
International Journal on Recent and Innovation Trends in Computing and Communication                                                            ISSN: 2321-8169 

Volume: 2 Issue: 5                                                                                                                                                                                                 1230– 1234 

_______________________________________________________________________________________________ 

1230 
IJRITCC | Month 2014, Available @ http://www.ijritcc.org                                                                 

_______________________________________________________________________________________ 

A New Approach for Approximate Modeling and Controller Design of SISO 

Multiple Time Delay System 

P.Venkata Mahesh 

M Tech student 

Electrical Engineering Department 

National Institute of Technology 

Calicut, India 

vnktmahesh@gmail.com 

Shyma Muhammad 

Research scholar 

Electrical Engineering Department 

National Institute of Technology 

Calicut, India 

shymaanas@yahoo.com  

Dr. Sunil Kumar T.K. 

Assistant Professor 

Electrical Engineering Department 

National Institute of Technology 

Calicut, India 

tksunil@nitc.ac.in 

 

Abstract—This paper presents a new approach for approximation of multiple time delay transfer function model to a single 

input/output delay transfer function. The methodology uses concept of model matching technique of comparing an approximated 

generalized time moments (AGTM)/ approximated generalized markov parameters (AGMP) of one system representation to those 

of approximated models. A classical PI/PID Controller is designed for multiple time delay systems (MTDS) using the same 

methodology. Genetic algorithm is used for further fine tuning AGTM/AGMP matching method. Numerical examples are 

presented to demonstrate the effectiveness of the proposed method. 
Keywords- Multiple time delay systems, Model matching concept,AGTM/ AGMP matching  method, , Genetic algorithm. 
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I.  INTRODUCTION 

Time-Delay Systems (TDS) arise in many applications 

from diverse areas such as economy, biology, process systems, 

traffic flow and communication systems. Delays can appear 

due to various factors such as transport phenomena, 

computation of the control input, time-consuming information 

processing in measurement devices, etc. Time delay problems 

are often solved indirectly by using approximation. A widely 

used approximation method is the Pade approximation, which 

is a rational approximation and results in a shortened fraction 

as a substitute for the exponential time-delay term in the 
characteristic equation [1-2]. However, such an approach 

constitutes a limitation in accuracy, can lead to instability of 

the actual system and induce non-minimum phase and, thus, 

high-gain problems [3]. Prediction-based methods (such as 

Smith predictor [4], finite spectrum assignment (FSA)) [5], 

and adaptive Posicast [6] have been used to stabilize time-

delay systems by transforming the problem into a non-delay 

system. Such methods require model-based calculations, 

which may cause unexpected errors when applied to a real 

system. Furthermore, safe implementation of such methods is 

still an open problem due to computational issues. Controllers 

have also been designed using the Lyapunov framework (e.g., 

linear matrix inequalities (LMIs) or algebraic Riccati 

equations (AREs)) [7-8]. These methods require complex 

formulations, and can lead to conservative results and possibly 

redundant control. 

In the past decades, model approximation problem have 

received considerable attention. In the literature some 

important results reported such as Pade approximation, Routh 

approximation and many of their variants [1,2,9-12]. Most real 

processes cannot be accurately modeled without introducing 

delays. A high order model can be effectively represented by a 

low order one with a time delay. By introducing time delay to 

approximate model substantially the approximation might be 

improved [10,11]. Model reduction with time delay, response 

matching technique and genetic algorithms are developed in 

the literature [9-13]. 

In the case of Multiple Time Delay (MTD) system, the 

delay term is not only present in numerator but also in 

denominator of the transfer function [14-15]. This 

denominator delay increases the complexity of the system. 

Reasons for Multiple Time Delay are the complexities in the 

system‘s physical structure and its dynamics. 

      The mathematical models for many process control 

systems can be represented by a specific multiple time delay 

continuous time transfer function with a delay free 

denominator and a multiple time-delay numerator. Again it 

can be represented as a general multiple time delay continuous 

time transfer function with multiple time delays in both the 

denominator and numerator. 

Attempts have been made by researchers in past for 

development of a single delay model representation of MTD 

system. In [16], a method was proposed to convert  MTD 

system representation  into a transfer function model  with 

single input/output delay by applying approximation methods, 

Hankel matrices, singular value decomposition, modified z-

transform method [17] and minimal realization methods 

[18,19].  

The proposed method in this paper works on the same 

objective as in [16] but it is achieved by applying a new simple 

methodology. The methodology uses the concept of Model 

Matching technique and AGTM/ AGMP matching method 

[20]. 

The paper is organized as follows. Section 2, deal with the 

problem formulation. In section 3, two methodologies are 

proposed to convert the MTDS transfer function into a transfer 

function representation with a single time delay. Numerical 

examples are also given in this section to show the 

effectiveness of the proposed methods. Results are compared 

with that obtained in [16]. In section 4, controller is designed 
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for MTD system to achieve a desired response. Finally Section 

5 concludes the paper. 

II. PROBLEM FORMULATION 

Generally MTD systems are represented in state space 

form. A general Single Input Single Output MTD system 

having delays in states x(t), inputs u(t) and outputs y(t) is 

represented as in (1) 

)1(ζ)x(tCy(t)

γ)u(tBδ)x(tA(t)x




 

where 0δ  is delay in states, 0γ  is delay in input and 

0ς  is delay in output. A, B and C are constant system 

matrices with appropriate dimensions. 

A single input single output MTD system in transfer 

function form can be represented as Eqn. (2). 
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where )eN(s,
sTn  and )eD(s,

sTd  are numerator and 

denominator of the MTD system transfer function with delay 

time ‗Tn‘ and ‗Td‘ respectively. Tni and Tdj where i=1 to m, j=1 

to n are delay time associated corresponding to coefficients of 

the numerator and denominator. 

A general transfer function model with n poles, m zeros and 

time delay ‗τ‘ can be represented as, 
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The objective is to approximate multiple time delay transfer 

function in Eqn. (2) to the transfer function model with single 

input/output delay as in Eqn. (3).Thus 

(4))(  )eG(s, s

-Ts

ii ssG     

Where i=1,2,……,(n+m+1+1) and i is real or complex 

points in s-plane. 

III. MODELING METHODOLOGIES 

To convert MTDS into single delay transfer function two 

methods are proposed here. Method I yields a  non linear 

equations where as  method II results in  linear equations, 

solution of which gives desired unknown coefficients in the 

approximated model. 

A. Proposed  Method I 

Generate the unit-step response data of the MTDS transfer 

function. Select the model order to approximate the MTDS 

transfer function.  

 

The problem is to find the unknown coefficients and time 

delay ‗τ‘ of approximate model transfer function in Eqn. (4). 

AGTM/AGMP method is employed to get these unknowns 

coefficients. 

AGTM method [20] is matching the frequency response of 

actual and approximated models at different points in the s-

plane. These points are expansion points (nonzero real values). 

The number of expansion points is same as the number of 

unknowns in the Eqn. (4). Equate the response of actual and 

approximate transfer function at expansion points. Substitute 

the expansion points in Eqn. (4) and get the equations with 

unknown parameters. Here, in this case unknown is in the 

exponent so equations are nonlinear. Solve these equations with 

an initial vector ‗x0‘. 

(5)]τaa...aabb...b[bx d,00,01,01,0nn,00,01,01,0mm,00   

The solution of equations are unknown coefficients of 

approximate model transfer function and time delay. By using 

this solution form the approximated model with time delay. Get 

the step response data of this approximated model. The 

matching effectiveness of the approximate model is based on 

the performance index value ‗J‘. 

      (6)dt(t)y(t)yJ

0
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where ya(t) is actual MTDS step response and ym(t) is 

approximated model step response. Search for minimum ‗J‘ by 

varying expansion points, initial vector or both and select the 

corresponding model as the best approximated model. 

Example: 

To show the effectiveness of proposed approximated 

modeling methodology, let us consider a general multiple time 

delay transfer function with a long state delay in the 

denominator given by [8]. 

(7)
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Direct simulation of the MTDS transfer function in Eqn. (7) 

is not possible. Hence an alternate representation of the transfer 

function in Eqn. (7) is shown in Fig.1. It is noted that a sensor 

with dead time of 5 sec is in the output feedback loop, this 

delay would become as internal state delay in state space 

representation. This term is going to appear in the denominator 

of the transfer function. 
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Fig.1. Block diagram for unit step response generation 

The MTD system transfer function in Eqn. (7) is 

approximated to a second order denominator and first order 

numerator with a single input/output delay by applying method 

I. The minimum value of the performance index ‗J‘ is 0.0251 

with expansion point vector [0.1 0.5 0.8 1 1.2 0.3] and the 

corresponding initial vector [-12.0075 -12.0075 -12.0075 -

12.0075 -12.0075 -12.0075]. The approximated transfer 

function model obtained is, 
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B. Limitations of method I 

Here the equations are nonlinear and the solution depends 

on initial values. Also complexity will increase with increase in 

range and magnitude of expansion points, initial vectors or 

both. These limitations are overcome in method II. 

C. Proposed Method II 

This method matches the frequency response of the model 

on j axis of s-plane [21]. Compare the magnitude of Eqn. (4). 
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Rearranging Eqn. (4) one may yield, 
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Equate the phase angle on both sides of Eqn. (10). 
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By AGTM/AGMP method calculate the unknown 

coefficients in Eqn. (9). Make use these calculated unknown 

coefficients to find the delay ‗τ‘ in Eqn. (11) at the same 

expansion points. Form the approximate model with these 

calculated unknowns. Use the performance index in Eqn. (6) to 

judge the effectiveness of the approximation. One can use 

genetic algorithm to find the optimum expansion points. 

But the method in [21] matches the poles of the 

approximated model at the same points (repeated poles at same 

point). This is not valid for all the cases. To avoid this, the 

approximate model is changed to Eqn. (12). 
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      The first pole of Eqn. (12) is at ‗p‘ and the remaining poles 

are c1, c2… cn-1 distances away from the first pole in the 

opposite direction to origin. Similarly the first zero of Eqn. (12) 

is at ‗z‘ and remaining zeros are d1, d2… dm-1 distances away 

from the first zero in the opposite direction to origin in s-plane. 

Compare the magnitude and the phase on Eqn. (12). Use 

AGTM/AGMP method, form the approximate model and 

search for minimum performance index. 

As an example consider MTDS transfer function in Eqn. (7) 

which is approximated to three poles and two zeros transfer 

function with input/output delay using method II. The 

minimum performance index is 0.2081 with expansion points 

[0.0059 0.2765 -1.0071 -1.9401 -0.6866 -0.9092 -0.9490 

1.0972 -0.2772] and the approximated transfer function model 

is in Eqn. (13). 
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D. Results Comparisons 

Unit step response comparisons of actual MTDS, 

approximated model by method I and method II is shown in 

Fig.2. 

Comparisons of results with results by L.B.Xie [16] for 

time 0 to 70 sec is in Table 1. From the Table 1 the proposed 

method I show best matching among all the methods for the 

considered example and the approximated model order was 

reduced from 6 to 2. 
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Fig.2. Unit step response comparisons 

TABLE I.  COMPARISON OF RESULTS 

Parameter 
 L.B.Xie [16] Proposed 

Method I 

Proposed 

Method II 

Performance index 0.069 0.0251 0.2081 

IV. CONTROLLER DESION 

In this section a conventional PI or PID or LEAD/LAG 

controller is designed for MTDS. The control objective is to 

design a controller to MTDS to achieve desired response.  

The design methodology is a combination of model 

matching and AGTM/AGMP method. The control scheme is 

shown as block diagram in Fig.3. 

M(s)

K(s) )eG(s, Ts

u(s)

-

+

(s)Ym

(s)Yc

 
Fig.3. Block diagram of desired model and designed closed loop system 

Here M(s) is the model to be achieved with desired 

specifications (time/frequency domain), K(s) is higher order 

controller and )eG(s, Ts  is MTDF transfer function. 

By model matching method, 

(14)(s)y(s)y cm   

Thus 
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From Eqn. (15), 
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K(s) is again a multiple time delay transfer function. The 

general forms of the conventional controllers are given in Eqn.s 

(17) to (19). 
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The higher order controller K(s) is approximated to a 

conventional controller given in Eqn. (17) to (19) by using 

AGTM/AGMP method. Select the expansion points and should 

be equal to number of unknowns in the selected controller 

form. For example a PID controller has three unknowns in its 

form. They are KP, KI and KD. Equate K(s) to C(s) at expansion 

points. 
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Where ‗ne‘ is number of unknown parameters in and ‗δi‘ 

represents i
th
 the expansion point. Get the equations at 

expansion points and find the unknowns in Eqn. (20). Form the 

controller with these calculated values. The closed loop system 

with controller is in Eqn. (21).  
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Calculate the unit step response data of the model M(s) with 

desired specifications and also unit step response data of the 

formed closed loop system in Eqn. (21). Calculate the 

performance index J by Eqn. (22). 

(22)dt)(t)y(t)(yJ 2

0
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where ym(t) is unit step response data of desired model M(s) 

and yc(t)  is unit step response data of closed loop system with 

controller . Check for minimum value of performance index. 

Use genetic algorithm to find the optimum expansion points. 

Example 1 

To show the effectiveness of this method, a PI controller is 

designed for the MTDS transfer function in Eqn. (7) to achieve 

a model with specifications, time delay 2.5 sec, undamped 

natural frequency of 1 rad/sec and damping factor of 4. The 

model with these specifications is in Eqn. (23). 
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For this case using model matching methodology the higher 

order controller K(s) is, 
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For PI controller, optimum expansion points 0.9621, 0.1406 

and KP=0.0486, KI=0.0363. Unit step response comparisons of 

model with desired specifications and the closed loop controller 

are in Fig.4. 
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Fig.4. Unit step response comparisons (for example 1) 

Example 2 

For same MTDS transfer function in Eqn. (7) a PID 

controller is designed to achieve a model with specifications 

time delay 2 sec, undamped natural frequency of 0.5 rad/sec 

and damping factor 7. The model with these specifications is in 

Eqn. (25). 
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       Fig.5. Unit step response comparisons (for example 2) 
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The higher order controller K(s) for this case is, 
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For PID controller, optimum expansion points 0.0129, 

0.1338, 0.07 and KP=0.0101, KI=0.0133, KD=0.0467. Unit step 

response comparisons of model with desired specifications and 

the closed loop controller are in Fig.5. 

V. CONCLUSIONS 

This paper presented a new approach for approximation of 

multiple time delay system transfer function into a single 

transfer function with only single input/output delay. The 

proposed methods are simpler and shows best matching 

compared to the other methods in Literature. The order of 

approximation is also reduced with these methods. Controller is 

designed for MTDS transfer function by AGMT/AGMP 

method to achieve the desired response from the system. 
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