
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 5 1092– 1100

 1092
IJRITCC | May 2014, Available @ http://www.ijritcc.org

Removal of Data Vulnerabilities Using SQL (Seqel)

Hemant Kumar

M.Tech-Scholar, Galgotia‘s University,

Greater Noida, U.P.

S. Aravinth Kumar

M.Tech-Guide, Galgotia‘s University,

Greater Noida, U.P.

Abstract—SQL injection attacks are one of the severe threats for web applications. SQL injection is a security vulnerability that

occurs in the database layer of an application. SQL Injection is the act of passing SQL code into web applications, such attacks

target interactive web applications that employ database services. By employing SQL Injection Attacks, attackers can leak

confidential information such as credit card numbers, table structure, get the entire schema of the original database and even

corrupt the database. In this paper, I propose a cryptographic approach to prevent SQL injection attacks and also to eliminate SQL

Injection vulnerabilities up to some extent. The propose approach is a cryptographic countermeasure for such attacks. This

approach is based on a cryptographic hash-function, which computes the Hash value of user inputs, finds the database record

based on the user inputs and compares the encrypted hash value of the input fields against the hash value of the login information

stored in the database. In this way, this proposed approach prevents the SQL injection attacks.

Keywords- data, vulnerability, injection, database attacks, information, SQL.

__*****___

I. INTRODUCTION

 Web Applications are applications that can be accessed
over the Internet by using any web browser that runs on any
operating system and architecture. They have become
ubiquitous due to the convenience, flexibility, availability, and
interoperability that they provide[1]. Web Applications are
vulnerable to a variety of new security threats. SQLIAs are one
of the most significant of such threats[2]. SQL Injection
Attacks (SQLIAs) are increasing continuously and pose very
serious security risks because they can give attackers
unrestricted access to the database that underlie web
applications.

SQL injection is a code injection technique that exploits a

security vulnerability occurring in the database layer of an

application. it is where an attacker can trick a database server

into running an arbitrary, unauthorized, unintended SQL query

by piggybacking extra SQL elements on top of an existing,

predefined query that was intended to be executed by the

application. The application, which is generally, but not

necessarily, a web application, accepts user input and embeds

this input inside an SQL query. This query is sent to the

application‘s database server where it is executed[3].

A SQL injection attack consists of insertion or "injection"
of a SQL query via the input data from the client to the
application. A successful SQL injection exploit can read
sensitive data from the database, modify database data
(Insert/Update/Delete), execute administration operations on
the database (such as shutdown the DBMS), recover the
content of a given file present on the DBMS file system and in
some cases issue commands to the operating system. SQL
(Structured Query Language) is a textual language used to
interact with relational Database. The typical unit of execution
of SQL is the ‗query‘, which is a collection of statements that
typically return a single ‗result set‘. SQL statements can
modify the structure of databases and manipulate the contents
of databases (using Data Definition Language statements, or
‗DDL‘) and manipulate the contents of databases(using Data
Manipulation Language statements, or ‗DML‘). SQL Injection

occurs when an attacker is able to insert a series of SQL
statements into a ‗query‘ by manipulating data input into an
application[4,5]. These attacks could be better explained with
the help of following :
User submits login and pin for access the database as “doe”

and “123,” the application dynamically builds the query given

below[1]:

SELECT acct FROM users WHERE login=‟doe‟ AND

pin=123

Attacker enters “‟‟ OR 1=1- -„” as the username and any value

as the pin (for example, ―0‖), the resulting query :

SELECT acct FROM users WHERE login=‟‟ OR 1=1- -„

AND pin=0

Another, user submits login and password for access the

database as “guest” and “secret,” the application dynamically

builds the query given below[6]:

Select member_id, member_level from members where

member_login=‟guest‟ and member_password = „secret‟‟‟

A malicious user enter input “‟ or 1=1- -“ in the first field and

leave the second input field as blank. The resultant query will

be:

Select member_id, member_level from members where

member_login=‟‟or 1=1- -„ and member_password = „‟‟‟

After a exhaustive literature review of SQL injection attacks,

including [7,8,9,10,11,12,13,14]. A typical SQL statement for

SQL injection attack will look the statement as follows:

SELECT * FROM Users WHERE User_id=‟abc‟ AND

Password=.‟tcy12‟

This statement will retrieve the User_id and Password column

from the user‘s table, returning all rows in the table where

User_id is abc and password is tcy12. An important point to

note here is that the string literals „abc‟ and „tcy12‟ are

delimited with single quotes. Now, presuming that the User_id

and Password fields are being gathered from user supplied

input at the time user logins through web page, an attacker

might be able to ‗inject‘ SQL query, by inputting values into

web applications like this:

User_id: =‟OR‟‟=’

Password: =‟OR‟‟=‟

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 5 1092– 1100

 1093
IJRITCC | May 2014, Available @ http://www.ijritcc.org

The ‗query string‘ becomes like this:

SELECT * FROM Users WHERE User_id= „‟ =‟OR‟‟=‟

AND Password= „‟ =‟OR‟‟=‟

Now, when database attempts to run this query, it simply

executes without giving any error. With the help of above

inputs, the attacker could log in as the first user in the user‘s

table and can access the information in the database without

having a valid login. By this way, attacker could gain access to

unauthorized information.

2. LITERATURE REVIEW

Chris Anley[15] discussed in detail about the common SQL

injection techniques, as it applies to the popular Microsoft

Internet Information Server/Active Server Pages/SQL Server

platform. It discussed the various ways in which SQL can be

injected into web applications and addresses some of the data

validation and database lockdown issues that are related to this

class of attack. According to William G.J. Halfond[16] SQL

injection refers to a class of code injection attacks in which

data provided by the user is included in a SQL query in such a

way that part of the user‘s input is treated as SQL code. Sagar

Joshi[17] categories SQLIAs against databases in four ways:

1. SQL Manipulation: manipulation is process of modifying

the SQL statements by using various operations such as

UNION .Another way for implementing SQL Injection

using SQL Manipulation method is by changing the

where clause of the SQL statement to get different

results.

2. Code Injection: Code injection is process of inserting new

SQL statements or database commands into the

vulnerable SQL statement. One of the code injection

attacks is to append a SQL Server EXECUTE command

to the vulnerable SQL statement. This type of attack is

only possible when multiple SQL statements per database

request are supported.

3. Function Call Injection: Function call injection is process

of inserting various database function calls into a

vulnerable SQL statement. These function calls could be

making operating system calls or manipulate data in the

database.

4. Buffer Overflows: Buffer overflow is caused by using

function call injection. For most of the commercial and

open source databases, patches are available. This type

of attack is possible when the server is unpatched.

SQL injection attacks are not limited to SQL Server [18].

Other databases, including Oracle, MySQL, DB2, Sybase, and

others are susceptible to this type of attack. SQL injection

attacks are possible because the SQL language contains a

number of features that make it quite powerful and flexible,

namely:

1. The ability to embed comments in a SQL statement using a

pair of hyphens.

2. The ability to string multiple SQL statements together and

to execute them in a

batch.

3. The ability to use SQL to query metadata from a standard

set of system tables.

Forms of SQL Injection Vulnerabilities
There are four forms of SQL Injection Vulnerabilities:

Incorrectly filtered escape characters

 Incorrect type handling

 Vulnerabilities inside the database server

 Blind SQL Injection

 Conditional Errors

 Time Delay

3. SQL INJECTION IMPACT ON THE REAL WORLD

Due to the large number of sites successfully compromised,

and the lack of one-to-one news stories of each compromise,

the data that is represented within the web hacking incident

database (WHID) Outcome and Attack statistics do not

accurately reflect the total impact of these attacks. There are a

few high-profile WHID entries specific to, these attacks

however, the data is significantly skewed and hide their true

impact[23].

The mass SQL Injection bot payload was a script that would

alter the contents of the back-end database and inject

malicious JavaScript. The novel approach employed by these

attacks was that the SQL Injection scripts could ―generically‖

enumerate and update the database tables all in one request.

Normally, attackers had to conduct manual reconnaissance in

order to first enumerate the database details before they could

inject the final payload. These steps were necessary because

all custom coded web applications were different so there was

no standard method to take the SQL Injection code and make

worm able code. That is until the mass SQL Injection bots

emerged. Breach Security Labs released three alerts related to

these bots in 2008[23]:

• Nihaorr1 Mass SQL Injection Bot

• Asprox Mass SQL Injection Bot

• Mass SQL Injection Bot Evolution

While the initial attack vector was SQL Injection, the overall

attack more closely resembles a Cross-Site Scripting

methodology as the end goal of the attack was to

havemalicious JavaScript execute within victim‘s‘ browsers.

The JavaScript calls up remote malicious code that attempts to

exploit various known browser flaws to install Trojans and

Keyloggers in order to steal login credentials to other web

applications.

Another notable attack methodology shift was that instead of

targeting sensitive information within a web site‘s database,

the attackers instead were focusing on the web site‘s large

customer base. The web site essentially becomes a malware

launching point when legitimate users visit the site.

3.1 Hacking for Profit

On the capitalistic side, 19% are aimed at stealing personal

information. Such ‗personal records‘ are easily traded on the

Internet and therefore are the easiest virtual commodity to

exchange for money[23].

Fig-3.1

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 5 1092– 1100

 1094
IJRITCC | May 2014, Available @ http://www.ijritcc.org

Table-3.1

Two other ways in which crooks exploit web sites to gain

money are the planting of malware and phishing. The first

demonstrates the role of web application hacks in the ever

growing client security problem: by adding malicious code to

the attacked web sites, the attackers convert hacked web sites

to a primary method of distributing viruses, Trojans and root

kits. They are replacing e-mails as the preferred delivery

method.

3.2 What vulnerabilities do hackers use?

Cross Site Scripting (XSS) has dominated other vulnerability

research projects: XSS is the most common vulnerability

found by pen testers according to the Web Application

Security Consortium‘s Statistics Project and tops the OWASP

Top 10 2007 release. While there is little debate that XSS

vulnerabilities are rampant, WHID focuses instead on

monitoring actual security incidents and not vulnerabilities.

Incidents are security breaches in which hackers actually

exploited a vulnerable web site whereas vulnerabilities only

report that a web site could be exploited. Actual security

breaches are more significant as they indicate both that a

vulnerable web site is exploitable and that hackers have an

interest, financial or other, in exploiting it.

Table-3.2

When focusing on incidents rather than vulnerabilities, we

found that SQL injection attacks top the list with 30% of the

incidents (20% in 2007). As mentioned in the previous section,

keep in mind that the actual number of successful SQL

Injection attacks was actually much higher than what is

reported in WHID due to the Mass SQL Injection Bot attacks.

XSS attacks were only 3rd with 8% (4th with 12% in 2007). It

seems that while it is easier to find XSS vulnerabilities as the

vulnerability is reflected to the client, it is somewhat harder to

take advantage of them for profit driven attacks.

The table 3.2 displayed above highlights one important factor -

the unknown. 29% percent of the incidents reported were

reported without specifying the attack method[24]. This lack

of attack vector confirmation may be attributed to a

combination of two main factors:

1. Lack of Visibility of Web Traffic - Organizations

have not properly instrumented their web

application infrastructure in a way to

providemechanisms are not in place, often

attacks and successful compromises go by

unnoticed for extended periods of time. The

longer the intrusion lasts, the more severe the

aftermath is. Visibility into HTTP traffic is one

of the major reasons why organizations often

deploy a web application firewall.

2. Resistant to Public Disclosure - Most organizations

are reluctant to publicly disclose the details of

the compromise for fear of public perception and

possible impact to customer confidence or

competitive advantage.

In many cases we feel that this lack of disclosure, apart from

skewing statistics, prevents fixing the root cause of the

problem. This is most noticeable in malware-planting

incidents, in which the focus of the remediation process is

removing the malware from the site rather than fixing the

vulnerabilities that enabled attackers to gain access in the first

place. But probably the main lesson is that we know too little.

With so little information about real-world attacks, threat

modeling requires collecting information from many different

sources, each providing a partial and perhaps even biased

view.

It is noteworthy that some top OWASP Top 10 vulnerabilities

such as Cross Site Request Forgery (CSRF) and malicious file

execution are not as widely exploited.

3.3 Which types of organizations are attacked most often?

Another aspect we looked into is the type of organizations

attackers chose as targets. We found that the largest category

of hacked organizations is government and related

organizations (Law Enforcement and Politics). Combine those

categories with education in 6th place and it appears that the

non-commercial sector represents the primary target for

hackers. Government is a prime target due to ideological

reasons, while universitiesare more open than other

organizations. These statistics, however, are biased, to a

degree, as the public disclosure requirements of government

and other public organizations are much broader than those of

commercial organizations[23].

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 5 1092– 1100

 1095
IJRITCC | May 2014, Available @ http://www.ijritcc.org

Fig-2.2

Table-2.3

retail shops, comprising mostly e-commerce sites, media

companies and pure Internet services such as search engines

and service providers. It seems that these companies do not

compensate for the higher exposure they incur, with the proper

security procedures.

Financial institutions on the other hand, were much lower on

the list in 2007, and moved up to fourth place in 2008. Two

possible explanations are that they have being targeted

more by for profit attackers or that with the current Economic

situations are being forced to disclose more.

4. TESTING FOR SQL INJECTION & DATABASE

FOOT PRINTING

4.1 Testing for SQL Injection

SQL Injection attacks can be divided into the following three

classes[25]:

Inband: Data is extracted using the same channel that is used

to inject the SQL code. This is the most straightforward kind

of attack, in which the retrieved data is presented directly in

the application web page.

Out-of-band: Data is retrieved using a different channel (e.g.,

an email with the results of the query is generated and sent to

the tester).

Inferential: There is no actual transfer of data, but the tester is

able to reconstruct the information by sending particular

requests and observing the resulting behavior of the DB

Server.

Independent of the attack class, a successful SQL Injection

attack requires the attacker to craft a syntactically correct SQL

Query. If the application returns an error message generated

by an incorrect query, then it is easy to reconstruct the logic of

the original query and, therefore, understand how to perform

the injection correctly. However, if the application hides the

error details, then the tester must be able to reverse engineer

the logic of the original query. The latter case is known as

"Blind SQL Injection".

4.1.1 SQL Injection Detection

The first step in this test is to understand when our application

connects to a DB Server in order to access some data. Typical

examples of cases when an Application needs to talk to a DB

include[25]: Authentication forms: when authentication is

performed using a web form, chances are that the user

credentials are checked against a database that contains all

usernames and passwords (or, better, password hashes).

Search engines: the string submitted by the user could be

used in a SQL query that extracts all relevant records from a

database.

E-Commerce sites: the products and their characteristics

(price, description, availability) are very likely to be stored in

a relational database.

The tester has to make a list of all input fields whose values

could be used in crafting a SQL query, including the hidden

fields of POST requests and then test them separately, trying

to interfere with the query and to generate an error. The very

first test usually consists of adding a single quote (') or a

semicolon (;) to the field under test. The first is used in SQL as

a string terminator and, if not filtered by the application,

would lead to an incorrect query. The second is used to end a

SQL statement and, if it is not filtered, it is also likely to

generate an error. The output of a vulnerable field might

resemble the following (on a Microsoft SQL Server, in this

case):

Microsoft OLE DB Provider for ODBC Drivers error

'80040e14'

[Microsoft][ODBC SQL Server Driver][SQL

Server]Unclosed quotation mark before

the character string ''.

/target/target.asp,

Also comments (--) and other SQL keywords like 'AND' and

'OR' can be used to try to modify the query. A very simple but

sometimes still effective technique is simply to insert a string

where a number is expected, as an error like the following

might be generated:

Microsoft OLE DB Provider for ODBC Drivers error

'80040e07'

[Microsoft][ODBC SQL Server Driver][SQL

Server]Syntax error converting the

varchar value 'test' to a column of data type int.

/target/target.asp,

A full error message, like those in the examples, provides a

wealth of information to the tester in order to mount a

successful injection. However, applications often do not

provide so much detail: a simple '500 Server Error' or a

custom error page might be issued, meaning that we need to

use blind injection techniques. In any case, it is very important

to test *each field separately*: only one variable must vary

while all the other remain constant, in order to precisely

understand which parameters are vulnerable and which are

not.

4.1.2 Standard SQL Injection Testing

Consider the following SQL query:

SELECT * FROM Users WHERE Username='$username'

AND Password='$password'

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 5 1092– 1100

 1096
IJRITCC | May 2014, Available @ http://www.ijritcc.org

A similar query is generally used from the web application in

order to authenticate a user. If the query returns a value it

means that inside the database a user with that credentials

exists, then the user is allowed to login to the system,

otherwise the access is denied. The values of the input fields

are generally obtained from the user through a web form.

Suppose we insert the following Username and Password

values:

$username = 1' or '1' = '1

$password = 1' or '1' = '1

The query will be:

SELECT * FROM Users WHERE Username='1' OR '1' =

'1' AND Password='1' OR '1' = '1'

If we suppose that the values of the parameters are sent to the

server through the GET method, and if the domain of the

vulnerable web site is www.example.com, the request that

we'll carry out will be:

http://www.example.com/index.php?username=1'%20or%

20'1'%20=%20'1&password=1'%20or%20'1'%20=%20'1

After a short analysis we notice that the query returns a value

(or a set of values) because the condition is always true (OR

1=1). In this way the system has authenticated the user without

knowing the username and password. In some systems the first

row of a user table would be an administrator user. This may

be the profile returned in some cases. Another example of

query is the following:

SELECT * FROM Users WHERE

((Username='$username') AND

(Password=MD5('$password')))

In this case, there are two problems, one due to the use of the

parentheses and one due to the use of MD5 hash function.

First of all, we resolve the problem of the parentheses. That

simply consists of adding a number of closing parentheses

until we obtain a corrected query. To resolve the second

problem, we try to invalidate the second condition. We add to

our query a final symbol that means that a comment is

beginning. In this way, everything that follows such symbol is

considered a comment. Every DBMS has its own symbols of

comment, however, a common symbol to the greater part of

the database is /*. In Oracle the symbol is "--". This said, the

values that we'll use as Username and Password are:

$username = 1' or '1' = '1'))/*

$password = foo

In this way, we'll get the following query:

SELECT * FROM Users WHERE ((Username='1' or '1' =

'1'))/*') AND (Password=MD5('$password')))

The URL request will be:

http://www.example.com/index.php?username=1'%20or%

20'1'%20=%20'1'))/*&password=foo

Which returns a number of values. Sometimes, the

authentication code verifies that the number of returned tuple

is exactly equal to 1. In the previous examples, this situation

would be difficult (in the database there is only one value per

user). In order to go around this problem, it is enough to insert

a SQL command that imposes the condition that the number of

the returned tuple must be one. (One record returned) In order

to reach this goal, we use the operator "LIMIT <num>", where

<num> is the number of the tuples that we expect to be

returned. With respect to the previous example, the value of

the fields Username and Password will be modified as follows:

$username = 1' or '1' = '1')) LIMIT 1/*

$password = foo

In this way, we create a request like the follow:

http://www.example.com/index.php?username=1'%20or%

20'1'%20=%20'1'))%20LIMIT%201/*&password=foo

4.1.3 Union Query SQL Injection Testing

Another test involves the use of the UNION operator. This

operator is used in SQL injections to join a query, purposely

forged by the tester, to the original query. The result of the

forged query will be joined to the result of the original query,

allowing the tester to obtain the values of fields of other tables.

We suppose for our examples that the query executed from the

server is the following:

SELECT Name, Phone, Address FROM Users WHERE

Id=$id

We will set the following Id value:

$id=1 UNION ALL SELECT creditCardNumber,1,1

FROM CreditCarTable

We will have the following query:

SELECT Name, Phone, Address FROM Users WHERE

Id=1 UNION ALL SELECT creditCardNumber,1,1

FROM CreditCarTable

which will join the result of the original query with all the

credit card users. The keyword ALL is necessary to get around

queries that use the keyword DISTINCT. Moreover, we notice

that beyond the credit card numbers, we have selected other

two values. These two values are necessary, because the two

query must have an equal number of parameters, in order to

avoid a syntax error.

4.1.4 Blind SQL Injection Testing

We have pointed out that there is another category of SQL

injection, called Blind SQL Injection, in which nothing is

known on the outcome of an operation. For example, this

behavior happens in cases where the programmer has created a

custom error page that does not reveal anything on the

structure of the query or on the database. (The page does not

return a SQL error, it may just return a HTTP 500). By using

the inference methods, it is possible to avoid this obstacle and

thus to succeed to recover the values of some desired fields.

This method consists of carrying out a series of Boolean

queries to the server, observing the answers and finally

deducing the meaning of such answers. We consider, as

always, the www.example.com domain and we suppose that it

contains a parameter named id vulnerable to SQL injection.

This means that carrying out the following request:

http://www.example.com/index.php?id=1'

we will get one page with a custom message error which is

due to a syntactic error in the query. We suppose that the

query executed on the server is:

SELECT field1, field2, field3 FROM Users WHERE

Id='$Id'

which is exploitable through the methods seen previously.

What we want to obtain is the values of the username field.

The tests that we will execute will allow us to obtain the value

of the username field, extracting such value character by

character. This ispossible through the use of some standard

functions, present practically in every database. For our

examples, we will use the following pseudo-functions:

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 5 1092– 1100

 1097
IJRITCC | May 2014, Available @ http://www.ijritcc.org

SUBSTRING (text, start, length): it returns a substring

starting from the position "start" of text and of length "length".

If "start" is greater than the length of text, the function returns

a null value.

ASCII (char): it gives back ASCII value of the input

character. A null value is returned if char is 0.

LENGTH (text): it gives back the length in characters of the

input text.

Through such functions, we will execute our tests on the first

character and, when we have discovered the value, we will

pass to the second and so on, until we will have discovered the

entire value. The tests will take advantage of the function

SUBSTRING, in order to select only one character at a time

(selecting a single character means to impose the length

parameter to 1), and the function ASCII, in order to obtain the

ASCII value, so that we can do numerical comparison. The

results of the comparison will be done with all the values of

the ASCII table, until the right value is found. As an example,

we will use the following value for Id:

$Id=1' AND ASCII(SUBSTRING(username,1,1))=97 AND

'1'='1

that creates the following query (from now on, we will call it

"inferential query"):

SELECT field1, field2, field3 FROM Users WHERE Id='1'

AND ASCII(SUBSTRING(username,1,1))=97 AND '1'='1'

The previous example returns a result if and only if the first

character of the field username is equal to the ASCII value 97.

If we get a false value, then we increase the index of the

ASCII table from 97 to 98 and we repeat the request. If instead

we obtain a true value, we set to zero the index of the ASCII

table and we analyze the next character, modifying the

parameters of the SUBSTRING function. The problem is to

understand in which way we can distinguish tests returning a

true value from those that return false. To do this, we create a

query that always returns false. This is possible by using the

following value for Id:

$Id=1' AND '1' = '2

by which will create the following query:

SELECT field1, field2, field3 FROM Users WHERE Id='1'

AND '1' = '2'

The obtained response from the server (that is HTML code)

will be the false value for our tests. This is enough to verify

whether the value obtained from the execution of the

inferential query is equal to the value obtained with the test

executed before. Sometimes, this method does not work. If the

server returns two different pages as a result of two identical

consecutive web requests, we will not be able to discriminate

the true value from the false value. In these particular cases, it

is necessary to use particular filters that allow us to eliminate

the code that changes between the two requests and to obtain a

template. Later on, for every inferential request executed, we

will extract the relative template from the response using the

same function, and we will perform a control between the two

templates in order to decide the result of the test.

In the previous discussion, we haven't dealt with the problem

of determining the termination condition for out tests, i.e.,

when we should end the inference procedure. A techniques to

do this uses one characteristic of the SUBSTRING function

and the LENGTH function. When the test compares the

current character with the ASCII code 0 (i.e., the value null)

and the test returns the value true, then either we are done with

the inference procedure (we have scanned the whole string), or

the value we have analyzed contains the null character.

We will insert the following value for the field Id:

$Id=1' AND LENGTH(username)=N AND '1' = '1

Where N is the number of characters that we have analyzed up

to now (not counting the null value). The query will be:

SELECT field1, field2, field3 FROM Users WHERE Id='1'

AND LENGTH(username)=N AND '1' = '1'

The query returns either true or false. If we obtain true, then

we have completed inference and, therefore, we know the

value of the parameter. If we obtain false, this means that the

null character is present in the value of the parameter, and we

must continue to analyze the next parameter until we find

another null value.

4.1.5 Stored Procedure Injection

Question: How can the risk of SQL injection be eliminated?

Answer: Stored procedures. I have seen this answer too many

times without qualifications. Merely the use of stored

procedures does not assist in the mitigation of SQL injection.

If not handled properly, dynamic SQL within stored

procedures can be just as vulnerable to SQL injection as

dynamic SQL within a web page. When using dynamic SQL

within a stored procedure, the application must properly

sanitize the user input to eliminate the risk of code injection. If

not sanitized, the user could enter malicious SQL that will be

executed within the stored procedure.

Black box testing uses SQL injection to compromise the

system. Consider the following SQL Server Stored Procedure:

Create procedure user_login @username varchar(20),

@passwd varchar(20) As

Declare @sqlstring varchar(250)

Set @sqlstring = „

Select 1 from users

Where username = „ + @username + „ and passwd = „ +

@passwd

exec(@sqlstring)

Go

User input:

Any username or 1=1'

Any password

This procedure does not sanitize the input, therefore allowing

the return value to show an existing record with these

parameters.

4.2 Database Foot printing

1) 4.2.1 Knowing Database Tables/Columns[26]

Every attacker would try to get all the information regarding

the database design of the target application in order to make

maximum of the opportunity and launch a systematic attack.

Let‘s assume that there is a PHP page used for User Login

developed by a very naïve developer in which the there is no

custom error handling and the attacker has find out that the

page is open to SQL injection attack by injecting in the

username field. The page uses following SQL statement to

verify the users credentials in the database.

Select * from users where username = „abc‟ and password

= „tcy12‟

Step1: Knowing Database Tables/Columns

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 5 1092– 1100

 1098
IJRITCC | May 2014, Available @ http://www.ijritcc.org

First, the attacker would want to establish the names of the

tables that the query operates on, and the names of the fields.

To do this, the attacker uses the 'having' clause of the 'select'

statement: User Name: ' having 1=1-- This provokes the

following error: Microsoft OLE DB Provider for ODBC

Drivers error '80040e14' [Microsoft][ODBC SQL Server

Driver][SQL Server] Column 'LoginManager.LoginId' is

invalid in the select list because it is not contained in an

aggregate function and there is no group by clause. So the

attacker now knows the table name and column name of the

first column in the query.

Step2: Knowing Database Tables/Columns

They can continue through the columns by introducing each

field into a 'group by' clause, as follows:

User Name: ' group by LoginManager.LoginId having 1=1 --

This produces the error

Microsoft OLE DB Provider for ODBC Drivers error

'80040e14'

[Microsoft][ODBC SQL Server Driver][SQL Server] Column

'LoginManager.Password' is invalid in the select list because it

is not contained in either an aggregate function or the group by

clause.

Step3: Knowing Database Tables/Columns
Eventually after using the string ‗ group by

LoginManager.Password having 1=1 – and getting the last

column (password), the attacker arrives at the following:

User Name: ' group by LoginManager.LoginId,

LoginManager.Password having 1=1— This produces no error

SQL statement is functionally equivalent to:

select * from LoginManager where LoginId = ' '

So the attacker now knows that the query is referencing only

the 'users' table, and is using the columns 'LoginId, Password',

in that order.

Step4: Knowing Database Tables/Columns It would be

useful if he could determine the types of each column. This

can be

achieved using a 'type conversion' error message, like this:

User Name: ' union select sum (LoginManager.LoginId) from

users—

This takes advantage of the fact that SQL server attempts to

apply the 'sum' clause before determining whether the number

of fields in the two row sets is equal. Attempting to calculate

the 'sum' of a textual field results in this message:

Microsoft OLE DB Provider for ODBC Drivers error

'80040e07'

[Microsoft][ODBC SQL Server Driver][SQL Server] The sum

or average aggregate operation cannot take a varchar data type

as an argument. Above message gives us that the 'LoginId'

field has type 'varchar'.

Step5: Knowing Database Tables/Columns
On the other hand, we attempt to calculate the sum () of a

numeric type, we get an error message telling us that the

numbers of fields in the two row sets don‘t match:

User Name: ' union select sum (LoginId) from LoginManager

–

Provider for ODBC Drivers error '80040e14'

[Microsoft][ODBC SQL Server Driver] [SQL Server] All

queries in an SQL statement containing a UNION operator

must have an equal number of expressions in their target lists.

This technique can be used to determine the type of any

column of any table in the database. This allows the attacker to

create a well - formed 'insert' query, like this:

User Name: ' ; insert into LoginManager values('attacker',

'attack') – Allowing access to the attacker.

1) 4.2.2 Getting Database Server Information

In our sample login page, for example, the following 'User

Name' will return the specific version of SQL server, and the

server operating system it is running on[26]:

Username: ' union select @@version, 1, 1, 1—

5. PERFORMING SQL INJECTION ATTACKS
A common way of validating users in an application is to by

checking if the user and password combination exists in the

users table. The following query will bring back one record if

there is one row where the login = 'abc' and the password =

'tcy12':

SELECT * FROM users WHERE login = 'abc' AND

password = 'tcy12'

To code this, a common practice among developers is to

concatenate a string with the SQL command and then execute

it to see if it returns something different to null. An Active

Server Page code where the SQL statement gets concatenated

might look like:

var sql = "SELECT * FROM users WHERE login =

'" + formusr + "' AND password = '" + formpwd + "'";

SQL Injection occurs when an attacker is able to insert a series

of SQL statements into a 'query' by manipulating data input.

If an attacker inserts: ' or 1=1 -- into the formusr field he will

change the normal execution of the query[26,27].

(Variations)

admin‘–

‗ or 0=0 –

‖ or 0=0 –

or 0=0 –

‗ or 0=0 #

‖ or 0=0 #

or 0=0 #

‗ or ‗x‘='x

‖ or ―x‖=‖x

‗) or (‘x'=‘x

1'or'1'='1

‗ or 1=1–

‖ or 1=1–

" or 1=1--

or 1=1--

' or 1=1--

or 1=1–

‗ or a=a–

‖ or ―a‖=‖a

‗) or (‘a'=‘a

' or 'a'='a

" or "a"="a

―) or (‖a‖=‖a

hi‖ or ―a‖=‖a

hi‖ or 1=1 –

hi‘ or 1=1 –

hi‘ or ‗a‘='a

hi‘) or (‘a'=‘a

hi‖) or (‖a‖=‖a

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 5 1092– 1100

 1099
IJRITCC | May 2014, Available @ http://www.ijritcc.org

By inserting a single quote the username string is closed and

the final concatenated string would end up interpreting or 1=1

as part of the command. The -- (double dash) is used to

comment everything after the or 1=1 and avoid a wrong syntax

error. This could also have been achieved by inserting the

following command:

' or '1'='1

By injecting any of the two commands discussed, an attacker

would get logged in as the first user in the table. This happens

because the WHERE clause ends up validating that the

username = ' ' (nothing) OR 1=1 (OR '1'='1' in the second

statement) The first conditional is False but the second one is

True. By using OR the whole condition is True and therefore

all rows from table users are returned. All rows is not null

therefore the log in condition is met.

The single quote character closes the string field and therefore

allows all of the following text to be interpreted as SQL

commands.

To prevent this, a lot of the SQL Injection quick solutions

found on the Internet suggest escaping the single quote with a

double quote. This is only a half remedy though because there

are always numeric fields or dates within forms or parameters

that will remain vulnerable.

With a similar syntax a numeric login would not use single

quotes because in SQL you only need quotes for strings.

This PHP / MySQL code example concatenates a query that

uses no single quotes as part of the syntax.

Injecting into a numeric field is very similar. The main

difference with string injection is that in numeric injection the

first number is taken as the complete parameter (no need to

close it with a single quote) and all the text after that number

will be considered as part of the command. In this case the #

(number sign) is used instead of the -- (double dash) because

we are injecting into a MySQL database.

Symbol Usage in SQL99 complaint DBs:

+ Addition operator; also concatenation operator;

when used in an URL it becomes a white space)

|| Concatenation operator in Oracle and Postgres

- Subtraction operator; also a range indicator in

CHECK constraints

= Equality operator

<> != Inequality operators

>< Greater-than and Less-than operators

() Expression or hierarchy delimiter

% Wildcard attribute indicator

, List item separator

@, @@ Local and Global variable indicators

. Identifier qualifier separator

‗‘ ―‖ Character string indicators

―‖ Quoted identifier indicators

-- Single-line comment delimiter

Single-line comment delimiter in MySQL or date

delimiter in MS Access

/*…*/ Begin and End multiline comment delimiter

6. PROPOSE APPROACH FOR PREVENTING SQL

INJECTION ATTACKS
In this world of Information technology, where E-commerce is

most prevailing, the need for secure and safe data on Internet

is must. Web applications, which are the foremost way of

accessing data from web, are highly vulnerable to SQLIAs.

Such applications and their underlying databases often contain

confidential or even very sensitive information such as

customer and financial records. With the increase in the

availability and popularity of database driven web

applications, there is a corresponding increase in number and

sophistication of attacks that target them. Therefore it is very

difficult to prevent these applications from attackers in order

to save the critical information being hacked[28,29,30].

7. CONCLUSION & FUTURE WORK
SQL injection is a common technique, attackers employ SQL

query to attack on web-based applications. These attacks

reshape SQL queries, thus altering the behavior of the program

for the benefit of the hacker. I have illustrated a cryptographic

approach to eliminate these attacks where the user credentials

are validated and their Hash value is calculated with the help

of MD5 algorithm. This hash value gets stored in the database

for authentication. Cryptographic countermeasure for SQLIAs

is based on a cryptographic hash-function which computes the

hash value of user inputs, finds the database record based on

the user inputs and compares the hash value of the input fields

against the hash value of the username & password found in

the database and it is matched against the value available in

the database. If hash-value matched then the user is

authenticated.

SQLIAs have evolved over years. Information Security

Researchers invented newer and newer techniques to eliminate

the number of problem and sophistications of attacks have

increased rapidly. The mode of attack and its various

methodologies define the work of providing security to web

based applications. It would be quite inappropriate to tell

exactly the future work in this area because it can only be

evolved according to the sophistication of a new attacks found

by the security persons. Web applications may be designed in

such a way that any attempt to attack via SQL is monitored

and it is checked before trying to generate a signature based on

the malicious input. This will save time and optimize the

solution.

References

[1] William G.J. Halfond, Alessandro Orso, and Panagiotis

Manolios, ―WASP: Web using Positive Tainting and Syntax-

Aware Evaluation,‖ IEEE Transactions on Software

Engineering, Vol. 34, No. 1, January/February 2008.

[2] ―top ten most critical web application vulnerabilities‖,

OWASP Foundation,

http://www.owasp.org/documentation/topten.html, 2005.

[3] Watson, Carli (2006) Beginning C# 2005 databases ISBN

978-0-470-04406-3, pages 201-5.

[4] Abdulkader A. Alfantookh, ―An Automated Universal

Server Level Solution For SQL Injection Security Flaw,‖

IEEE Conference, 2004.

[5] C.J. Date, An Introduction to Database System, Addison

Wesley Publishing: eighth edition, 2003.

[6] H. Shahriar and M. Zulkernine, ―MUSIC: Mutation-based

SQL Injection Vulnerability Checking,‖ The Eighth

International Conference on Quality Software, IEEE Computer

Society, 2008.

[7] Angelos D and Keromyns, ―Randomized Instruction Sets

and Runtime Security & Privacy, IEEE Computer Society,

2009.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 5 1092– 1100

 1100
IJRITCC | May 2014, Available @ http://www.ijritcc.org

[8] A.Asmawi, Z.M.Sidek, and S.A.Razak, ―System

Architecture for SQL Injection and Insider Misuse Detection

System,‖ IEEE Conference, 2008.

[9] M.Kiani, A. Clark, and G.Mohay, ―Evaluation of Anomaly

Based Character Distribution Models in the Detection of SQL

Injection Attacks,‖ The Third International Conference on

Availability, Reliability, and Security, IEEE Computer

Society, 2008.

[10] J.C. Lin, J.M. Chen, and C.H. Liu, ―An Automatic

Mechanism for Sanitizing Malicious Injection,‖ The 9
th

International Conference for Young Computer Scientists,

IEEE Computer Society, 2008.

[11] A. Suliman, M,K.Shankarapani, S.Mukkamala, and A.H.

Sung, ―RFID Malware Fragmentation Attacks,‖ IEEE

Conference, 2008.

[12] Y. Kosuga, K.Kono, M.Hanaoka, M.Hishiyama, and Y.

Takahama, ―Sania: Syntactic and Semantic Analysis for

Automated Testing against SQL Injection,‖ 23
rd

Annual

Computer Security Applications Conference, IEEE Computer

Society, 2007.

[13] J.C. Lin and J.M. Chen, ―The Automatic Defense

Mechanism for Malicious Injection Attack,‖ Seventh

International Conference on Computer and Information

Technology, IEEE Computer Society, 2007.

[14] E. Bertino, A. Kamra, and James P. Early, ―Profiling

Database Applications to Detect SQL Injection Attacks,‖

IEEE Conference, 2007.

[15] Chris Anley, ―Advanced SQL Injection In SQL Server

Applications,‖ Next Generation Security Software

Ltd.,http://www.ngssoftware.com, White Paper, 2002.

[16] William G.J. Halfond and Alessandro Orso, ―AMNESIA:

Analysis and Monitoring for NEutralizing SQL-Injection

Attacks,‖ Proc. 20
th

IEEE and ACM Int‘l conf. Automated

Software Engg., Nov. 2005.

[17] Sagar Joshi, ―SQL Injection Attack and Defense,‖ White

Paper, 09/23/2005.

[18] Steve Friedl's, ―Tech Tips SQL Injection Attacks by

Example,‖ White Paper.

[19] http://en.wikipedia.org/wiki/SQL_injection.

[20]http://dev.mysql.com/doc/refman/5.0/en/news-5-0-2.html.

[21] Justin Clarke "Absinthe" tool or "SQLBrute" tool

http://www.justinclarke.com/archives/2006/03/sqlbrute.html.

Retrieved on 18-10-2008.

[22]www.owasp.org/images/7/74/Advanced_SQL_Injection.p

pt.

[23]http://www.breach.com/resources/whitepapers/downloads/

WP_WebHackingIncidents_2008.pdf.

[24] http://blog.insecure.in/?tag=sql-injection.

[25]

http://www.owasp.org/index.php/Testing_for_SQL_Injection_

(OWASP-DV-005).

[26] http://www.securitydocs.com/library/3587.

[27] http://ha.ckers.org/sqlinjection/.

[28] J. Fonseca, M. Vieria, and H. Madeira, ―Testing and

Comparing Web Vulnerability Scanning Tools for SQL

Injection and XSS Attacks,‖ 13
th

IEEE International

Symposium on Pacific Rim Dependable Computing, 2007.

[29] X. Fu, X. Lu, B. Peltsverger, S. Chen, K. Qain, and L.

Tao, ―A Static Analysis Framework For Detecting SQL

Injection Vulnerabilities,‖ IEEE Conference.

[30] C. Anley, ―More Advanced SQL Injection,‖ Next

Generation Security Software LTD., White Paper, 2002.

