
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 4 880 – 884

880
IJRITCC | April 2014, Available @ http://www.ijritcc.org

A Development Approach towards Self Learning Schedulers in Linux

Prashant T. Raut

Student of ME Computer Engineering,

Vidya Pratishthan’s College of Engineering

Baramati, India.

University of Pune

prashant.raut19@gmail.com

Sushma S. Nandgaonkar

Assistant Professor, Department of Computer Engineering,

Vidya Pratishthan’s College of Engineering

Baramati, India.

University of Pune

sushma.nandgaonkar@gmail.com

Abstract— Due to continuous growth in speed of processor and comparatively slower speed growth in disk I/O operations, disk I/O operations

are always area of concern for all. Seek time and rotational latency are major components in I/O operation performance. Performance of modern

disks is adversely affected because of slow I/O operations. To address this issue two approaches are preferred. One is hardware improvement

and other is software enhancement i.e. I/O and disk schedulers enhancement. This paper collectively presents different approaches related to

hardware and software. Paper suggests I/O schedulers which are self-learning. In this approach self-learning core selects scheduler which gives

better performance for current workload. At the same time logs about performance are maintained in database. These self-learning schedulers

give better performance results. Thus main modules in this approach are self-learning technique, selection module and database log.

Keywords— I/O operation, Scheduler, Throughput.

__*****___

I. INTRODUCTION

Disk scheduler plays main role in the service of I/O
operation. Magnetic hard disks need mechanical movement in
reading data from or writing data to the disks. This mechanical
movement of spindle, head lowers the speed of data access [2].
Disk scheduling algorithms are designed for this disk reading
from disk and writing to the disk. Amongst disk scheduling
algorithm, First Come First Serve(FCFS) is simplest one. The
FCFS algorithm gives better performance if sequential read
requests are made by same process. To overcome the
disadvantage of FCFS, Shortest Seek First (SSF) algorithm is
used. It avoids the lengthy seek and rotational delay. SSF
technique selects the I/O request for the service in either
decreasing or increasing order of cylinders of disk. Shortest
time first(STF) selects I/O request considering shortest seek
time and rotational time. CSCAN and SCAN work exactly
reverse to each other. SCAN searches from end to other end of
disk and reverses the path if end of disk is reached. Disk
scheduler collects I/O request from file system and sends to
physical storage. Processor speed advances to new high as
compared to I/O operation speed. Researchers and designers
moved their interest from making changes in disk systems to
making schedulers self-learning. Observers have come to the
conclusion that single scheduler can’t be optimal in all type of
conditions. Performance of disk scheduler varies depending on
different factors such as type of storage system, type of I/O
requests, type of processor architecture, and so on. New ideas
are taking place for increasing I/O operations speed.

Performance of I/O operations can be improved if
workloads are recognized, scheduling policy is opted
automatically [1]. This paper proposes self-learning disk
scheduling algorithms that learn the type of workload, switch
amongst themselves for specific workload type, selects optimal
scheduling policy, in short improves I/O system performance.
System uses the workload generated by standard tool. This
workload serves as input I/O requests.

II. BASIC I/O SCHEDULERS IN LINUX

In Linux 2.6 there are 4 classic I/O schedulers [4]. These

are 1) Anticipatory, 2) Noop, 3) Complete fair queuing and 4)

Deadline.

1) Anticipatory scheduler [3]

I/O operations initiated when processes issue request to

scheduler. Taking into account the probability of making I/O

request from same process anticipatory scheduler stalls

fraction of cycle and waits if there is an outstanding request

from same process. It avoids deceptive idleness condition [3].

It works as explained here. Scheduler waits for short period

of time so that if next request is from same process. It takes

less time as compared to immediately switching to new

request from other process. The benefits are more if more

requests served are from same process. Context switch is

minimized. It is common and advantageous for data requested

by a process to be positioned in sequence one after the other

on disk. Deceptive idleness guides a scheduler which is

optimized for seek to select requests from different processes

one at a time. Recently anticipatory scheduler is removed

from linux kernel.

2) Deadline Scheduler

It maintains two types of lists named as sort lists and fifo

lists. Read requests list and write resuest lists are sort lists.

The name sort list comes from the idea that the read and write

requests are sorted on their logical block numbers of their

data. Purpose of remaining two fifo lists is to maintain read

request and write requests ordered on their deadline. When

request arrives it is assigned an expiration time that is called

as deadline. Request is served before its deadline i.e.

expiration time. Generally read requests are served much

earlier than write request because the expiration time of read

requests is 10 times lesser than the expiration time of write

requests. Processes with read requests are served quickly, this

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 4 880 – 884

881
IJRITCC | April 2014, Available @ http://www.ijritcc.org

scheduler not suitable for equal distribution of I/O resources

among processes waiting for I/O operations. Also expiration

time assigned for I/O request is not always followed. In some

cases other factors like priority of I/O request, their location

in queue may not allow to meet the deadline.

3) Completely Fair Queuing

CFQ scheduler is a scheduler that assigns I/O resources

fairly among all waiting processes. It is achieved by

maintaining a queue for every process category making I/O

requests. A process categories are decided based on id of

group of process, thread id, id of user, or id of a group.

Process’s category id is used to insert request into a queue.

This is done at operation of enqueue. While dequeue

operation involves selecting, sorting and keeping request on

dispatch list. After this, request is sent to the disk controller.

Tunable parameter quantum, controls the number of requests

fetched from each category of process. All process’s

categories share the available I/O bandwidth equally. This

scheduler is used mainly in database applications that do not

require real-time response. It also provides better I/O system

utilization than does the deadline scheduler. The I/O

scheduler works as communicator between block I/O system

and device driver in Linux. The file system and memory

management module uses the functions provided by I/O block

to send requests. Request transformation is carried out by the

disk I/O scheduler and then these requests are provided to the

device drivers which are at low-level in architecture.

4) NOOP

Now about Noop scheduler, it is a FIFO kind of scheduler.

Performance of Noop scheduler is better than remaining

schedulers if there is no magnetic hard-disk based storage ie.

no actual movement of head, spindle, arm etc. In short Noop

scheduler is well used in solid state disks or devices.

 Some of the intelligent scheduler like freeblock scheduler

serves background disk I/O request without affecting the

performance for foreground request [8]. This in turn

improves disk bandwidth usage. Performance data values are

used by disk schedulers in taking accurate scheduling

decisions. Knowing the average seek time of the disk,

schedulers reducing the seek time, can guess the access time

for the disk. Such performance data values can be captured

from databases of hard disk. Many efforts are put by different

persons to model system for storage. They have come with

new techniques to design new system for storage and

implement it. However there are very less efforts in actual

modeling of I/O schedulers. Black-box modeling technique

for devices considers storage devices as black boxes. Internal

details of storage device is not required in preparing such

models for storage devices [9]. Workloads are characterized

depending on many factors. Workload characteristics such as

service time, response time, arrival time of request,

performance, throughput depend on underlying environment

in which application executes. While proportionate of

read/write requests, access pattern depend on actual

application in execution that generates disk requests [10].

Experts applied machine learning approaches to improve disk

storage systems. However, they have not considered about

improving disk I/O schedulers through machine learning

methods. In distributed systems workloads change unevenly

without any prediction. so reconfiguration of hardware is

required to sustain this changing workload. Machine learning

is used to achieve this hardware reconfiguration online [11].

Extensible operating systems are proposed that uses machine

learning in certain steps. Extensible systems keep their

performance to mark though applications on it are increased

to certain limit. With self surveillance, system determines

which parts needed to be extended and how this extension is

achieved is decided by adaptation in operating system [12].

Operating system adapts to change in workloads.

The implementation of proposed algorithms has two

approaches.First by modifying kernel and doing

implementation at system level. Creating development

environment for disk scheduler involves three steps:

A. Getting the Source Code of Kernel

B. Setting default Configuration and Building Kernel

 C. Installing and Booting from a Kernel

 Commands in sequence to perform these three steps are as

 follows:

Part A:

 $ wget http://www.kernel.org/pub/linux/kernel/v2.6/ linux-

 2.6.m.n.tar.gz. Here m.n means appropriate version number

 of a kernel. Create directory named linux and move source

 code in this directory.

 $ mkdir ~/linux and

 $ mv ~/linux-2.6.m.n.tar.gz ~/linux/

 Now uncompress the tree in linux directory with tar

 command.

 $ tar -xzvf linux-2.6.m.n.tar.gz

Part B:

 Create default configuration with following commands:

 $ cd linux-2.6.30.7

 $ make defconfig

Part C:

 Build kernel using make command as follows:

 $ make

 Installing kernel by Hand

 $ make modules_install

 $ cp arch/i386/boot/bzImage /boot/bzImage-KernelVersion

 $ cp System.map /boot/System.map- KernelVersion

 Next update the grub bootloader so it recognizes the new

 kernel.

 This involves editing grub.cfg configuration file.

III. MAKING DISK-SCHEDULING INTELLIGENT

 Maintaining and managing large storage systems is tough

job because of their nature of complexity and size. Many

system storage designers find it difficult to design storage

system which is well for specific workload. For this attempt,

administrators carry system configuration based on trials.

Hippodrome approach [5] relieves administrator from manual

initial system configuration. It carries this process

automatically. On the basis of analysis of requirements of

existing system, new storage system is designed and existing

design of storage system is replaced by new design. Similar

kind of attempts made in zero-knowledge model for disk

drives [6]. Previously, performance of storage system for

particular workload is improved by configuring system

manually and placing data at proper location. This involves a

http://www.kernel.org/pub/linux/kernel/v2.6/%20linux-%20%20%20%202.6.m.n.tar.gz
http://www.kernel.org/pub/linux/kernel/v2.6/%20linux-%20%20%20%202.6.m.n.tar.gz

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 4 880 – 884

882
IJRITCC | April 2014, Available @ http://www.ijritcc.org

search for optimal configuration and data location for system.

Expertise in placement of data and optimal configuration is

required. However every person can not be expert. So an

automatic approach that achieves this placement and

configuration by learning the disk storage system is proposed.

Performance of disk scheduling in terms of QoS for

multimedia applications is improved by Cascaded Space Filling
Curves (SFC) algorithm [7]. This algorithm acts as scalable
disk scheduler for multimedia application. It accommodates
any number of dimensions contributing to scalability. Space
filling curves are used to transform multidimensional disk
request into single dimensional term. Points in
multidimensional space indicate multiple parameters
corresponding to disk requests. The idea behind this approach
is to convert multi-dimensional disk request into single-
dimensional term. These requests are prioritized and queued
according to these single-dimensional values.

IV. SYSTEM IMPLEMENTATION

Fig. 1 shows system architecture of project. System works in

four modules: Scheduler selection module, self-learning

module also performing the task of disk I/O or workload

classification and Log DB module. As shown in figure, I/O

request generated using IOMeter and dynamo are sent to the

selection module. The I/O requests are classified into

respective type of workloads. Performance data is logged to

database using DB Log module. It stores the throughput and

response time value for particular I/O request. Self learning

module stores the best scheduler for specific type of workload

using stored result for throughput and response time. System is

trained for different type of workloads as Read-only, Write-

only and Read-Write. iostat command is used to receive

statistics about particular device. Last decision module is

responsible for selecting the best scheduler for current

workload type.

Figure 1 System Architecture

The proposed system strives to make disk scheduling

intelligent by making scheduling algorithms self-learning.

Linux 2.6 previous version contained anticipatory scheduler as

its one of the classical I/O scheduler. Recently Linux

community has removed the anticipatory scheduler form the

list of classical I/O schedulers. Here, taking into account this

change system has implemented three self-learning algorithms

as first change sensing round robin, second feedback learning

and per-request disk scheduler. The algorithms are explained

here in detail. The results are analysed in term of throughput

and response-time.

There is slight improvement in term of performance if

proposed algorithms are used for disk scheduling.

A. Algorithm: Change Sensing round Robin

1 start loop

2 for each scheduler i out of n existing schedulers in

 operating system

3 execute(ith scheduler) and

4 log(performance data)

5 next scheduler = Fun of max(ith scheduler);

6 if (next scheduler != current scheduler) then

7 current scheduler = next scheduler

8 load (current scheduler)

9 while(!(bad performance or workload change))

10 wait tsecond

Algorithm Description: In selection phase, self-learning
module calls all classical schedulers one after the other for
small amount of period. The performance data during that time
slice is stored in database. By analysing that log, best scheduler
is selected for remaining workload. This process is repeated for
the two reasons first if there is marginal change in type of
workload and second if there is huge degradation with respect
to performance.

B. Algorithm: Feedback Learning

1 start loop

2 for each scheduler i out of n existing schedulers in

 operating system

3 train(ith scheduler) using I/O operations generated by

 standard tool like IOMeter

4 log(performance data)

5 Generate model for current workload using Self-Learning

 algorithm

6 next scheduler = scheduler returned by the model for

 specific workload

7 if (next scheduler != current scheduler) then

8 current scheduler = next scheduler

Algorithm Description: In this algorithm, classical schedulers
are trained according to the type of workload generated by the
IOMeter. This is done by taking into account the throughput for
the request. Scheduler which offers maximum throughput is
stored as appropriate scheduler for that particular workload. At
runtime when actual workload is given to the system it selects
the best scheduler retrieved from decision module. Decision
module gets this scheduler from the model generated using
self-learning algorithm.

C. Algorithm: Per-Request Scheduler

Algorithm Description: Per-Request scheduler is same as
that of the feedback learning. Main difference between the two

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 4 880 – 884

883
IJRITCC | April 2014, Available @ http://www.ijritcc.org

is that Algorithm 3 takes into account the response time instead
of the throughput.

V. RESULT ANALYSIS

 In this section the results obtained by applying different

self-learning disk scheduling algorithms to different type of

workloads are presented. Majority of the system is coded in C

in Linux. All tests are carried out on Intel Core i3 CPU with

2.27 GHz Processor and 3 GB RAM. The environment is

Windows 7 Operating system. In the set of experiments,

IOMeter is used to produce synthetic workload. Above three

algorithms are implemented at system level. IOMeter is

configured as the following:

 On Disk Target tab Maximum Disk Size is set to

8192 sectors and no. of outstanding I/Os set to 64.

 On Access Specification tab set Transfer Request

Size to 32 kilobytes.

 On Test Setup tab set Run Time to 70 sec or 130 sec.

 Performance of proposed system is analyzed by

comparing the throughput or response time result for workload

by scheduler. Following graph shows throughput of different

schedulers for Read-Only type of workload.

Figure 2: Throughput of Different Schedulers

This graph shows response time of different

schedulers for 60%Write & 40%Read type of workload.

Figure 3: Response Time of Different Schedulers

Graph below shows throughput of different schedulers for

40% Write & 60% Read type of workload.

Figure 4: Throughput of Different Schedulers

 Graph below also shows the comparison of default

scheduler and Feedback Learning scheduler performance with

respect to throughput in terms of kilobytes read from the

device.

Figure 5: Throughput of Different Schedulers

 From the analysis, it is observed that if classical schedulers

are applied to workload depending on its type, then

performance can be improved. In Linux kernel default

scheduler is used for all types of workload. There is no single

scheduler that gives best performance in every kind of

conditions. Performance of these classical schedulers varies

according to file system, disk system, tunable parameters, user

preferences etc. So the proposed approach that decides the

scheduler at run time according to workload type is preferable.

VI. CONCLUSION

 The proposed disk scheduling with self-learning factor

automates manual configuration and selection of disk

scheduler for specific type of workload. System correctly

classifies the workload. Training for feedback learning

algorithm is done offline so there is less overhead on system.

The disk-scheduling is performed at system level. Results

show that proposed self-learning algorithm gives good

performance with respect to throughput and response time. It

is also observed that making I/O scheduling policy decisions at

the workload level gives good performance than that of

making decision at request level. This is due to the overhead

of tasks performed per request.

 Categorization of workload is achieved correctly. Type of

workload identification is basic requirement for the selection

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 4 880 – 884

884
IJRITCC | April 2014, Available @ http://www.ijritcc.org

of the scheduler. Performance data is analyzed to select the

scheduler which is best suitable for current type of workload.

REFERENCES

[1] Yu Zhang and Bharat Bhargava, “Self-Learning Disk Scheduling," IEEE

Transactions on Knowledge and Data Engineering, VOL. 21, NO. 1,
January 2009.

[2] C. Ruemmler and J. Wilkes, “An Introduction to Disk Drive Modeling,”
Computer, vol. 27, no. 3, pp. 17-29, Mar. 1994.

[3] S. Iyer and P. Druschel, “Anticipatory Scheduling: A Disk Scheduling
Scheme to Overcome Deceptive Idleness in Synchronous I/O, ” Proc.
18th ACM Symp. Operating Systems Principles (SOSP 01), Sept. 2001.

[4] S. Pratt, “Workload-Dependent Performance Evaluation of the Linux 2.6
I/O Schedulers,” Proc. Linux Symp., 2005.

[5] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal, and A. Veitch,
“Hippodrome: Running Circles around Storage Administration,” Proc.
First Usenix Conf. File and Storage Technologies (FAST ’02), Jan.
2002.

[6] F. Hidrobo and T. Cortes, “Toward a Zero-Knowledge Model for Disk
Drives,” Proc. Autonomic Computing Workshop (AMS ’03), June 2003.

[7] M.F. Mokbel, W.G. Aref, K. El-Bassyouni, and I. Kamel, “Scalable
Multimedia Disk Scheduling,” Proc. 20th Int’l Conf. Data Eng.

 (ICDE), 2004.

[8] C.R. Lumb, J. Schindler, and G.R. Ganger, “Freeblock Scheduling

Outside of Disk Firmware,” Proc. First Usenix Conf. File and Storage

 Technologies (FAST ’02), Jan. 2002.

[9] M. Wang, “Black-Box Storage Device Modeling with Learning,” PhD
dissertation, Carnegie Mellon Univ., 2006.

[10] A. Riska and E. Riedel, “Disk Drive Level Workload Characterization,”
Proc. Usenix Ann. Technical Conf. June 2006.

[11] J. Wildstrom, P. Stone, E. Witchel, and M. Dahlin, “Machine Learning
for On-Line Hardware Reconfiguration,” Proc. 20th Int’l Joint Conf.
Artificial Intelligence (IJCAI ’07), Jan. 2007.

[12] M.I. Seltzer and C. Small, “Self-Monitoring and Self-Adapting
Operating Systems,” Proc. Sixth Workshop Hot Topics in Operating
Systems (HotOS ’97), May 1997.

