
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 5 1069– 1073

1069
IJRITCC | May 2014, Available @ http://www.ijritcc.org

__

Faamac: Forensic Analysis of Android Mobile Applications using Cloud

Computing

S.V. Nagendra Prasad Yadav

Student, Dept. of CS&E

AKIT, Tumkur

R.C. Shivamurthy

HOD, Dept. of CS&E

AKIT, Tumkur

Abstract – Mobiles have gained widespread usage& in smart phones many interesting applications are made available through Google Play

Android is one of the major Smartphone platform today. The explosive increase in mobile apps more and more threats migrate from traditional

PC client to mobile device. Smartphone applications can steal users’ private data and send it out behind their back Smartphone’s which store

various personal data, such as phone identifiers, location information and contacts. mobsafe prototype is proposed methodology to evaluate

mobile apps based on cloud computing platform and data mining. MobSafe prototype helps to identify the mobile app’s virulence or benignancy.

Compared with traditional method, such as permission pattern based method MobSafe combines the dynamic and static analysis methods to

comprehensively evaluate an Android app. In the implementation, Android Security Evaluation Framework (ASEF) and Static Android Analysis

Framework(SAAF), the two representative dynamic and static analysis methods is adopted to evaluate the Android apps and estimate the total

time needed to evaluate all the apps stored in one mobile app market & evaluation results show it is practical to use cloud computing platform

and data mining to verify all stored apps routinely to filter out malware apps from mobile app markets.

Keywords: Android platform; mobile malware detection; cloud computing; forensic analysis; machine learning; redis key-value store; big data;

hadoop distributed file system; data mining

__*****___

I.INTRODUCTION

Powerful and well-connected Smartphone’s are becoming

increasingly common. Their features are provided by focused

applications that users can easily install from application

market places. With hundreds of thousands of applications

available Smartphone applications can steal users’ private data

and send it out behind their back. The worldwide Android

smartphone market is raises security and privacy concerns.

However, current Android’s permission based approach is not

enough to ensure the security of private information.

A. MOBILE THREATS

The witness in an explosive increase in mobile apps. on

Mobile Internet trends more and more PC client software’s are

migrating to the mobile device. The amount of total

downloads of mobile apps in 2013 will be about 81 billion.

Among these, there are about 800000 Android apps in Google

Play market, and the total download is about 48 billion as of

May 2013.

Some malicious behaviors of Android malware is usually

motivated by controlling mobile device without user

intervention, such as:

(1) Privilege escalation to root,

(2) Leak private data

(3) Dial premium numbers,

(4) Botnet activity and

B. Root causes for Android malware origins are as follows:

(1) Android platform allows users to install apps from the

third-party marketplace that may make no efforts to verify the

safety of the software that they distribute.

(2) Different market place has different defense utility and

revocation policy for malware detection.

(3) It is easy to port an existing Windows-based botnet client

to Android platform.

(4) Android application developers can upload their

applications without any check of trustworthiness. The

applications are self-signed by developers themselves without

the intervention of any certification authority.

(5) A number of applications have been modified and the

malwares have been packed in and spread through unofficial

repositories. Some sophisticated malwares detect the presence

of an emulated environment and adapt their behavior e.g.,

create hidden background processes, scrub logs, and restart,

reboot.

II RELATED WORK

Security analysis of Android apps is a hot topic. More and

more researchers use static analysis and dynamic behavior

analysis and even integrate it with machine learning

techniques to identify malware

A. Static analysis methods

Barrera et al. made an analysis on permission

basedsecurity models and its applications to Android through a

novel methodology which applies Self- Organizing Map

algorithm preserving proximity relationships to present a

simplified relational view of a greatly complex dataset. The

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 5 1069– 1073

1070
IJRITCC | May 2014, Available @ http://www.ijritcc.org

__

SOM algorithm provides a 2-dimensional visualization of the

high dimensional data and the analysis behind SOM can

identify correlation between permissions.

Nadji et al proposed airmid, which uses collaboration

between in-network sensors and smart devices to identify the

provenance of malicious traffic. They created three mobile

malware samples, i.e., Loudmouth, 2Faced, and Thor, to

testify the correctnessof airmid. Airmid’s remote repair design

consists of an on-device attribution and remediation system

and a server-based infection detection system. Once detected

the software executes repair actions to disable malicious

activity or to remove malware entirely

.Felt et al.developed Stowaway, a tool to detect over privilege

in Android applications, and used this tool to evaluate 940

applications from Android market, finding that about one-third

are over privileged. Additionally, they identified and

quantified developer’s patterns leading to over privilege.

Moreover, they determined Android’s access control policy

through automatic testing techniques. Their results present a

fifteen fold

improvement over the Android documentation andreveal that

most developers are trying to follow the principle of least

privilege but fail due to the lack of reliable permission

information.

B. Dynamic behavior analysis

Portokalidis et al.proposed Paranoid Android, a system where

researchers can perform a complete malware analysis in the

cloud using mobile phone replicas.

Zhou et al. proposed DroidMOSS which takes

advantage of fuzzy hashing technique to effectively localize

and detect the changes from app-repackaging behavior.

C . Machine learning

Schmidt et al. proposed a solution based on monitoring events

occurring on Linux-kernel level. They applied the tool,

readelf, to read static information held by executables and

used the output of readelf to classify Android software. After

applying readelf to both normal apps and malware apps, they

used the names of the functions and calls appearing at the

output of readelf to form their benign training set and

malicious training set.

III THE PROPOSED METHODOLOGY

Home-brewed cloud computing platform and data

mining, a methodology is proposed to evaluate mobile apps

for improving current security status of mobile apps, MobSafe,

a demo and prototype system, is also proposed to identify the

mobile app’s virulence or benignancy. MobSafe combines the

dynamic and static analysis methods to comprehensively

evaluate an Android app, and reduce the total analyze time to

an acceptable level. In the implementation, the two

representative dynamic and static analysis methods, i.e.

Android Security Evaluation Framework (ASEF) and Static

Android Analysis Framework (SAAF) to evaluate the Android

apps and estimate the total time needed to evaluate all the apps

stored in one mobile app market, which provide useful

reference for a mobile app market owner to filter out the

mobile malwares.

IV SYSTEM DESIGN

A. System Architecture

mobsafe prototype that defines the structure and /or

behavior of a system.. It also defines the system components

or building blocks and provides a plan from which the system

developed. The architectural design process is concerned with

establishing the basic structural framework for a system.

System architecture also involves identifying the major

components of the system and communications between these

components.

MobSafe is a system to which is used to check an

Android app is virulence or benignancy based on some

customized tools in cloud platform. The procedure of mobsafe

is shown in Fig.1.MobSafe is an automotive system which

can be used to analyze Android apps. When you submit an

unknown apk file to MobSafe for analysis, it will check the

key value store whether the apk is already analyzed and its

result is stored in hadoop storage. This comparison is based on

the hashing of the apk file as the key to query the redis key

value store.

Figure.1 system architecture

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 5 1069– 1073

1071
IJRITCC | May 2014, Available @ http://www.ijritcc.org

__

the redis version is 2.1.3. If the key is matched in redis, then

the result is returned as response to submitter. If the key is not

matched, it indicates a new apk file. In such case, the apk is

stored in hadoop storage. After that, a daemon invokes the

automatize tool, such as ASEF and SAFF,To collect the logs

and store them in hadoop specified directory. Also the daemon

inserts the key to redis and updates the value with the result

directory in hadoop storage.

B. General steps in Mobsafe

There are 5steps as follows: start,upload apk file and check

key hash value store, invoke tools ASEF & SAAF,Show

result.

 user registers for application in cloud and platform

sends the credentials via email and sms which will be active

for 15 days and user uploads the apk file to find the criticality

of app n cloud platform applies ASEF and SAAF an

algorithms to find the nature of app and stores result ,if the app

is already analyzed the status is sent to user and user requests

for registration extension after expiry to admin user. The

admin user approves the requests and updates the platform and

new credentials will be sent to user and admin user can query

the app analysis statistics generate graph for the same.

Figure 2.general sequence of design

(1) ASEF

ASEF is an automatize tool which can be used to analyze

Android application. When you submit an unknown apk file to

ASEF for analysis, As shown in figure 3 it as three phases:

active, passive, interpret firstly it will start the ADB logging

and traffic sniffing using TCPDUMP, then launch an Android

Virtual Machine(AVD) and install the application on it. After

that ASEF begins to launch the application to be analyzed and

send a number of random gestures to simulate human

integration on the application. Meanwhile, ASEF also

compares the log of Android virtual machine with a CVE

library, and its internet activity with Google Safe browser API.

After a certain number of gestures are sent to virtual machine,

the test circle is ended and the application will be uninstalled.

Then ASEF will begin to analyze the log file and the Internet

traffic that the app generated. ASEF uses Google Safe

Browsing API to find out whether the URLs the app try to

reach are malicious or not. ASEF also checks the existed

vulnerability with a known vulnerability list to find out

whether the application has some serious vulnerability.

(2)SAAF

SAAF is a static analyzer for Android apk files. It

can extract the content of apk files, and decode the

content to smali code, then it will apply program slicing

on the smali code, to analyze the permissions of apps,

match heuristic patterns, and perform program slicing

for functions of interest.

(2) Other tools

There are also a lot of other for cracking techniques that rely

on weaknesses in the human being attached to a computer

system rather than software; the aim is to trick people into

revealing passwords or other information that compromises a

target system's security.

V Performance metrics

A. ASEF

In order to measure how much time ASEF takes to

analyze an app, we write a script which can record the

timestamp of the beginning of running a program and use

ASEF to analyze 20 different Android apps downloaded from

Google app.

 The result is shown inFig. 6, where the time it takes

to analyze one applicationvaries from 64 s to 150 s, and the

average time is about 100 s. It means that we can finish the

analysis and acquire the result in less than 2 min on average.

When we look up the whole analysis procedure in detail

we can find out that there are 6 steps during analyzing

one app. The preparing step, the starting log service step, the

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 5 1069– 1073

1072
IJRITCC | May 2014, Available @ http://www.ijritcc.org

__

ending process step, and the analyzing step take up 3%, 3%,

5%, and 10% of total time separately. About 80% of time is

consumed on the installing and testing stage, shown in Fig. 4.

So if we want to reduce the total time, we should try to speed

up these two steps In the analysis step, the time it takes

depends on the random gestures we input. The more gestures,

the longer it takes. Figure 8 presents the result of reduced time

by cutting down some gestures.

Figure 4 ASEF: The total consumed time of each app

We decrease the number of gestures sent to AVD so that the

testing time will be shortened. After we decrease the number

of gestures from 1000 to 200, the total time decreases by 20 s,

which accounts for 20% of the total time.

.

Figure 5.the time consumption for each app

B.SAAF

We apply SAAF to 25 Android apps downloaded from Google

App for static smali code analysis, to evaluate the performance

of this tool. From Fig. 6 below, we can see that the most time

consuming step of SAAF is the slicing step, and the second is

the permission categorizing step. The average time of

analyzing one app consumed by SAAF in one Linux virtual

machine, which runs on Intel-i5 four-core CPU with 4 GB of

memory, is about 33.93 s.

From Fig. 7, we know that the analyzing of different apps will

consume different times, and the total time depends on the

complexity of apps, such as the amount of methods etc. But

for most apps, SAAF will finish the analysis in an acceptable

period.

C. Estimated instances

That means if we apply ASEF to all the apps in Google Play

market, which has 800 000 apps in total, it will consume about

450 hours by 50 such virtual machines, which runs on Intel-i5

four-core CPU with 4GB of memory. If we apply SAAF to all

the apps in Google Play market too, it will consume about 151

hours by 50 such virtual machines From the above calculation,

it also needs to notice that the dynamic method (such as

ASEF) costs more

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 5 1069– 1073

1073
IJRITCC | May 2014, Available @ http://www.ijritcc.org

__

Figure 6. The SAAF time consumption of each step

time than the static one (such as SAAF) as the former one

needs to monitor app’s system call and network behaviour.

According to average number of apps installed in one Android

device is about 30, it costs about 1 hour to use ASEF and

SAAF to finish the analysis in one virtual machine and AVD.

But if we can distribute the installed apps into separated

individual VMs or AVDs, the whole time can be less than one

minute, which is acceptable for user’s experience in security

check

Figure.7 The SAAF:the total time consuming for each app

VI Conclusion

The proposed methodology is to improve security status &

evaluate the security of Android mobile apps and to indentify

mobile apps virulence or benignancy based on cloud

computing platform. The prototype system Mob Safe can be

implemented for automation forensic analysis of mobile apps

static code and dynamical behavior ASEF and SAAF the two

representative dynamic analysis method and static analysis

method can be used to evaluate the Android apps and estimate

the total time needed to evaluate all the apps stored in a mobile

app market

VII Future Work

There is a lot of future work that can be done with this project.

Machine Learning (ML) is a promising technology to identify

mobile app’s virulence or benignancy based on data mining.

As we collect more and more app’ slogging and network

behavior data, we can further use K-means method to classify

apps after training a classifier. In this case, the well-known

accuracy metrics includes precision and recall can be

measured to evaluate the classifier algorithm. Other method

such as PCA (Primary Component Analysis) and Matrix

Factorization also can be used and tested on such data.

 References

[1] R.Lawler,Mary Meeker’s 2013 Internet Trends report,

http://techcrunch.com/2013/05/29/mary-meeker-2013-

internet-trends/, May 29, 2013.

[2] J. Wu, On Top of Tides (Chinese Edition), Beijing: China

Publishing House of Electronics Industry, January 8,

2011.

[3] Sangho Lee and Da Young Ju International Journal of

Security and Its Application Vol.7, No.5 (2013),

pp.121-130 http://dx.doi.org/10.14257/ijsia.2013.7.5.10

[4] Q. Feng, Android software security and reversing

engineering analysis (Chinese Edition), Beijing: Posts

and Telecom Press, Feb. 2013.

[5] Gartner http://www.gartner.com/it/page.jsp?id=2153215,

September 11, 2012.

[6] List of mobile software distribution platforms,

http://en.wikipedia.org/wiki/List of digital distribution

platforms for mobile devices, July 19 2013.

[7] D. Barrera, H. G. Kayacik, P. C. van Oorschot, and A.

Somayaji, A methodology for empirical analysis of

permission-based security models and its application to

Android, in Proc. 17th ACM Conference on Computer

and Communications Security, Chicago, USA, 2010, pp.

73- 84.

[8] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, A

study of android application security, in USENIX

Security Symposium, San Francisco, USA, 2011.

[9] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner,

Android permissions demystified, in Proc. 18th ACM

Conference on Computer and Communications Security,

Chicago, USA, 2011, pp. 627-638.

