
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 3 634 – 637

__

634
IJRITCC | March 2014, Available @ http://www.ijritcc.org

Cassandra File System Over Hadoop Distributed File System

Mr. Ashish A. Mutha

ME, CSE,

PRMIT&R College,

Amravati, India

ashishmutha10@gmail.com

Miss. Vaishali M. Deshmukh

Assistant Professor,

PRMIT&R College,

Amravati, India

msvmdeshmukh@rediff.com

Abstract—Cassandra is an open source distributed database management system is designed to handle large amounts of data across many

commodity servers, provides a high availability with no single point of failure. Cassandra will be offering the robust support for clusters

spanning multiple data centers with asynchronous masterless replica which allow low latency operations for all the clients. NoSQL data stores

target the unstructured data, which nature has dynamic and a key focus area for "Big Data" research. New generation data can prove costly and

also unpractical to administer with databases SQL, due to lack of structure, high scalability and needs for the elasticity. NoSQL data stores such

as MongoDB and Cassandra provide a desirable platform for fast and efficient for data queries. The Hadoop Distributed File System is one of

many different components and projects contained within the community Hadoop ecosystem. The Apache Hadoop project defines Hadoop-DFS

as “the primary storage system which is used by Hadoop applications” that enables “reliable, extremely rapid computations”. This paper was

providing high-level overview of how Hadoop-styled analytics (MapReduce, Pig, Mahout and Hive) can be run on data contained in Apache

Cassandra without the need for Hadoop-DFS.

Keywords: Cassandra: CFS; Benefits of CFS; overview of HDFS.

__*****___

I. INTRODUCTION

The Cassandra File System (CFS) is a Hadoop-DFS
compatible file system built to replace the traditional Hadoop
NameNode and Secondary, NameNode and DataNode
daemons [1]. The main aim of design goals for the Cassandra
File System were to first, it simplify the operational overhead
of Hadoop by removing the single points of failure in the
Hadoop NameNode. And second is to offer easy Hadoop
integration for Cassandra users (one distributed system is
enough for that). The Apache Hadoop project defines Hadoop-
DFS as: “the primary storage system which used by Hadoop
applications. Hadoop-DFS creates multiple replicas of data
blocks and distributes them on compute nodes throughout a
cluster to enable, reliable, extremely rapid computations” to it.
Hadoop utilizes a scale-out architecture that makes the use of
commodity servers has to configure as a cluster, and where
each of these servers possesses inexpensive internal disk drives.
As per Apache site states that data in Hadoop is broken down
into blocks and spread throughout a cluster. Once that was
happen, MapReduce tasks can be carried out on the smaller
subsets of the data that may make up a very large dataset
overall, thus to accomplish the type of scalability needed for
big data processing. In general, this divide-and-conquer
strategy of processing data is nothing really new, but the
combination of Hadoop-DFS being open source software
(which overcomes the need for the high-priced specialized
storage solutions) and its ability to carry out some degree of
automatic failover and redundancy make it so popular for the
modern businesses looking for data warehouse batch analytics
solutions. That’s why? This is just one reason why the Hadoop
market is expected to grow at an eye-popping compound
annual growth rate (CAGR) of 58 percent until 2018. However,
what these businesses are most interested in not Hadoop
underlying storage structure, but rather than what it facilitates
in delivering: a cost-effective means for analyzing and
processing vast amounts of data for data warehouse use cases.
But what about analytics needed for line-of-business

application data? This paper provides a high-level overview of
how DataStax uses Apache Cassandra to run analytics on
Cassandra data that comes from line-of-business applications.

II. OVERVIEW OF HDFS

A typical Hadoop deployment with Hadoop Distributed File

System resembles the following:

Figure 1: HDFS with Standard Hadoop Deployment

Hadoop and HDFS utilize master-slave architecture. HDFS is

written in Java, with an HDFS cluster consisting of a primary

NameNode – a master server that manages the file system

namespace and also regulates access to data by clients. The

optional secondary Name Node for failover purposes also may

be configured. In addition, there are a number of DataNodes.

And it consist a one-to-one relationship between a DataNode

and physical machine. Each of this DataNode manages the

storage attached to the boxes that it runs on. Hadoop

Distributed File System uses a file system namespace that

enables data to be stored in files. Each file is divided into one

or more blocks and which are then divvied up across a set of

DataNodes. The NameNode is responsible for tasks such as

opening, renaming, data directories and closing files. It also

mailto:msvmdeshmukh@rediff.com

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 3 631 – 633

635
IJRITCC | March 2014, Available @ http://www.ijritcc.org

tackles the job of mapping blocks to DataNodes, which is then

responsible for managing incoming Input/Output requests

from clients. DataNode handle the block replication, creation,

and removal of data when instructed by the NameNode.

Benefits of HDFS

There is little debate that HDFS provides a number of benefits

for those who choose to use it. Below are some of the most

commonly cited? [8, 10]

Built-In Redundancy and Failover: Hadoop distributed file

system supplies out-of-the-box redundancy and failover

capabilities that require little to no manual intervention i.e.

depending on the use case. Having such features built into the

storage layer allows system administrators and developers to

concentrate on other responsibilities versus having to create

monitoring systems or/and programming routines to

compensate for another set of storage software that lacks those

capabilities. Moreover, with downtime being a real threat to

many modern businesses’ bottom line, features that minimize

outages and contribute to keeping a batch analytic data store

up, operational, and feeding any online system that requires its

input are welcomed by all professionals.

Big Data Capable: The hallmark of HDFS is its ability to

tackle big data use cases and most of the characteristics that

comprise them (data velocity, volume and their variety). The

rate at which HDFS can supply data to the programming

layers of Hadoop equates to faster batch processing times and

quicker answers to complex analytic questions.

Portability: Any tenured data professional can relay horror

stories of having to transfer, migrate, and convert huge data

volumes between disparate storage/software vendors. One

benefit of HDFS is its portability between various Hadoop

distributions which helps to minimize vendor lock-in.

Cost-Effective: As previously stated that, Hadoop-DFS is one
of the open source software, the system which translates into
real cost savings for its users. As many companies can attest,
high-priced storage solutions can take a significant bite out of
IT budgets and are many times completely out of reach for
small or startup companies. Other benefits of HDFS exist, but
the four above are the primary reasons why many users deploy
HDFS as their analytic storage solution.

III. CASSANDRA

Cassandra is an open source distributed database management

system designed to handle large amounts of data across many

commodity servers and also providing a high availability with

no single point of failure in Cassandra. Cassandra also offers a

robust support for clusters spanning multiple data centers [1,

15] with asynchronous masterless replication which allowing

low latency operations for all clients. Apache Cassandra is a

massively scalable NoSQL database and Used today by

numerous modern businesses to manage their critical data

infrastructure. Cassandra is also known for the solution to

technical professionals turn to when they need a real-time

NoSQL database that supplies high performance at massive

scale and which is never goes down [11].

Fig 2: Simple Cassandra Network

Rather than using a legacy master-slave or a manual and

difficult-to-maintain sharded design, Cassandra is a peer-to-

peer distributed “ring” architecture that is much more elegant

and easy to setup and maintain. In Cassandra, all nodes are the

same and there is no concept of a master node with all nodes

communicating with each other via a gossip protocol.

Cassandra’s built-for-scale architecture means that is capable

of handling petabytes of information and thousands of

concurrent users/operations per second across one to many

data centers as easily as it can manage much smaller amounts

of data and user traffic. It means that also unlike other master-

slave or sharded systems, Cassandra system has no single

point of failure system and therefore is capable of offering true

continuous availability. It is not a file system at all but it is an

open source and it store NoSQL key-value [2]. Cassandra has

become a viable alternative to HDFS for web applications that

rely on fast data access. DataStax is a startup commercializing

of the Cassandra database has fused Hadoop atop Cassandra to

provide web applications fast access to data processed by

Hadoop. Hadoop have a fast access to data streaming into

Cassandra from web users.

IV. CASSANDRA FILE SYSTEM

What is the Cassandra File System (CFS)?

The Cassandra File System (CFS) was designed by DataStax

Corporation to easily run analytics on Cassandra data. Now it

is implemented as part of DataStax Enterprise, which

combines Apache Cassandra and Solr together into a unified

big data platform, CFS provides the storage foundation that

makes running Hadoop-styled analytics on Cassandra data

hassle-free. The main design goals for the Cassandra File

System were to first, simplify operational overhead of Hadoop

by removing the single points of failure in the Hadoop

NameNode. And second, to offer easy Hadoop integration for

Cassandra users (one distributed system is enough) [5].

How Does CFS Work?

In contrast to master-slave architecture like HDFS, CFS is

based on Cassandra, so the implementation is peer-to-peer and

“masterless”. User is able to create a cluster that seamlessly

stores real-time data in Cassandra; it performs analytic

operations on that same data and also handles enterprise search

operations. Cassandra’s built-in replication transparently takes

care of replicating the data among all real time, analytic and

http://www.datastax.com/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 3 631 – 633

636
IJRITCC | March 2014, Available @ http://www.ijritcc.org

search nodes. A user may configure any type of cluster they

desire.

Figure 3: A Simple DataStax Cluster

[6] CFS stores metadata information regarding analytics data

in a Cassandra keyspace, which is analogous to a database in

the relational database management system (RDBMS) world.

Two Cassandra column families (like tables in an RDBMS) in

the keyspace contain the actual data. The data contained in

these column families is replicated across the cluster to ensure

data protection and fault tolerance. The column families mirror

the two primary HDFS services. The inode column family

replaces the HDFS NameNode service, which tracks each data

file’s metadata and block locations on the participating of the

analytics nodes. And captured information in this column

family includes filename, parent path, group, user,

permissions, file type and a list of block ids that make up the

file. For block ids, it uses Time UUID, so blocks are ordered

sequentially in a natural way and its makes supporting HDFS

functions like append() easy. The sblocks column family

supplants the HDFS DataNode service that stores file blocks.

This column family stores the actual contents of any file that is

added to an analytics node. Each row in sblocks represents a

block of data associated with a row in the inode column

family. Each row key is a block Time UUID from an inode

row. The columns are the time ordered compressed sub-blocks

that, when it is decompressed and combined, equal to one

Hadoop-DFS block.

Figure 4: CFS Column Families

When data is added to an analytics node, Cassandra File

System writes the static metadata attributes to the inode

column family. Then it allocates a new sblocks row object,

reads a chunk of that data (is controlled via the Hadoop

parameter fs.local. block.size), which splits it into sub-blocks

(is controlled via the parameter cfs.local.subblock.size), and

compresses them via Google’s snappy compression. Once a

specific block is complete then its block id is written to the

inode column family row and the sub-blocks are written to

Cassandra with the block id as the row key and the sub-block

ids as the columns [7]. Reads are handled in a straightforward

manner. When query request comes into an analytics node,

CFS reads the inode information and finds the block and sub-

block(s) needed to satisfy the request.

V. BENEFITS OF CASSANDRA FILE SYSTEM

CFS is built on a proven and trusted technology (Apache

Cassandra) that powers many applications all over the globe

and world, and possesses a reputation known for scaling and

performing extremely well under challenging workloads [3].

Next, it should be understood that CFS is completely

transparent to any developer or end user. There are no changes

to any Hive, MapReduce, Pig, Mahout or any other routines

that run against CFS. [4]There are, however, a number of

benefits derived from using CFS over HDFS.

A. Simpler Deployment

 With CFS, there is no need for any master-slave

failover configurations, no zookeeper requirements, and no

complex storage requirements for storage area networks

(SANs). Instead, a cluster can be set up and installed in a few

minutes, with all CFS configurations being handled

automatically when a inside of DataStax Enterprise marked for

analytics is started for the first time. By using CFS, in essence,

three traditional Hadoop services (NameNode, Secondary

NameNode, and DataNode) are replaced with one easy-to-

understand and use fault tolerant component.

B. Better Availability

Continuous availability for analytics in a database cluster in
CFS is maintained without the need for any shared storage
solution (e.g. SANs). Instead, a cluster can consist of vanilla,
white-box hardware with local storage and still meet any high-
availability SLA requirement of it. Cassandra’s redundancy and
replication provides complete customization with respect to
how many copies of data should be maintained in a cluster,
thus ensuring constant uptime and no chance for data loss.

C. Multi-Data Center Support

Many modern businesses need to run analytic operations
that span more than one data center. CFS’s continuous
availability benefits include supporting multi-data center,
cloud, and hybrid (on-premise and cloud) environments. CFS
supports running a single database cluster across as many data
centers as desired, with any node in the cluster being able to
service reads and writes. Moreover, an architect can create
multiple CFS keyspaces so that each data center has its own
local copy of all the data it needs. A Job Tracker for each data
center can also be configured so each location has its own for
handling MapReduce and other analytic processing jobs

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 3 631 – 633

637
IJRITCC | March 2014, Available @ http://www.ijritcc.org

D. No Shared Storage Requirment For Failover

The Hadoop documentation is clear on the need for a shared
storage solution to support failover: Shared storage – you will
need to have a shared directory which has NameNode
machines can have read/write access to both. Currently only a
single shared edits directory is supported. Typically, this is a
remote filer which supports NFS and is mounted on each of the
NameNode machines. Thus, availability of the system is
limited by the availability of this shared edits directory and
therefore, in order to remove all single points of failure there
needs to be redundancy for the shared edits directory.
Specifically, the multiple network paths of storage and
redundancy in the storage itself (disk, network and power).
Because of this; it is recommended that the shared storage
server to be a high-quality dedicated NAS appliance rather than
a simple Linux server. No such requirement is needed for CFS
failover as everything is automatically and transparently
handled by Cassandra.

E. Full Data Integration

CFS provides the ability to have one big data platform that

handles real-time, analytic, and enterprise search workloads in

one cluster without any workload affecting the other where

data or compute resources are to be concerned. Instead, the

full mixed workload support is built and transparently handled

by DataStax Enterprise. This benefit results in the elimination

of data “silos” in organizations and the need to create and

maintain costly ETL routines to move data between different

silos. Any data written to Cassandra is replicated to analytics

and search nodes, and vice versa. Further, even output results

from analytics tasks may be replicated. For example, a Hive

query on analytic nodes that takes some time to complete and

produces a result set is able to have that result set replicated

over to Cassandra nodes for real-time query access.

F. MapReduce Support

Cassandra has Hadoop integration

with MapReduce support. Also support to the Apache

Hive and Apache Pig.

G. Tunable Consistency

Writes and reads offer a tunable level of consistency, from

all the way "writes never fail" to "all replicas to be readable

for block", with the quorum level in middle.

H. Commodity Hardware Support

CFS runs well on commodity hardware and requires no

special server or network equipment to be purchased.

VI. CONCLUSION

While HDFS is a good solution for providing cost-effective
storage for Hadoop implementations devoted to data warehouse
systems, Cassandra file system delivers the ability to run
analytics on Cassandra data that comes from line-of-business
applications. This world has researched and developed a

scalable high-performance storage system for user inventory
items Cassandra. Cassandra is the most popular wide column
store. CFS is built on provender and trusted technology that
powers many applications all over the world, and possesses a
reputation known for scaling and performing extremely well
under workloads and it should be understood that CFS is
completely transparent to any developer or end user. There are
no changes to any MapReduce, Hive, Pig, Mahout, or other
routines run rather than CFS. The way Cassandra manages the
persistent state in the face (or case) of these failures drives; the
reliability and scalability of the software systems relying on
this service. While in many ways Cassandra resembles a
database and shares many design and implementation strategies
therewith, it does not support a full relational data model
instead of that it provides clients with a simple data model that
supports dynamic control over data lay- out and format.
Cassandra file system was designed to run on cheap
commodity hardware and will handle high write through- put
while not sacrificing read efficiency.

ACKNOWLEDGMENT

This work was guided by professor Miss. Vaishali
Deshmukh. I would like to thank her for their gaudiness and
help.

REFERENCES

[1] " Apache Cassandra "
http://en.wikipedia.org/wiki/Apache_Cassandra.2014.

[2] “Designing performance monitoring tool for NoSQL Cassandra
distributed database”.
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6360579
&queryText%3DCASSANDRA, 2012 IEEE.

[3] “Cassandra: flexible trust management, applied to electronic health
records”,
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1310738
&queryText%3DCASSANDRA, IEEE.

[4] "The NoSQL Principles and Basic Application of Cassandra Model",
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6394574&url=htt
p%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumbe
r%3D6394574,2012 IEEE.

[5] http://www.datastax.com/dev/blog/cassandra-file-system-design.

[6] http://www.datastax.com/docs/0.8/ddl/index#data-model.

[7] http://www.datastax.com/dev/blog/cassandra-file-system-design.

[8] Apache Hadoop. http://hadoop.apache.org/.

[9] “A. Lakshman and P. Malik. Cassandra: structured storage system on
ap2p network. In Proceedings of the 28th ACM symposium on
Principles of distributed computing, PODC ’09, pages 5–5, New York,
NY, USA, 2009. ACM.

[10] “An Evaluation of Cassandra for Hadoop”,
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6676732,
2013 IEEE.

[11] http://nosqlsummer.org/paper/cassandra.

[12] http://tdwi.org/articles/2013/08/20/datastax-hadoop-cassandra.aspx.

[13] http://www.slideshare.net/planetcassandra/cfs-cassandra-backed-storage-
for-hadoop-20041145.

[14] http://blog.octo.com/en/introduction-to-datastax-brisk-an-hadoop-and-
cassandra-distribution/.

[15] https://wiki.apache.org/cassandra/ArchitectureInternals.

.

