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Abstract— This work addresses to a study on the different techniques of thresholding used for noise removal from an image using 

Discrete Wavelet Transform (DWT). The wavelet transform technique has already proven its capability for image denoising. But 

thresholding is the heart of noise removal from an image. Only the application of proper thresholding can remove noise from an 

image. The most popular thresholding are VisuShrink, SureShrink, BayesShrink etc. In this paper, the use of such popular 

thresholding techniques are discussed. 
Keywords-Discrete Wavelet Transform, additive white Gaussian noise, Thresholding, Image Denoise, VisuShrink, SureShrink, BayesShrink, 
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I.  INTRODUCTION 

Wavelet Transform has the capability to represent signals 

with a high degree of scarcity. Wavelet thresholding is a 

technique of signal estimation that exploits the capabilities of 

wavelet transform for noise removal from signals. A digital 

image can be thought of 2 dimensional signal and it can be 

expressed mathematically as a function of f(x,y), where x and 

y represent the spatial coordinate of the image, and f(x,y) 

carries the corresponding intensity value. 

Noise removal from images corrupted by additive white 

Gaussian noise (AWGN) are classical problem in image 

processing. Images can be corrupted by noise due to some 

common reason such as its acquisition, processing, 

compression, transmission, and reproduction. In the past few 

years, several successful researches focused on removing the 

noise from the image. Especially the case of AWGN, a 

number of techniques using wavelet-based thresholding. 

Donoho and Johnstone [2], [6] proposed hard and soft 

thresholding [1] methods for denoising. Wavelet shrinkage 

method proposed by Donoho [1], [3], and [4] is the pioneer 

work for noise removal from signal using the wavelet 

transform. 
The aim of this paper is to study various thresholding 

techniques [25] such as VisuShrink, SureShrink, BayesShrink, 
NormalShrink, NeighShrink and determining the best one for 
image denoising. 

II. WAVELET TRANSFORM 

The term wavelet means a small wave. The smallness refers 

to the condition that this (window) function is of finite length 

(compactly supported). The wave refers to the condition that 

this function is oscillatory [7], [8]. 

 
(a)        (b) 

Figure 1.  Representation of a (a) wave, and a (b) wavelet 

The wavelet transform (WT) is a powerful tool of signal 

processing for its multiresolutional possibilities [8]. Unlike the 

Fourier transform, the WT is suitable for handling the non-

stationary signals – variable frequency with respect to time. 

A. Continuous Wavelet Transform (CoWT) 

For a prototype function ψ (t) ∈ L2(ℜ) called the mother 

wavelet, the family of functions can be obtained by shifting 

and scaling this ψ (t) as [7], [8] 

 

Ψ𝑎 ,𝑏 𝑡 =  
1
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Where, a, b ∈ℜ, (a > 0). The CoWT of a function f (t) ∈ 
ℜ is then defined as 
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(2) 
Since, the CoWT behaves like orthonormal basis 

decomposition, it is isometric and it preserves energy [8]. 

Hence the function f(t) can be recovered from its transform by 

the following reconstruction formula 
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B. Discrete Wavelet Transform (DWT) 

The discrete wavelet transform (DWT) is a linear 

transformation that operates on a data vector whose length is 

an integer power of two, transforming it into a numerically 

different vector of the same length [8]. 

It separates data into different frequency components, and 

then matches each component with resolution to its scale. 

DWT is computed with a cascade of filters followed by a 

factor 2 subsampling (Fig. 2). 
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Figure 2.  Discrete Wavelet Transform Tree 

H and L denotes high and low-pass filters respectively, ↓2 

denotes subsampling. Outputs of these filters are given by 

equations (12) and (13).  

𝑎𝑗+1 𝑝 =   𝑙[𝑛 − 2𝑝]𝑎𝑗  𝑛 

+∞

𝑛=−∞

 

 (4) 

𝑑𝑗+1 𝑝 =   𝑕[𝑛 − 2𝑝]𝑎𝑗  𝑛 

+∞

𝑛=−∞

 

 (5) 

 

Elements aj are used for next step (scale) of the transform 

and elements dj, called wavelet coefficients, determine output 

of the transform. l[n] and h[n] are coefficients of low and 

high-pas filters respectively. Assume that on scale j+1 there is 

only half from number of a and d elements on scale j. 

DWT algorithm for two-dimensional pictures is similar. 

The DWT is performed firstly for all image rows and then for 

all columns (Fig. 5). 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.  Wavelet Decomposition for 2D Signals 

A vector contains energies of wavelet coefficients 

calculated in sub-bands at successive scales. As a result of this 

transform there are 4 subband images at each scale (Fig 4). 

 

a(n) h(n) 
h(n-1) 

h(n-2) 
v(n) d(n) 

v(n-1) d(n-1) 

v(n-2) d(n-2) 

Figure 4.  Sub band Images for Wavelet Decomposition 

Sub band image ‗a‘ is used only for DWT calculation at the 

next scale. 

III. NOISE REMOVAL FROM IMAGE USING THRESHOLDING 

Two main limitations in image accuracy are categorized as 

blur and noise. Blur is intrinsic to image acquisition systems, 

as digital images have a finite number of samples and must 

satisfy the Shannon–Nyquist sampling conditions. The second 

main image perturbation is noise. There are different types of 

noises that can affect an image. Some of them are salt and 

pepper noise, Poisson noise, Gaussian white noise etc. [10], 

[21]. Gaussian white noise is given by equation (6) 

 

Y = X + sqrt(variance) × random(s) + mean; (6) 

 

Where, X is the input image, Y is the output image, s is the 

size of X. The value of mean and variance is taken as input. In 

this paper the image denoising is done based on the image 

which is corrupted by Gaussian white noise. 

The image and noise model is given as: 

 

x = s + σ.g   (7) 

 

Where, s is an original image and x is a noisy image 

corrupted by additive white Gaussian noise g of standard 

deviation σ. Both images s and x are of size N by M (mostly 

M = N and always power of 2) [11-13]. 

The standard thresholding of wavelet coefficients is 

governed mainly by either ‗hard‘ or ‗soft‘ thresholding 

function [2] as shown in figure 5. The first function in Fig. 5(a) 

is a ‗hard‘ function, and Fig. 5(b) is a ‗soft‘ function. 

 

 

 

 

 

 

 
          (a)                  (b) 

 

Figure 5.  Thresholding functions; (a) hard, (b) soft 

The hard thresholding function is given as 

 

𝑧 = 𝑕𝑎𝑟𝑑 𝑤 =   
𝑤, 𝑓𝑜𝑟  𝑤 > 𝜆

0, 𝑓𝑜𝑟  𝑤 ≤ 𝜆
  

(8) 

Similarly, soft thresholding function is given as [14] 

 

𝑧 = 𝑠𝑜𝑓𝑡 𝑤  

=   
𝑠𝑖𝑔𝑛𝑢𝑚(𝑤)  ×  𝑚𝑎𝑥(|𝑤|  −  𝜆, 0), 𝑓𝑜𝑟  𝑤 > 𝜆

𝑤,                                                                    𝑓𝑜𝑟  𝑤 ≤ 𝜆
  

 (9) 

 

Where, w and z are the input and output wavelet 

coefficients respectively, λ is a selected threshold value for 

both (8) and (9). In this paper, the soft thresholding technique 

is used for all the shrinkage methods. 

Any digital image may have some amount of noise due to 

many reasons. Noise removal algorithm tries to remove this 

noise from the image in such a way that, the resulting denoised 
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image should not have any noise. The ability of capturing the 

energy from a signal can be done very easily by wavelet 

techniques for which a signal corrupted by Gaussian white 

noise. Thus noise removal of natural images becomes very 

effective by this technique. The basic experimental setup of 

the wavelet transform based image de-noising is showed in Fig. 

6. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.  Basic Steps for Image Denoising 

The performance of various denoising algorithms is 

quantitatively compared using MSE (Mean Square Error) [16] 

and PSNR [17] (Peak Signal to Noise Ratio) as 

  

𝑀𝑆𝐸 =  
1

𝑁𝑀
    𝑠 𝑛,𝑚 − 𝑦(𝑛,𝑚) 2

𝑀

𝑚=1

𝑁
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 (10) 

𝑃𝑆𝑁𝑅 =  10 log10  
2552

𝑀𝑆𝐸
  

  (11) 

Where, s is an original image and y(n,m) is a recovered 

image from a noisy image s(n,m). 

The problem of image denoising is mainly dependent upon 

the selection or determination of optimum threshold. It has 

been observed that if the value of the threshold is too low, then 

maximum noise elements will retain in the image and there 

will be very less difference between input and output image. 

On the other hand, if the threshold value is sufficiently or 

much higher, then the result will be the loss of noisy as well as 

original values of the image, resulting in too smooth output 

image [15]. The following are the methods of threshold 

selection for image denoising based on wavelet transform. 

A. VisuShrink 

The VisuShrink is a thresholding technique which is created 

by applying the Universal threshold proposed by Donoho and 

Johnstone [1-4]. This threshold is given by 

 

𝑇𝑈𝑁𝐼𝑉 =  𝜎 2𝑙𝑜𝑔𝑀   (12) 

 

Where, σ is the noise variance and M denotes the total 

number of pixels present in the image. It is shown in [2], [23] 

that the maximum of any M values iid (independent and 

identically distributed) as N(0,σ
2
 ) will be smaller than the 

universal threshold with high probability, with the probability 

approaching 1 as M increases. Thus, with high probability, a 

pure noise signal is estimated as being identically zero. 

However, for noise removal from image, VisuShrink is found 

to be very productive for generating smooth image. This is 

because the universal threshold or UT is derived with high 

probability constraints, the estimate should be at least as 

smooth as the original signal. So the UT tends to be high for 

large values of M, removing many signal coefficients along 

with the noise. So, this threshold does not adapt well to 

discontinuities in the signal. 

B. SureShrink 

The subband adaptive threshold [22-24] is applied for 

calculating the SureShrink threshold. A separate threshold 

value is calculated for each detail subband based upon SURE 

(Stein‘s unbiased estimator for risk), a method for estimating 

the unbiased loss ||μˆ −μ||
2
. In our case let wavelet coefficients 

in the ith subband be {Xi: i =1,…, d}, μˆ is the soft threshold 

estimator Xˆi = ηt(Xi) , Stein‘s result [2] is applied to get an 

unbiased estimate of the risk E||μˆ
(t)

(x) –μ|| : 

 

𝑆𝑈𝑅𝐸 𝑡,𝑋 = 𝑑 − 2# 𝑖:𝑋𝑖 ≤ 𝑡 +  min( 𝑋𝑖 , 𝑡)
2

𝑑

𝑖=1

 

(13) 

For an observed vector x (set of noisy wavelet coefficients 

in a subband), we could find the threshold as  

 

𝑇𝑆𝑈𝑅𝐸 = arg min 𝑆𝑈𝑅𝐸(𝑡,𝑋)  (14) 

 

As the SureShrink gives better result than VisuShrink in 

terms of PSNR as it is subband adaptive technique. 

C. BayesShrink 

BayesShrink [9], [18], [22-23], [26] is an adaptive threshold 

for image denoising via wavelet soft-thresholding. This 

method is useful for images corrupted by Gaussian white noise. 

The threshold is generated by generalized Gaussian 

distribution (GGD) for the wavelet coefficients in each 

subband and try to find the threshold T which minimizes the 

Bayesian Risk. The reconstruction using BayesShrink is 

smoother and more visually appealing than one obtained using 

SureShrink. The basic model is expressed as follows: 

 

Y = X + V   (15) 

 

Here Y is the wavelet transform of the degraded image, X is 

the wavelet transform of the original image, and V denotes the 

wavelet transform of the noise components following the 

Gaussian distribution N (0, σv
2
). Here, since X and V are 

mutually independent, the variances σy
2
, σx

2
 and σv

2 
of y, x and 

v are given by 

σy
2
 = σx

2
 + σv

2   
 (16) 

 

The noise variance σv
2
 can be estimated from the first 

decomposition level diagonal subband a(n) (Fig. 4) by the 

robust and accurate median estimator [18]. 

 

𝜎𝑣
2 =  

𝑚𝑒𝑑𝑖𝑎𝑛  𝑎(𝑛)  

0.6745
 

2

 

  (17) 

 

The variance of the sub-band of degraded image can be 

estimated as: 
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where Am are the wavelet coefficients of sub-band under 

consideration, M is the total number of wavelet coefficient in 

that sub-band. 

The bayes shrink thresholding technique performs soft 

thresholding, with adaptive data driven, sub-band and level 

dependent near optimal threshold given by [18]: 

 

𝑇𝐵𝐴𝑌𝐸𝑆 =  

𝜎𝑣
2

𝜎𝑥
, 𝑖𝑓 𝜎𝑣

2 <  𝜎𝑦
2

max  𝐴𝑚   , 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

  

    (19) 

 

Where, 𝜎𝑥 =   max⁡(𝜎𝑦
2 −  𝜎𝑣

2, 0) 

In the case, where σv
2 

> σy
2
, σx is taken to be zero, this 

means TBAYES→∞, or, in practice, TBAYES = max(|Am|), and all 

coefficients are set to zero. 

D. NornShrink 

The optimum threshold value for Normal Shrink or 

NormShrink is given by [19], [24]: 

 

𝑇𝑁𝑂𝑅𝑀 =
𝜆𝜎𝑣

2

𝜎𝑦
2

 

   (20) 

Where, the parameter λ is given by the following equation: 

 

𝜆 =  𝑙𝑜𝑔  
𝐿𝑘

𝐽
    (21) 

 

Lk is the length of the sub-band at kth scale. And, J is the 

total number of decomposition. σv is the estimated noise 

variance, calculated by equation (17) and σy is the standard 

deviation of the subband of noisy image, calculated by using 

equation (18). Normal Shrink also performs soft thresholding 

with the data driven subband dependent threshold TNORM, 

which is calculated by the equation (20). 

E. NeighShrink 

Let, g = {gij} denotes the matrix representation of the noisy 

input image. Then, w = Wg denotes the matrix of wavelet 

coefficients of the signal under consideration. For every value 

of wij, let Bij is a neighbouring window around wij, wij denotes 

the wavelet coefficient to be shrinked. The neighbouring 

window size can be represented as L×L, where L is a positive 

odd number. A 3×3 neighbouring window centered at the 

wavelet coefficient to be shrinked is shown in Fig 7. 

As per the concept of this technique, corresponding terms in 

the summation is omitted when the previous summation 

(equation 22) has pixel indexes out of the wavelet subband 

range. The shrinked wavelet coefficient according to the 

NeighShrink is given by this formula [20]: 

 

𝑤′𝑖𝑗 = 𝑤𝑖𝑗𝛽𝑖𝑗     (23) 

 

The shrinkage factor βij can be defined as: 

 

𝛽𝑖𝑗 =  1 −
𝑇𝑈𝑁𝐼𝑉

2

𝑆𝑖𝑗
   (24) 

 

Here, TUNIV is universal threshold given by equation (12). 

 

 

 

 

 

 

 

 

 

 

Figure 7.  An illustration of how neighbour shrinkage is done using a 3×3 

window centered at the wavelet coefficient to be shrinked 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

The experiment is done as shown in Fig 6. The experiments 

are conducted on natural gray scale test images like Lena and 

Boat of size 512×512. The kind of noise, added to original 

image, is Gaussian of different noise levels σ = 2 and 5. Then 

forward DWT is applied up to the desired level and then the 

corresponding threshold mechanism is applied, such as 

VisuShrink, SureShrink, NeighShrink etc. 

After this step, inverse DWT is applied to get the denoised 

image. The PSNR values as given in equation (10) and (11), 

are obtained as shown in table I. The PSNR from various 

methods are compared in Table I and the data are collected 

from an average of fifteen runs on the image Lena, Peppers 

and Boat of size 512×512. It is a comparison between Visu 

Shrink, SURE Shrink, Bayes Shrink, Normal Shrink and 

Neigh Shrink 

TABLE I 

PSNR VALUES FOR IMAGES OF SIZE 512×512 

Image 

Name 

Shrinkage Technique 

Visu 

Shrink 

SURE 

Shrink 

Bayes 

Shrink 

Norm 

Shrink 

Neigh 

Shrink 

lena      

σ = 2 26.1803 33.7220 35.9144 35.0045 35.9928 

σ = 5 19.1898 19.5900 35.0903 33.7347 35.8830 

peppers      

σ = 2 26.3049 33.7821 36.8849 36.1934 36.9494 

σ = 5 19.2599 19.6490 35.7767 35.3154 35.6305 

boat      

σ = 2 25.9841 33.6372 35.3604 35.0121 35.8012 

σ = 5 19.0265 19.4223 34.3730 34.0192 34.5619 

 

From the PSNR values shown in table I, it is very much 

clear that, as we increase the value of noise level (σ), PSNR 

value gradually decreases. 

After applying different shrinkage techniques, the denoised 

images are obtained. Some of them are shown in the Fig 8-11. 

 

Wavelet  

coefficient 

To be shrinked 

 

3×3 window Bij 
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(a)       (b) 

Figure 8.  Experimental Image of lena (512×512): (a) Original, (b) After 

adding Gaussian White Noise of σ=2, variance=30 

 
Figure 9.  From top left clockwise, noisy image, denoised images using 

VisuShrink, BayesShrink and SureShrink techniques respectively 

 
(a)   (b)  (c) 

Figure 10.  Pepper Image is taken for experiment; (a)noisy image, (b)denoised 

image using VisuShrink, (c) denoised image using NeighShrink 

The window size for neigh shrink is taken in this experiment 

is 5×5, and the output obtained is shown in Fig. 10(c). 

Different images have given different values of PSNR, but it 

can be seen that each shrinkage technique is producing 

consistent result. That is, for a single image, all shrinkages are 

maintaining their property. 

 

 
(a)     (b) 

 

 
Figure 11.  Boat Image; (a) noisy input image, (b) denoised image using 

VisuShrink, (c) using Norm Shrink, (d) using Neigh Shrink 

V. CONCLUSION 

In this paper, the advantages and applications of popular 
standard DWT and its extensions are realized for image 
denoising. The experiments were conducted for the study and 
understanding of different thresholding techniques which are 
the most popular. 

It was seen that wavelet thresholding is an effective method 
of denoising noisy signals. We first tested hard and soft on 
noisy versions of the standard 1-D signals and found the best 
threshold. We then investigated many soft thresholding 
schemes such as VisuShrink, SureShrink, BayesShrink, 
NormShrink and NeighShrink for denoising images. 

Individual software codes are developed for simulation of 
selected applications such as denoising and DWTs. The 
performance is statistically validated and compared to 
determine the advantages and limitations of all type of 
shrinkage techniques. Promising results are obtained using 
individual implementation of existing algorithms incorporating 
novel ideas into well-established frameworks. 

The results show that NeighShrink gives somewhat better 
result than other shrinkage techniques in terms of PSNR. 
However, in terms of processing time, universal thresholding 
and normal shrinkage are much faster than other methods. 
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