
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 6 1568 – 1573

1568
IJRITCC | June 2014, Available @ http://www.ijritcc.org

Implementation of CAN Bus Protocol

Ms. Ashwini S. Shinde
Departement of ENTC

AITRC Vita

Vita, India

ashushinde16@gmail.com

Ms. Aarti S. Deshpande
Departement of ENTC

AITRC Vita

Vita, India

aartideshpande11@gmail.com

Mr. Pradnyant N Kalamkar
Departement of ENTC

AITRC Vita

Vita, India

pnkalamkar4587@gmail.com

Mr. Arjun R. Nichal
Departement of ENTC

AITRC Vita

Vita, India

arjunnichal@gmail.com

Abstract— Controller Area Network (CAN) is a vehicle bus standard protocol designed specifically for automotive application.

ECUs (Electronic control units) within vehicle can communicate with each other using CAN Bus standard protocol. It is high

speed, bandwidth efficient network. In order to reduce point to point wiring harness in vehicle automation, CAN is suggested as a

means for data communication within the vehicle environment. The benefits of CAN bus based network over traditional point to

point schemes will over increased flexibility and expandability.

Keywords- Vehicle Automation, Controller Area Network (CAN), Electronic Control Unit (ECU)

__*****___

I. INTRODUCTION

Vehicle system is composed of automotive electrical

architecture consists of a large number of electronic control

units (ECU) carrying out a variety of control functions. From

vehicle system we generally want greater safety, more comfort

and less fuel consumption. A modern vehicle may have many

electronic control units (ECUs) for various subsystems. Dif-

ferent such subsystems are airbags, antilock braking, engine

control, audio system, windows, doors, mirror adjustment etc.

Some of these subsystems form independent subsystems, but

communication among others is essential. Traditional electron-

ic control system can improve a vehicle dynamics, economy

and comfort. But some problems also have come up, such as

the body wiring complexity, space constraints and some relia-

bility issues. In order to solve these problems, the vehicle net-

work technology has been created.

In vehicle networking protocols must satisfy require-

ments which include significant reduction of wiring harness,

reducing body weight and costs, improving the efficiency of

fault diagnosis, low latency time, configuration flexibility and

enhancing the level of intelligent control. Sub systems (ECUs)

require the exchange of particular performance and position

information within defined communication latency. Therefore

the requirement for each ECU is to communicate via some

kind of network technology such as CAN (Controller Area

Network) bus. At present, some vehicle buses have been al-

ready put into use, such as CAN bus, LIN (Local Interconnect

Network) bus, Flexray bus etc.

. Before invention of CAN, D2B network is used in car

which uses ring topology which has disadvantages that it is not

reliable, if one node becomes faulty then whole system col-

lapse. Before CAN, electronic control units are connected in

mesh topology. More wiring is required to connect the various

ECUs. By using CAN protocol ECUs are connected in bus

topology. It offers high speed, less wiring is needed, and it is

more reliable because we can connect or delete any node ac-

cording to our requirement.

II. OVER VIEW OF CAN BUS PROTOCOL

CAN bus is a serial data communication protocol in-

vented by German BOSCH Corporation in the year 1986.

CAN is a network protocol which is designed for the car in-

dustry. Since data communication in car often have many sen-

sors transmitting small data packets, CAN supports data

frames with sizes only up to 8 bytes. Meanwhile, the 8 bytes

will not take the bus for a long time, so it ensures real-time

communication. CAN protocol has a large amount of over-

head, which is combined with a 15-bit CRC, makes CAN very

secure and reliable. The CAN protocol standardizes the physi-

cal and data link layers, which are the two lowest layers of the

open systems interconnection (OSI) communication model.

CAN protocol belong to the class of protocols denoted as car-

rier sense multiple access /collision avoidance (CSMA/CA).

The communication rate of CAN based network, depends on

the physical distances between the nodes. If the distance is less

than 40m, the rate can be up to 1Mbps. CAN bus Protocol has

the following properties:

1. Prioritization of messages

2. Guarantee of latency time

3. Configuration flexibility

4. Multicast reception with time synchronization

5. System wide data consistency

6. CAN protocol support Multi-master communication

7. Error detection and signaling

8. Automatic retransmission of corrupted messages as soon as

the bus is idle again

9. Distinction between temporary errors and permanent fail-

ures of nodes and autonomous switching off of defective

nodes.

 There are two message formats: Base frame format with 11

identifier bits and Extended frame format with 29 identifier

bits.

Figure 1. CAN Data Frame

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 6 1568 – 1573

1569
IJRITCC | June 2014, Available @ http://www.ijritcc.org

A. Hierarchical structure of CAN BUS

Architecture of CAN protocol based on OSI reference

model is as shown in figure 2. CAN protocol contain only

three layers, physical layer, data link layer and application

layer. Application layer has different protocols such as SAE

J1939, CANopen, DeviceNet, etc.

Figure 2. Hierarchical structure of CAN BUS

1. Physical Layer

The physical layer defines how the signals are actually trans-

mitted. Tasks include: signal level, bit representation and

transmission medium. Physical layer defines physical and

electrical characteristics of the network. Physical layer is same

for all the nodes on the same network. Physical layer is related

to bit encoding, decoding, bit timing and synchronization.

2. Data link layer

The data link layer is divided into two sub layers, logical link

control sub layer (LLC) and medium access sub layer (MAC).

Logical link control sub layer (LLC) accept the messages,

supports overload notification and recovery management. Me-

dium access sub layer (MAC) performs message framing, arbi-

tration, acknowledgment, error detection and signaling.

3. Application Layer

Application Layer is specified by user. CANOPEN, Device-

Net, SAEJ1938 be the implementation of CAN application

layer.

B. CAN Message Frames

CAN has four frame types

1. Data frame: a frame containing node data for transmission

2. Remote frame: a frame requesting the data

3. Error frame: a frame transmitted by any node detecting an

error

4. Overload frame: a frame to inject a delay between data

and/or remote frame

C. CAN Errors

1. CRC Error

A 15-bit Cyclic Redundancy Check (CRC) value is

calculated by the transmitting node and this 15-bit value is

transmitted in the CRC field. All nodes on the network receive

this message, calculate a CRC and verify that the CRC values

match. If the values do not match, a CRC error occurs

2. Acknowledge Error

In the Acknowledge Field of a message, the transmit-

ting node checks if the Acknowledge contains a dominant bit.

This dominant bit would acknowledge that at least one node

correctly received the message. If this bit is recessive, then no

node received the message properly. An Acknowledge Error

has occurred.

3. Form Error

If any node detects a dominant bit in one of the fol-

lowing four segments of the message: End of Frame, Inter

frame Space, Acknowledge Delimiter or CRC Delimiter, the

CAN protocol defines this to be a form violation and a Form

Error is generated.

4. Bit Error

A Bit Error occurs if a transmitter sends a dominant

bit and detects a recessive bit, or if it sends a recessive bit and

detects a dominant bit when monitoring the actual bus level

and comparing it to the bit that it has just sent.

5. Stuff Error

CAN protocol use a Non-Return to-Zero (NRZ)

transmission method. This means that the bit level is placed on

the bus for the entire bit time. Bit stuffing is used to allow re-

ceiving nodes to synchronize. If, between the Start of Frame

and the CRC Delimiter, six consecutive bits with the same

polarity are detected, then stuff Error occurs.

III. OVER VIEW OF SPI PROTOCOL

 MCP2515 is Stand-Alone CAN Controller with

SPI Interface. The MCP2515 interfaced with microcontroller

(LPC2148) via an industry standard Serial Peripheral Interface

(SPI). SPI is a full duplex serial interfaces. It can handle mul-

tiple masters and slaves being connected to a given bus. Only

a single master and a single slave can communicate on the

interface during a given data transfer. During a data transfer

the master always sends 8 to 16 bits of data to the slave, and

the slave always sends a byte of data to the master. 4 pins

SCK0, SSEL0, MISO0 and MOSI0 of LPC2148 are used for

SPI interface. SCK0 is input/output SPI clock signal used to

synchronize the transfer of data across the SPI interface.

SSEL0 is input SPI slave select signal is an active low signal

that indicates which slave is currently selected to participate in

a data transfer. MISO0 is input/output Master In Slave Out

signal. The MISO signal is a unidirectional signal used to

transfer serial data from the slave to the master. MOSI0 in-

put/output Master Out Slave In signal. The MOSI signal is a

unidirectional signal used to transfer serial data from the mas-

ter to the slave. The SPI contains 5 registers[6].

1. S0SPCR: SPI Control Register, this register controls the

operation of the SPI.

2. S0SPSR: SPI Status Register, this register shows the status

of the SPI.

3. S0SPDR: SPI Data Register, this bi-directional register pro-

vides transmit and receive data for the SPI.

4. S0SPCCR: SPI Clock Counter Register, this register con-

trols the frequency of a master SCK0.

5. S0SPINT: SPI Interrupt Flag, this register contains the inter-

rupt flag for the SPI interface.

A. Master operation

The following sequence describes a data transfer with the SPI

block when it is set up to be the master,

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 6 1568 – 1573

1570
IJRITCC | June 2014, Available @ http://www.ijritcc.org

1. Set the SPI clock counter register to the desired clock rate.

2. Set the SPI control register to the desired settings.

3. Write the data to transmit to the SPI data register. This write

starts the SPI data transfer.

4. Wait for the SPIF bit in the SPI status register to be set to 1

the SPIF bit will be set after the last cycle of the SPI data

transfer.

5. Read the SPI status register.

6. Read the received data from the SPI data register (optional).

7. Go to step 3 if more data is required to transmit.

B. Slave operation

 The following sequence describes how one should process

a data transfer with the SPI block when it is set up to be a

slave.

1. Set the SPI control register to the desired settings.

2. Write the data to transmit to the SPI data register (optional).

Note that this can only be done when a slave SPI transfer is

not in progress.

3. Wait for the SPIF bit in the SPI status register to be set to 1

the SPIF bit will be set after the last sampling clock edge of

the SPI data transfer.

4. Read the SPI status register.

5. Read the received data from the SPI data register (optional).

6. Go to step 2 if more data is required to transmit.

IV. HARDWARE DESIGN

 The block diagram for CAN bus communication sys-

tem is as shown in figure 3. Different nodes are nothing but

ECUs of vehicle system, which are connected to each other

through, CAN bus. Monitor node monitors information on bus

and provide it to computer for further analysis. VB6 software

is used for collection of data, analysis as well as fault diagno-

sis of the system.

Figure 3. Block Diagram

 The devices that are connected by a CAN network are

typically sensors, actuators, and other control devices. These

devices are not connected directly to the bus, but through a

host processor and a CAN controller as shown in above figure

IV. CAN node consist of host processor, CAN controller and

CAN transceiver. LPC2148 ARM7 TDMI-S processor is used

as host processor. MCP2515 is Stand-Alone CAN Controller

with SPI Interface. MCP2551 is used as CAN transceiver. The

figure 5 shows hardware module of CAN controller and CAN

transceiver. This module is connected to LPC2148 host pro-

cessor. TxCAN and RxCAN pins of the MCP2515 are con-

nected TxD and RxD pins of the MCP2551 respectively.

CANH and CANL pins of MCP2551 are connected to CAN

bus.

Figure 4. Detailed Block Diagram

Figure 5: Block Diagram of node

V. SOFTWARE DESIGN

 The software part of main program unit is divided

into: CAN initialization unit, message sending unit, message

receiving unit and interrupt service unit. We have designed

three nodes, named as Dashboard node, Indicator node and

Bus monitor node. Dashboard node and Indicator node are

communicating with each other while Bus monitor node moni-

tors messages available on CAN BUS and these messages are

send to PC. Dashboard node and Indicator node operates in

normal mode while Bus monitor node operates in listen only

mode. Block diagram of Dashboard node is as shown in figure

6. Brake switch is connected at P0.9 pin of LPC2148. AC Ok

indicator LED is connected at P0.31, relay is connected at

p0.12 and LCD display indicates the status of AC.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 6 1568 – 1573

1571
IJRITCC | June 2014, Available @ http://www.ijritcc.org

 ID distribution of Dashboard node is as shown in fol-

lowing figure 7.

Figure 6: Dashboard node

Figure 7: Dashboard node ID

 Block diagram of Indicator node is as shown in figure

8. AC switch is connected to P0.9 pin of LPC2148. Brake Ok

indicator LED is connected at P0.31 pin of LPC2148, LCD

display indicates the status of Brake Switch. ID distribution of

Indicator node is as shown in following figure 9. Block dia-

gram of Bus monitor node is as shown in figure 10.

Figure 8: Indicator node

Figure 9: Indicator node ID

Figure 10: Bus Monitor node

A. CAN Controller Initialization

CAN controller initialization include initialization of transmit

and receive buffer of CAN controller MCP2515. When initia-

lizing the CAN registers in the MCP2515, the system imme-

diately clear the read and write buffer, Configures the operat-

ing mode, bit timing register, filter and mask register, and in-

terrupt enable register.

B. CAN Message Sending

After initialization, the MCP2515 is in normal communication

status and is ready to work. The CAN message sending adopts

inquiry mode or it sends message when remote request is re-

ceived. In inquiry mode, after specific time interval, LPC2148

creates packet and sends data to CAN Controller transmit buf-

fer for further transmission.

C. CAN Message Receiving

There are two ways for messages receiving: inquiry mode and

interrupt mode. In system design, interrupt mode is imple-

mented. In interrupt mode, if MCP2515 CAN controller rece-

ives valid message in receive buffer, it generates interrupt sig-

nal on INT pin. Message is read by LPC2148 by using SPI

commands of MCP2515.

 Flow chart for Dashboard node and Indicator node is as

shown in figure 11 & 12

Figure 11: Flow chart for Dashboard node

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 6 1568 – 1573

1572
IJRITCC | June 2014, Available @ http://www.ijritcc.org

Figure 12: Flow chart for Indicator node

VI. RESULTS

 By using UART interface the CAN monitor achieves the

reception of CAN messages and time oriented buffering even

when dealing with very high bus loads and baud rates. CAN

monitor window allows the visualization of the BUS data at

the package level and its columns means the following,

1. Serial no. : Indicates number of the received message

2. Date and Time: Indicates the date and time at which data is

received

3. ID: Indicates the Identifier of the message

4. Std: Indicates that received message is standard or extended

5. Data: Indicates the data byte of the CAN package

6. Data Length: Indicates the length of the data byte of the

CAN package

 Different buttons are provided on CAN monitor window

to allow user to interact with CAN bus system. "Connect" but-

ton checks the connection of PC with hardware. "Start" button

starts the collection of messages and buffering, it also saves

the messages in database. "Stop" button stops message recep-

tion. "Clear All" button clears all contents of database. "Exit"

button exits from CAN monitor window.

 The output of the CAN Bus is observed on the DSO. The

output wave-form can be observed at TxCAN or RxCAN pins

of MCP2515 CAN controller with respect to ground terminal.

The output waveform shows that bit stream in a CAN bus

message is coded according to the Non-Return-to-Zero (NRZ)

method.

Figure 13: CAN Analyzer

Figure 14: CAN Bus output observed on the DSO

VII. CONCLUSION

 The basics of CAN Bus protocol can be understood.

The software and hardware can be used to construct a fully

working CAN bus for vehicle automation, at various levels of

complexity. Basics of packet structure can be seen and unders-

tood. CAN Analyzer collects CAN messages and allows time

oriented buffering of messages even when dealing with very

high bus loads and baud rates. It allows the visualization of the

data. Designed CAN Bus system may be adapted for actual

ECU node design of vehicle system. We can adapt GUI design

to make CAN Analyzer more powerful, versatile tool for the

development, testing and servicing of Controller Area Net-

work based systems.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 6 1568 – 1573

1573
IJRITCC | June 2014, Available @ http://www.ijritcc.org

VIII. REFERENCES

[1] Li Ran, Wu Junfeng, Wang Haiying, Li Gechen, “Design Method of
CAN BUS Network Communication Structure for Electric Vehicle”,
IFOST 2010 Proceedings IEEE.

[2] Yujia Wang, Hao Su, Mingjun Zhang, “CAN Bus Based
Communication System Research for Modular Underwater Vehicle”,
2011 IEEE DOI 10.1109/ICICTA.2011.

[3] He Yu1, Guihe Qin1,2,3, Zhizhong Tian1, Jinnan Dong1,3, “ Network-
based In-Vehicle Body Bus Control System” , 2010 IEEE.

[4] Chin E. Lin, Hung-Ming Yen, “A PROTOTYPE DUAL CAN-BUS
AVIONICS SYSTEM FOR SMALL AIRCRAFT TRANSPORTATION
SYSTEM”, 1-4244-0378-2/06/20.00 2006 IEEE..

[5] Chris Quigley,Richard McLaughlin, “ELECTRONIC SYSTEM
INTEGRATION FOR HYBRID AND ELECTRIC VEHICLES”

[6] UM10139, LPC214x User manual, Rev. 3, 4 October 2010

[7] LPC2141/42/44/46/48, Product data sheet, Rev. 03, 19 October 2007

[8] MikroDes MD2148 ARM7 kit Lab Manual.

[9] MCP2515 Data sheet, 2005 Microchip Technology Inc.

[10] MCP2551 Data sheet, 2007 Microchip Technology Inc.

[11] AN228, Application Note on “A CAN Physical Layer Discussion”, 2002
Microchip Technology Inc.

BIOGRAPHY

Ms. A. S. Shinde received her B.E. degree in

Electronics Engineering from Shivaji Uni-

versity at PVPIT, Budhgaon in 2009 and

received M.Tech in Electronics Engineering

from Walchand College of Engineering,

Sangli in 2012. Her area of interest is em-

bedded system. She published 1 Interna-

tional journal paper and 1 Ebook.

 Ms. A. S. Deshpande received her B.E. de-

gree in Electronics and telecommunication

from Pune University in 2009 and re-

ceived M.Tech in Electronics from Wal-

chand College of engineering, Sangli in

2012. Her area of interest is Digital Image

Processing and Communication Engineer-

ing. She published 1 International journal

papers

Mr. P. N. Kalamkar received his B.E. de-

gree in Electronics from Dr. Babasaheb

Ambedkar Marthwada University, Aura-

gabad in 2009 and received M.Tech in

Electronics from Walchand College of

engineering, Sangli in 2012. His area of

interest is Digital Image Processing and

VLSI system. He published 1 Interna-

tional journal papers.

Prof.A.R.Nichal received his B.E. degree in

Electronics and telecommunication from

Shivaji University at Ashta in 2010 and

received M.Tech in Electronics from Wal-

chand College of engineering, Sangli in

2012. His area of interest is Digital Image

Processing and embedded system. He pub-

lished 8 International journal papers, 1

Conference paper, 1 Ebook and He has one blog on Funda-

mentals of Image Processing, Matlab Basics and Embedded

System.

URL: www.imagelpcmatlab.blogspot.com

http://www.imagelpcmatlab.blogspot.com/

