
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 3 691 – 695

691
IJRITCC | March 2014, Available @ http://www.ijritcc.org

Mosix the Cluster Operating System Having Advancements & Many

Features

Vijendra Rajendra Augustine ME (Student)

Dept. of CSE, HVPM’s College of Engg. & Tech.

Amravati, MH, INDIA

vijendraaugustine@gmail.com

Prof. P. L. Ramteke (HOD)

Dept. of IT, HVPM’s College of Engg. & Tech.

Amravati, MH, INDIA

pl_ramteke@rediffmail.com

Abstract - Mosix is a running of modifications to the Linux kernel. MOSIX Design Objectives turn a network of Linux computers into a High

Performance Cluster computer. The Founder of MOSIX is the Amnon Barak. MOSIX is a cluster operating system that provides users and

applications with the impression of running on a single computer with multiple processors which is called as single-system image and Hide

cluster complexity to users. This paper describes the enhancement of MOSIX to openMosix and its cloud environment. There are many advance

features of MOSIX by which large number of application work fastly and properly. Balancing Laod is the most effective feature we mentioned it

in this paper.

Keywords: Load balancing, competitive algorithms, cluster computing, I/O overhead, IPC overhead.

__*****___

I. INTRODUCTION

Mosix is primarily based on Unix and provides a

single-systems image (SSI). The MOS for UNIX (MOSIX)

is A multi-computer Operating System with decentralized

management. As if using one computer with multiple CPUs.

It geared to reduce the management complexity of users.

The user does not have to login all the time. Also users do

not need to "login" or copy files to remote nodes. Also there

is no need to link applications with special libraries. Mosix

has limited support for shared-memory

Mosix creates a virtual computer, featuring

automatic load balancing by migrating processes from

heavily loaded nodes to less used/loaded nodes. An

extension of the Beowulf concept is to run a Mosix enabled

kernal. This configuration would provide a very large

amount of computational resources based on pre-existing

equipment. The advantage of this method is that it provides

much more processing power than a traditional Beowulf

cluster without the adding costs to dedicate resources.

MOSIX is a software solution to minimize OS

level bottlenecks - More technically speaking MOSIX is a

Single System Image (SSI) cluster that allows Automated

Load Balancing across nodes through preemptive process

migrations. Why Mosix is most Accurate for this type of

features? Because you are not sure about the load on each

node in the cluster and you are not the single user of the

facility. If you know how to stop unnecessary services and

reduce overheads on the cluster, but you have no control

over OS limitations. Mosix makes a network of machines

behave like a single machine with many processors and lots

of memory. In a MOSIX cluster there is no need to modify

or to link applications with any library, to copy files or login

to remote nodes, or even to assign processes to different

nodes – this all the things are done automatically, like in

an SMP.

The new version of MOSIX is MOSIX2. It is

compatible with Linux-2.6 and 3.0 kernels. MOSIX2 is

implemented as an OS virtualization layer that provides

users and applications with a single system image with the

Linux run-time environment. It allows applications to run in

remote nodes as if they run locally. Users run their regular

both sequential and parallel applications while MOSIX

transparently and automatically seek resources and migrate

processes among nodes to improve the overall performance.

MOSIX2 has various advantages it can manage a cluster and

a multicluster as well as workstations and other shared

resources. It can run in native mode or in a virtual

machine (VM). In native mode, performance is better, but it

requires modifications to the base Linux kernel, whereas a

VM can run on top of any unmodified operating system that

supports virtualization, which is supported by

including Microsoft Windows, Linux and Mac OS X.

The algorithms in MOSIX support load-balancing

[6], memory ushering [7], parallel I/O [8] and cluster-wide

file operations [8] these algorithms monitor uneven resource

usage among the nodes and if necessary, it assigns and

reassign processes automatically among the nodes in order

to continuously take advantage of the best available

resources. The MOSIX algorithms are geared for maximal

overall performance, overhead-free scalability and easy to

use.

We cover all the existing MOSIX related things.

Since it can work in the environment not bothering about

load. In the next section we cover the cluster approach of

MOSIX. In the third section we we show the todays

advansment to reach to cloud environment. In the IV section

http://en.wikipedia.org/wiki/Operating_system-level_virtualization
http://en.wikipedia.org/wiki/Single_system_image
http://en.wikipedia.org/wiki/Computer_cluster
http://en.wikipedia.org/wiki/Native_mode
http://en.wikipedia.org/wiki/Virtual_machine
http://en.wikipedia.org/wiki/Virtual_machine
http://en.wikipedia.org/wiki/Virtual_machine
http://en.wikipedia.org/wiki/Linux_kernel
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Mac_OS_X

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 3 691 – 695

692
IJRITCC | March 2014, Available @ http://www.ijritcc.org

we cover the features of MOSIX including balancing of

load. Finally, in the last section we conclude the Article.

II. CLUSTER APPROACH OF MOSIX

A MOSIX cluster is a set of connected computers.

It is not isolated machines with OS and middleware. The

Cluster is a single machine running Cluster OS on different

nodes. It allows automatic work distribution among cluster

nodes. It have Granularity at process level, and work on

principle like: "Fork and Forget”, it does not bother all the

time about all its work.

A MOSIX cluster is a set of connected servers and

workstations, called “nodes”, which are administrated by a

single owner and run the same version of MOSIX. In a

MOSIX cluster, each node maintains information about

availability and the state of the resources of all the nodes.

Nevertheless, MOSIX processes can run in remote clusters

while still using the environment provided by their

respective private home clusters. MOSIX2 is most suitable

for running compute intensive applications with low to

moderate amount of input/output (I/O). Tests of MOSIX2

show that the performance of several such applications over

a 1 Gbit/s campus grid is nearly identical to that of a single

cluster approach.

A. MULTI- CLUSTER ENVIRONMENT

A MOSIX multi-cluster which is also called “an

intra-organizational multi-cluster” is a collection of private

MOSIX clusters that run the same version of MOSIX and

are configured to work together. A MOSIX multi-cluster

usually belongs to the same organization, but each cluster

may be administrated by a different owner or belongs to a

different group. The cluster-owners are willing to share their

computing resources at least some time, but are still allowed

to disconnect their clusters from the multi-cluster at any

time.

In a MOSIX multi-cluster, each node maintains

information about availability and the state of the resources

of all the nodes in all the connected clusters. Different

clusters may (or may not) have a shared environment such

as a common NFS file system. From the user’s perspective,

MOSIX transforms such a multi-cluster into a single cluster

by preserving the user’s local run-time environment. In

MOSIX multi-clusters there is usually a high degree of trust,

i.e., a guarantee that applications are not viewed or tampered

with when running in remote clusters. Other possible safety

requirements are a secure network and that only authorized

nodes, with identifiable IP addresses.

B. MOSIX CLOUD

A MOSIX cloud is a collection of entities such as

MOSIX clusters; MOSIX multi-clusters; Linux clusters such

as a group of Linux servers, individual workstations and

Virtual Machines (VM). Each entity may possibly run a

different version of Linux or MOSIX. In a MOSIX cloud,

different entities are usually administrated by different

owners and rarely share any file system like NFS. In this

cloud, nodes in each entity are aware of one or more nodes

in other entities, including their IP addresses and services

they are willing to provide, but there is no on-going

automatic flow of information between entities.

In a MOSIX cloud, users can launch applications

from their workstations or a private home-cluster, on target

nodes of other entities. These applications have access to

files on nodes of these entities, while still allowing the

applications to access files on their launching node. This is

accomplished by the MOSIX Reach Clouds (MOSRC),

describe it further, which allows applications to run in

remote nodes, without the need to copy files to/from remote

clusters.

Fig. 1: User’s and server’s connected in MOSIX

cluster

III. WORKING OF MOSIX CLUSTER

Mostly in MOSIX, processes are the building

blocks of MOSIX. MOSIX recognizes two types of

processes: Linux processes and MOSIX processes. Linux

processes run in native Linux mode and cannot be migrated.

On the other hand MOSIX processes can be migrated. Linux

processes usually include administrative tasks and processes

that are not suitable for migration. Another class of Linux

processes is those created by the “mosrun -E” command.

These processes can be assigned by the “-b” option of

“mosrun” to the least loaded nodes in the cluster but not to

nodes in other clusters, for which the MOSRC tool can be

used.

MOSIX processes are usually user applications that

are suitable and can benefit from migration. All MOSIX

processes are created by the “mosrun” command. MOSIX

processes are started from standard Linux executable, but

run in an environment that allows each process to migrate

from one node to another. Each MOSIX process has a

unique home node, which is usually the node in which the

process was created [3]. Child processes of MOSIX

http://en.wikipedia.org/wiki/Input/output

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 3 691 – 695

693
IJRITCC | March 2014, Available @ http://www.ijritcc.org

processes remain under the MOSIX discipline (with the

exception of the native utility, that allows programs, mainly

shells, already running under mosrun, to spawn children in

native Linux mode).

Two - tier technology is used for Information

gathering and dissemination by using probabilistic

dissemination algorithms. This helps each node to have

sufficient knowledge about available resources in other

nodes, without polling. It supports Preemptive process

migration that can migrate any process, anywhere, anytime

– transparently. This is supervised by adaptive algorithms

that respond to global resource availability, gathering and

dissemination also.

Because of the decentralized control and autonomy

each node makes its own control decisions independently.

Each node is capable of operating as an independent system.

As it does not required centralized control Nodes may join

or leave the farm with minimal disruption. Each noad work

efficiently and correctly as in every unit of time (1 second)

each node gathers and disseminates information about:

CPU(s) speed, load and utilization, free memory,

Process tables, etc.

IV. MOSIX IS ADVANCING

A. THE OPENMOSIX

The openMosix is called as open source

implementation of MOSIX. The project head of openMosix

is Dr. Moshe Bar [10]. Cluster Configurations of openMosix

is created as Singlepool. In Singlepool all the servers and

workstations are used as a single cluster: each machine is a

part of the cluster and can migrate processes to each other.

The software like PVM and MPI run more efficiently on the

openMosix kernel than on Cluster unaware OS kernels.

Which is used for comparison during cluster configuration.

1) Features of Openmosix : If we compare with the

Beowulf Cluster openMosix Cluster it has many

features:

1. It allows dynamic addition & removal of nodes.

2. Preemptive process migration offer optimal load

balancing across the nodes.

3. Adaptive resource allocation scheme allows use of

heterogeneous nodes in the cluster.

4. Offers optimal performance for CPU bound code

5. Ideal for multi user, time shared systems

6. Optimal use of computing facility and it monitored

Load in each node.

2) Attractions of Openmosix : Adding new nodes to a

running openMosix cluster can be made dynamic with the

auto discovery daemon. Nodes can join in and withdraw

gracefully without disturbing the processes running on the

Cluster. The hardware in openMosix can be used as best as

possdible because it Recycle all your old hardware.

Applications that improve performance of openMosix

include:

Matlab 5, Octave, MJPEG tools, flac POVRAY, MPI,

Postfix, CISILIA, etc.

Kernal sourse code and other releated information

about openMosix is available at

http://openmosix.sourceforge.net/

Diskless nodes to form a cluster is also available for free

download.

E.g.: clusterknoppix, CHAOS, plumpOS ….

B. MOSIX REACH THE CLOUDS

MOSIX Reach the Clouds (MOSRC) is a tool that

allows applications to run in remote computers in any

MOSIX cloud entity (see Sec. II-A).rMOSRC users launch

applications from their workstation or private home-cluster

on target nodes of other entities. MOSRC can run on both

Linux computers and MOSIX clusters. The hybrid

environment on target nodes can be used for remote file

access; file-sharing among different computers and users all

“mosrun” features can be used on clouds running MOSIX

[11].

As such, MOSRC can be useful to users that need

to run applications but do not wish to store data on

commercial clouds . MOSRC provides consistent access to

files, even among multiple MOSRC jobs that run on

different targets.

MOSRC consists of two parts: a launching program

that can send jobs from a head-node to designated target

nodes,and a run-time environment that provides file services

to running jobs on target computers. The head-node could

be the user’s

workstation and any computer that has access to the user’s

files.The head-node and the target nodes can run Linux or

MOSIX. If the target node is part of a MOSIX cluster, then

MOSRC jobs can benefit from all the MOSIX features. In

particular, MOSIX processes generated by MOSRC jobs can

be automatically dispersed among the nodes of that cluster

or even among other MOSIX clusters in a multi-cluster.

Launching a job (from the head-node) is done by the

“mosrc” command, see the mosrc manual for details.

V. MOSIX’S FEATURES

A. DISCOVER RESOURCE AUTOMATICALLY

Resource discovery is performed by an on-line

information dissemination gossip algorithm. It provide each

node in all the clusters with the latest information about

availability and the state of system-wide resources [1]. The

algorithm is based on a randomized gossip dissemination, in

http://openmosix.sourceforge.net/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 3 691 – 695

694
IJRITCC | March 2014, Available @ http://www.ijritcc.org

which each node regularly monitors the state of its

resources, including the CPU speed, current load, free and

used memory, etc. In [1] we presented bounds for the age

properties and the rates of propagation of the above

algorithm.

B. LOAD BALANCING

In MOSIX, load balancing is carried out by

dynamic process migration[6]. Hence the system

architecture, a process running under MOSIX is not

sensitive to physical location. Process migration is allowed

only among processors with same instruction set, because

application task may be allowed only among the nodes of

the cluster. In MOSIX, each processor sends its local and

other load estimate which are known to the processor. For

balancing load processes are migrating from slower to

faster nodes and from nodes that run out of free memory.

And it must consist of homogenous processes for balancing

load. Process can be migrated to any load estimate. Mainly

migration is done by dividing process into two pieces:

A deputy component:

that is kept in the UHN (Unique Home Node) &

contains the kernel context (description of used resources +

kernel stack + task structure).

A remote component:

that contains the user context

(code+stack+data+memory map + registers) that gets

migrated.

Fig. 1: How process migration works by dividing into two

pieces

Migration time has both a fixed component + a linear

componen . This is proportional to the number of pages

>only necessary memory pages are transferred (mm+dirty

pages+page tables). Some System calls are site dependent

are executed on the home node used for synchronous

communication. Other system calls are executed directly on

the remote node.

Process partition created for load balancing

purpose preserves the user’s run-time environment. Users

need not care where their process are running. Load

balancing reduce variance between pairs of

nodes to improve the overall performance.

 The algorithm used for load balancing are

probabilistic. These algorithms are intended to provid each

noad with the latest, up-to-date information about the load

of other noad. As provid in [8] this is achieved in O(log N)

units of time for an N-processor system. The decision to

migrat a process is based on different parameters, including

past profile, the amount of local versus remote I/O, size of

the process, etc. Greedy, a popular online algorithm for

load-balancing, assigns a new job to a machine in order to

minimize the resulting resource utilization.

C. EDUCING INTERPROCESS COMMUNICATION

OVERHEAD IN COMPUTING CLUSTER

 Computing Clusters (CC) consisting of several

connected machines, could provide a high-performance,

multiuser, timesharing environment for executing parallel

and sequential jobs. In order to achieve good performance in

such an environment, it is necessary to assign processes to

machines in a manner that ensures efficient allocation of

resources among the jobs.

The opportunity cost algorithms for online

assignment of jobs to machines in a Cluster is used. These

algorithms are designed to improve the overall CPU

utilization of the cluster and to reduce the I/O and the

Interprocess Communication (IPC) overhead. These

approach is based on known theoretical results on

competitive algorithms. In our computing model, there are

also parallel job which consists of several communicating

processes, with an arbitrary communication topology.

Processes are assigned online to machines in order to

minimize the maximal load and IPC overhead among the

machines.

E. SUPPORT DFSA FOR SCALABLE CLUSTER FILE

SYSTEM

As stated earlier MOSIX is a cluster management

system that support preemptive process migration. The

MOSIX Direct File System Access (DFSA), is a provision

that can improve the performance of cluster file system by

allowing a migrated process to directly access file in the

current location. By combining this capability, could

substantially increase the I/O performance and reducethe

network congection by migrating an I/O intensive process to

a file server. DFSA is suitable for cluster that manage a pool

of shared disks among the multiple machines. With DFSA,

it is possible to migrate parallel processes from a client node

to file servers for parallel access to different files. Any

consistant file system can be adjusted to work with DFSA.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 3 691 – 695

695
IJRITCC | March 2014, Available @ http://www.ijritcc.org

To test the performance, we developed the MOSIX

File-System (MFS) which allowes consistant parallel

operations on different files.

D. JOB MANAGEMENT IN CLUSTERS

EnFuzion is an application level package that

provides a high level environment for the creation,

distribution and management of large parameter sweep

applications. MOSIX is a software package that enhances

Linux with cluster computing capabilities. The core of

MOSIX includes adaptive management algorithms and a

preemptive process migration mechanism that transforms

the cluster into a single system parallel computing

environment, almost like an SMP. This opportunity cost

method converts the usage of several heterogeneous

esources in a machine to a single homogeneous cost.

Assignment and reassignment of jobs are then performed

based on that cost.

Combining EnFuzion and MOSIX yields a

powerful platform, where EnFuzion generates, allocates and

queues jobs to the cluster and MOSIX manages and

optimizes the load distribution between nodes within the

cluster. In particular, EnFuzion benefits from MOSIX’s

ability to perform preemptive process migration. So that it

can preempt the process from in between and MOSIX

benefits from a queue management system.

VI. CONCLUSIONS

MOSIX is an operating system-like management

system that consists of a comprehensive set of tools for

sharing computational resources in Linux clusters, multi-

clusters and clouds. Its main features are geared for ease of

use by providing the impression of running on a single

computer with

multiple processors. This is accomplished by preserving the

interface and the run-time environment of the login (home)

node for applications that run in other nodes. As a result,

users need not modify or link applications with any library,

they need not login or copy files to remote nodes or even

know where their programs run.

The unique features of MOSIX include automatic

resource discovery, dynamic workload distribution by

process migration, a priority method that allows processes to

migrate among nodes in a multi-cluster, to take advantage of

available resources

beyond the allocated nodes in any private cluster. This is

particularly useful in shared clusters or when it is necessary

to allocate a large number of nodes to one group, e.g., to

meet a deadline. The disruptive configuration provisions

allow an orderly migration of processes from disconnecting

clusters, including long running processes when remote

resources are no longer available. Other unique features

include process migration, queuing and a tool to run

applications on clouds, without the need to pre-copy files to

these clusters.

REFERENCES

[1] Barak, A., La'adan, O. and Shiloh, A., “ Scalable cluster

computing with MOSIX for Linux”, Proc. 5-th Annual

Linux Expo, Raleigh, NC, pp. 95-100, May 1999.

[2] Barak and Braverman, “Memory ushering in a scalable

computing cluster”, Journal of Microprocessors and

Microsystems, 22 (3-4), pp. 175-182, 1998.

[3] Charles Bookman, “Linux Clustering: Building and

Maintaining Linux Clusters” (Paperback - June 29,

2002).

[4] A. Barak, S. Guday, and R. G. Wheeler, The

MOSIXDistributed Operating System: Load Balancing

for UNIX,Secaucus, Ed. New York, USA: Springer,

1993

[5] http://www.MOSIX.org.

[6] Ahmed, B.S. ; Samsudin, K. ; Ramli, A.R. ; Basri, “A

Descriptive Performance Model of a Load Balancing

Single System Image” S. Modeling & Simulation, 2008.

AICMS 08. Second Asia IEEE International

Conference

[7] Keren A., and Barak A., “Opportunity Cost Algorithms

for Reduction of I/O and Interprocess Communication

Overhead in a Computing Cluster,”

[8] IEEE Tran. Parallel and Dist. Systems, 14(1), pp. 39–50,

2003.

[9] Maoz T., Barak A. and Amar L., “Combining Virtual

Machine Migration with Process Migration for HPC on

Multi-Clusters and Grids,” Proc. IEEE Cluster 2008,

Tsukuba, 2008.

[10] Barak, A. ; Shiloh, A. ; Amar, L. ,” An organizational

grid of federated MOSIX clusters” Cluster Computing

and the Grid, 2005. CCGrid 2005. IEEE International

Symposium on

http://www.imsc.res.in/~kabru/parapp/IMSCTalk.pdf

[11] http://www.mosix.cs.huji.ac.il/pub/MOSIX_wp.pdf

[12] http://os.inf.tu-dresden.de/Studium/DOS/SS2013/05-

MOSIX.pdf

[13] http://en.wikipedia.org/wiki/MOSIX

[14] http://www.csse.monash.edu.au/~davida/papers/MosixP

DCS03.pdf

[15] http://mulix.wordpress.com/2003/10/29/prof-amnon-

barak-of-mosix-fame-to-give-a-seminar-at-hrl/

[16] [16] A. Keren, “On-Line Assignment of Processes in a

Scalable Computing Cluster,” PhD thesis, The Hebrew

Univ. of Jerusalem, Israel, 1998.

http://www.amazon.com/Charles-Bookman/e/B001K8EN8Q/ref=ntt_athr_dp_pel_1
http://www.mosix.org/
file:///C:\search\searchresult.jsp
file:///C:\search\searchresult.jsp
file:///C:\search\searchresult.jsp
file:///C:\search\searchresult.jsp
file:///C:\search\searchresult.jsp
file:///C:\search\searchresult.jsp
file:///C:\search\searchresult.jsp
file:///C:\search\searchresult.jsp
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4530427
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4530427
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4530427
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4530427
file:///C:\search\searchresult.jsp
file:///C:\search\searchresult.jsp
file:///C:\search\searchresult.jsp
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1558576&queryText%3D.QT.MoSiX.QT.
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1558576&queryText%3D.QT.MoSiX.QT.
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1558576&queryText%3D.QT.MoSiX.QT.
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10428
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10428
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10428
http://os.inf.tu-dresden.de/Studium/DOS/SS2013/05-

