each count of this timer takes 4 microseconds.

So Time taken for Encryption or Decryption is Timer count

* 4 .This time is in microsecond.

On HyperTerminal Encrypted data is shown for data

verification. Same data is given for Decryption so that

original data can be retrieved from decryption engine. We

got original data

E) AES On MicroBlaze:

 On FPGA in microblaze XPS

UARTLITE is synthesized for hyper terminal interface .XPS

UART Lite is configured as 9600 baud rate with 8 bit data

without parity. Same configuration is done on PC

Hyperterminal.XPS Timer without interrupt is synthesized

for Time measurement.25MHz clock is given to timer.

When AES block is started at that time this timer is started.

When Encryption is completed, Timer counts are captured.

This timer takes 1 microsecond for each 25 count. So

captured count is divided by 25 so that we get the time

required for encryption or decryption in microsecond.

F) AES On custom IP in FPGA:

Fig.4 AES Encryption in Hardware (VHDL)

In above figure,Plain text and key in 128 bit form are

provided .Key expansion block expands key to provide

expanded key for each round.AES encryption flow is

controlled by 2:1 MUX.

Fig.5 AES Decryption in Hardware (VHDL)

 Figure 5 explains decryption flow controlled by two

2:1 Mux.These muxes decide the path of execution.

Custom IP implementation and FPGA simulation, VHDL

language is used .VHDL is used as the hardware description

language because of the flexibility to exchange among

environments. The code is pure VHDL that could easily be

implemented on other devices, without changing the design

The software used for this work is Xilinx - Project

Navigator, ISE 10.1 suite. This is used for writing,

debugging and optimizing efforts, and also for fitting,

simulating and checking the performance results using the

simulation tools available on ISim Xilinx software.

For platform building and custom IP synthesis, XPS 10.1 is

used for AES evaluation on microblaze with custom IP.

F) Hardware and Software Implementation

 About Hardware Software Co-design hardware

and software has advantages and disadvantages. Hardware

works parallel so speed is obviously major advantage.

In case of software, every action is taken by microcontroller,

so it runs in that sense sequentially.

Software development is fast and it seems very simple when

we are handling complex project but hardware development

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 6 1638 – 1643

1641

IJRITCC | June 2014, Available @ http://www.ijritcc.org

becomes hard in case of volumetric project. So in such

scenario, both advantages can be combined to achieve

optimize performance. Considering theses aspect, we have

chosen hardware software co design strategy for AES

performance evaluation. Some of part are implemented in

software on microblzae platform and some of the part is

implemented in hardware as custom IP. For Software

implementation, C language is preferred and VHDL is

preferred for hardware development. This co design is

implemented using Xilinx platform studio.

III. HW/SW CODESIGN IMPLEMENTATION ON

SPARTAN:

 AES is synthesized and added to microblzae as

peripheral. This is interfaced to microblzae as user register

logic. These register are accessed as memory of 32 bit .Total

14, 32-bit register are accessed in this demonstration. 4 32-

bit register are allocated for plain text data. Plain text is in

16 byte. Each data byte are taken from user in ASCII format

.It is converted in Hex format .4 byte are given to a single

register. Union structure is used for byte to 32-bit register

conversion. Plain text data takes 4 register and Key data

takes again 4 register. Resultant of AES operation is stored

into 4 register for further display or processing. Two register

are allocated for control of the AES engine and status of the

AES engine. AES controls are given to AES engine and

status is checked for operation completion. This flag is used

for time calculation.

A) Implementation on ARM7 result:

C language is used for AES implementation on

ARM7 and Microblzae. Reason is C portability. This can be

used easily to any platform with less change in platform.

AES encryption and decryption are implemented as per

standard. User data can be taken through standard IO.

C language is faster for implementation as well as give

assembly like performance if it used pre-cautiously. It

boosts our development period.

Fig.6: TeraTerm used for input and showing result

Figure 6 shows user input , plain text and key and shows

encryption alogortm output in hex form.Alghorithm

performance in time are shown and it is in 412 microsec.It

shows decryption performance i.e.580 microsecond.

B) Implementation on MicroBlaze and Custom IP

Fig.7: Showing data input and AES result on Hyperterminal

In this figure 7 Hardware and software performance are

shown.AES encryption implemented in software and

hardware are shown in figure.Time taken by both algorithm

implementation are shown in microsecond.

C) Simulation Result On FPGA:

Simulation Test Vectors For Encryption process:

Plain Text: 00112233445566778899aabbccddeeff.

Key: 000102030405060708090a0b0c0d0e0f.

Cipher Text: 69c4e0d86a7b0430d8cdb78070b4c55a

Fig.8: Encryption simulation

In figure 8,all intermediate and final result of encryption are

dispalyed.Starting to end process time is shown in vertical

blue line.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 6 1638 – 1643

1642

IJRITCC | June 2014, Available @ http://www.ijritcc.org

Simulation Test Vectors For Decryption process:

Cipher Text: 69c4e0d86a7b0430d8cdb78070b4c55a.

Key: 000102030405060708090a0b0c0d0e0f.

Plain Text: 00112233445566778899aabbccddeeff.

Fig 9: Decryption simulation

Figure 9 shows decryption result along with all stages output

of decryption process.At the end of process decryption data

i.e.plain text are displayed.

D) Test vectors and Results:

Encryption Process (128 bit):

Plain Text: 303132333435363738393A3B3C3D3E3F.

Key: C0C1C2C3C4C5C6C7C8C9CACBCCCDCF.

Cipher Text: 695FDF148DFF96AB6F813C77DB1E3E.

Decryption Process (128 bit) :

Cipher Text: 695FDF148DFF96AB6F813C77DB1E3E.

Key: C0C1C2C3C4C5C6C7C8C9CACBCCCDCF.

Plain Text: 303132333435363738393A3B3C3D3E3F

Summarized Result:

Table No.1- Hardware and software performance

 Fig.10 AES Performance in Software

Fig.11 AES Performance in Hardware

AES Implementation AES type Device Name Operating

Frequency

Performance in

Mbps

Software on ARM7 Decryption MC13226V 24MHz 0.256

Software on Microblaze Decryption MicroBlaze on 3s400PQ208-

4

25MHz 0.258

Software on ARM7 Encryption MC13226V 24MHz 0.324

Software on Microblaze Encryption MicroBlaze on 3s400PQ208-

4

25MHz 0.3878

Microblaze co-design Encryption MicroBlaze on 3s400PQ208-

4

25MHz 42

Spartan-2[8] Encryption/ Decryption 2S30 60MHz 70

Simulation for

Decryption

Decryption 3s400PQ208-4 25MHz 70.1

Simulation for

Encryption

Encryption 3s400PQ208-4 25MHz 71

Cyclone Decryption[9] Decryption EP2C35F672C6 51MHz 142

Cyclone Encryption[9] Encryption EP2C35F672C6 60MHz 213

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 6 1638 – 1643

1643

IJRITCC | June 2014, Available @ http://www.ijritcc.org

Figure 10 shows the software performance in Mbps and Figure 11 shows AES performance in Hardware. These two performance

straight forward indicates hardware performance is superior .

IV. CONCLUSION AND FUTURE SCOPE

As ARM7 and Microblaze both are RISC

processor, and takes very less power, AES can be used for

embedded application. Microblaze is soft core processor so

scaling of the design can be possible to enhance speed and

reduce power consumption. This processor can work on

high frequency, so AES latency can be improved.

AES implemented on software hardware and software

hardware co-design. From above graph it is clear that

hardware performance is very much high in 40 above Mbps.

 Software performance is below 1 Mbps. But Software

hardware co design can be used for both benefit of

microcontroller and speed advantage.

We have implemented AES engine on ARM 7 and

microblaze processor. It can be evaluated for PowerPC and

Nios like processor. Image Encryption and Decryption can

be next work of this project.

V. REFERENCES:

[1] National Inst. Of Standards and Technology, “Federal

Information Processing Standard Publication, the

Advanced Encryption Standard (AES),” Nov. 2001

[2] J. Daemen and V. Rijmen,” AES Proposal: Rijndael,”

AES Algorithm Submission, Sept. 1999.

[3] Wayne Wolf, “FPGA-Based System Design, Pearson

Education,pp. 17-37

[4] Charles H Roth, Jr. Digital Systems Design Using VHDL,

Thomson, India Edition 2007.

[5] Spartan-3 FPGA Family Data Sheet

http://www.xilinx.com/support/documentation/data_shee

ts/ds099.pdf

[6] MicroBlaze overview.

http://www.xilinx.com/support/documentation/sw_manual

s/xilinx14_2/mb_ref_guide.pdf

[7] ARM7 overview.

http://www.freescale.com/files/rf_if/doc/ref_manual/MC1

322xRM.pdf

[8] Chi-Wu Huang1, Chi-Jeng Chang1, Mao-Yuan Lin1,

Hung-Yun Tai2 ,” Compact FPGA implementation of

32-bits AES Algorithm Using Block RAM ” 1-4244-

1272-2/07/ 1007 IEEE

[9] Yang Jun ,Ding Jun, Li Na, Guo Yixiong, “FPGA-based

design and implementation of reduced AES algorithm”

2010 International Conference on Challenges in

Environmental Science and Computer Engineering 2010

IEEE.

http://www.xilinx.com/support/documentation/data_shee%20ts/ds099.pdf
http://www.xilinx.com/support/documentation/data_shee%20ts/ds099.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_2/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_2/mb_ref_guide.pdf
http://www.freescale.com/files/rf_if/doc/ref_manual/MC1322xRM.pdf
http://www.freescale.com/files/rf_if/doc/ref_manual/MC1322xRM.pdf

