Semi- Ideal and Semi-Filter in Distributive Q-lattices

A. D. Lokhande¹ and Ashok S Kulkarni²

¹Research Guide, Department of Mathematics,

Y. C. Warana

Mahavidyalay Warananagar, Dist-Kolhapur, Maharashtra, India. Email: *aroonlokhande@gmail.com* ²Research Student, Department of Mathematics D.A.B.N. College, Chikhali, Tal-Shirala, Dist-Sangli, Maharashtra, India. *Email: ashokkulkarni02@gmail.com*

Abstract: In this paper, We define concepts of prime semi ideal, prime semi filter in distributive q-lattice A and we prove A non empty subset F of A ($F \neq A$) is prime semi filter if and only if (A-F) is prime semi ideal. We define concepts of semi a-ideal, semi a-filter and prove if F be semi a-filter in A then F is maximal semi a-filter if for $x \notin F$ there exists $y \in F$ such that $a = y \land x$, and some equivalent conditions. We define a semi-ideal $P^{\perp} = \{x \in A \mid x \land a = s \text{ for all } a \in P\}$ and some properties. If f: $A \rightarrow A'$ be an onto homomorphism then we prove for any semi ideal I^{\perp} of A, f(I^{\perp}) is semi ideal of A'

KEYWORDS: Distributive q-lattice, Ideal, Filter, Semi a-ideal ,Semi a-filter, Prime semi-ideal, Prime semi-filter.

1. INTRODUCTION

Ivan Chajda [2] introduced the concept of a q-lattice and defined distributive q-lattice. After that G. C. Rao, P. Sundarayya, S. Kalesha vali, and Ravi Kumar Bandaru [1] defined ideals of distributive q-lattice, A. D. Lokhande, Ashok S Kulkarni [4] in paper 'Filter and Annihilator in Distributive q-lattices' defined Filter in a distributive q-lattice and proved if A be a distributive q-lattice then F(A), the set of all filters of A is a lattice under set inclusion. G. C. Rao and M. Sambasiva Rao [5] defined ' annihilator ' ideal in Almost Distributive Lattice (ADL_s) and derived some properties, In paper [4] A. D. Lokhande, Ashok S Kulkarni defined annihilator in distributive q-lattice A and proved for any ideal I of distributive q-lattice A and a \in A, the annihilator (a:I) is an ideal of A and derived some properties. Ashok S Kulkarni and A. D. Lokhande [5] defined J(P) and prove if J be an ideal of distributive q-lattice A then for any prime ideal P containing J, J(P) is an ideal of A such that $J \subseteq J(P) \subseteq P$ also if P be a prime ideal containing an ideal J of distributive q-lattice A. In this paper, We define concepts of prime semi ideal, prime semi filter and semi a-ideal, semi a-filter in distributive q-lattice A. we prove A non empty subset F of A ($F \neq A$) is prime semi filter if and only if (A-F) is prime semi ideal. We prove if F be semi a-filter in A then F is maximal semi a-filter if for x \notin F there exists y \in F such that a = y \land x, and some equivalent conditions. We define a semi-ideal P[⊥] = { x $\in A / x \land a = s$ for all a $\in P$ } and some properties.

2. **PRELIMINARIES**

Some of the following definitions and results are taken from [1] and [4]

Definition 2.1:[1]. An algebra (A, V, \land) whose binary operations V, \land satisfy the following is called a q-lattice.

(i) $a \lor b = b \lor a$; $a \land b = b \land a$ (commutativity)

(ii) $a \lor (b \lor c) = (a \lor b) \lor c$; $a \land (b \land c) = (a \land b) \land c$ (associatativity)

(iii) $a \lor (a \land b) = a \lor a$; $a \land (a \lor b) = a \land a$ (weak-absorption)

(iv) $a \lor b = a \lor (b \lor b)$; $a \land b = a \land (b \land b)$ (weak-idempotence)

(v) $a \lor a = a \land a$ (equalization)

Definition 2.2:[1]. A q-lattice (A, V, Λ) is distributive if it satisfies the identity

 $x \lor (y \land z) = (x \lor y) \land (x \lor z) \quad \text{for all } x , y, z \in A$

Lemma 2.1 :[1]. Let A be a distributive q-lattice then the following identity hold

 $a \land (b \lor c) = (a \land b) \lor (a \land c)$ for all $a, b, c \in A$.

Definition 2.3:[1]. Ideal of a distributive q-lattice:

A nonempty subset I of a distributive q-lattice A is called an ideal of A if

i) $x, y \in I \Longrightarrow x \lor y \in I$

ii) $x \in I \text{ and } a \in A \implies a \land x \in I$

Definition 2.4:[4]. Filter of a distributive q- lattice :

A nonempty subset F of a distributive q-lattice A is called a filter of A, if.

i) $x, y \in F \Longrightarrow x \land y \in F$

ii) $x \in F$ and $a \in A \implies a \lor x \in F$

3. Semi- ideal and semi-filter

Definition: 3.1.

Semi ideal of a distributive q-lattice:

A nonempty subset I of a distributive q-lattice A is called semi ideal of A if

 $x, y \in I \implies x \lor y \in I$

Definition: 3.2.

Semi-filter of a distributive q- lattice :

A nonempty subset F of a distributive q-lattice A is called semi filter of A, if.

 $x, y \in F \Longrightarrow x \land y \in F$

Definition: 3.3.

Prime semi ideal of a distributive q-lattice:

A proper semi ideal I of a distributive q-lattice A is called prime semi ideal of A if for all x and y in A,

 $x \land y \in I \implies x \in I \text{ or } y \in I$

Definition: 3.4.

Prime semi-filter of a distributive q- lattice , Maximal semi filter of a distributive q-lattice: A proper semi filter F of a distributive q-lattice A is called prime semi filter of A, if for all x and y in A, $x \lor y \in F \implies x \in F$ or $y \in F$.

A proper semi filter F of A is said to be maximal if it is not properly contained in any proper semi filter of A

Theorem: 3.1.

A non empty subset F of A ($F \neq A$) is prime semi filter if and only if (A-F) is prime semi ideal Proof: only if part: Let F be prime semi filter. As $F \neq A$ implies A-F is nonempty Let $x, y \in A$ -F Implies $x \notin F$, $y \notin F$ and since F is prime semi filter Implies $x \lor y \notin F$ Implies $x \lor y \in (A-F)$ Therefore (A-F) is semi ideal. Now for $x, y \in (A-F)$ If $x \land y \in (A-F)$ Implies $x \land y \notin F$ and since F is semi-filter Implies either $x \notin F$ or $y \notin F$ Implies $x \in (A-F)$ or $y \in (A-F)$ This shows that (A-F) is prime semi ideal. If part: Let (A-F) be prime semi ideal in A Already we have taken F is non empty Let x, $y \in F$ Implies $x \notin (A-F)$, $y \notin (A-F)$ and since (A-F) is prime semi ideal Implies $x \land y \notin (A-F)$ Implies $x \land y \in F$, Hence F is semi filter.

To prove that F is prime: Let x, $y \in A$ if $x \lor y \in F$ Implies $x \lor y \notin (A-F)$ and since (A-F) is semi-ideal in A Implies $x \notin (A-F)$ or $y \notin (A-F)$ Implies $x \in F$ or $y \in F$ Therefore F is prime semi filter. Similarly we can prove, A non empty subset P ($P \neq A$) of A is prime semi ideal if and only if (A-P) is prime semi filter in A **Definition :3.5.** Semi a-filter in distributive q-lattice: Let a be any fixed element in A then we define semi a-filter is a semi filter in A not containing a Theorem:3.2. Let F be semi a-filter in A then F is maximal semi a-filter if for $x \notin F$ there exists $y \in F$ such that $a = y \land x$ Proof: Let F be semi a-filter in A satisfying the given condition Now we prove F is maximal semi a-filter in A : Let if possible there exists semi a-filter J in A such that $F \subset J \subset A$ As $F \subset J$ there exists $x \in J$ such that $x \notin F$ Hence by assumption there exists $y \in F$ such that $a = y \wedge x$ Now $F \subset J$ and $y \in F$ implies $y \in J$ As $x \in J$, $y \in J$ and J is an filter so $y \land x \in J$ That is $y \land x = a \in J$ which is a contradiction Hence F is maximal semi a-filter in A. Theorem: 3.3. The following statements are equivalent in A. 1) Every maximal semi a-filter is prime. 2) Every semi a-filter which is contained in some maximal semi a-filter is disjoint from prime semi a-ideal. 3) Every semi a-filter which is contained in some maximal semi a-filter, is contained in prime semi a-filter. Proof: (1) \Rightarrow (2) Let F be any semi a-filter in A Suppose F be contained in some maximal semi a-filter say M By assumption (1), M be prime Hence (A-M) is prime semi a-ideal, further as $F \cap (A-M) = \phi$ So every semi a-filter is disjoint from prime semi a-ideal $(2) \Rightarrow (3)$ Let F be semi a-filter in A which is contained in some maximal semi a-filter By assumption (2) There exists prime semi a-ideal P such that $P \cap F = \phi$ This implies $F \subseteq (A-P)$ and by theorem 3.1, (A-P) is prime semi a-filter So the implication follows. $(3) \Rightarrow (1)$ Let M be any maximal semi a-filter , clearly M is semi a-filter and as $M \subseteq M$ By assumption (3) M is contained in prime semi a-filter say Q in A But then ,maximality of M will imply that M = QHence M is prime. Thus $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)$ so all the statements are equivalent. **Definition: 3.6.** For any non empty set P and special element $s \in A$ satisfying properties $s \lor s = s$, we define $P^{\perp} = \{x \in A \mid x \land a = s \text{ for all } a \in P\}$ Theorem: 3.4. For distributive q-lattice A with element $s \in A$ satisfying property $s \lor s = s$ and for any non empty set I and J of A we have the following (1) I^{\perp} is a semi ideal.

International Journal on Recent and Innovation Trends in Computing and Communication Volume: 2 Issue: 3

(2) If $I \subseteq J$ then (a) $J^{\perp} \subseteq I^{\perp}$ and (b) $(I^{\perp})^{\perp} = I^{\perp \perp} \subseteq (J^{\perp})^{\perp} = J^{\perp \perp}$ (3) $(I \lor J)^{\perp} = I^{\perp} \cap J^{\perp}$ (4) $(I \cap J)^{\perp} = I^{\perp} \cap J^{\perp}$ (5)) If $J \subseteq I$ then prove that $(I^{\perp} \lor J^{\perp})^{\perp} \subseteq I^{\perp \perp}$ (6) $I^{\perp \perp} \cap J^{\perp \perp} \subseteq (I^{\perp} \lor J^{\perp})^{\perp}$ (7) I \subseteq I \perp Proof: (1) To prove I^{\perp} is a semi ideal Let $x, y \in I$ Implies $x \land a = s = y \land a$, for all $a \in I$ Now $(x \lor y) \land a = a \land (x \lor y)$ $= (a \land x) \lor (a \land y)$ $= (x \land a) \lor (y \land a)$ $= \mathbf{s} \vee \mathbf{s}$ = s for all a \in I Hence $x \lor y \in I^{\perp}$ Therefore I^{\perp} is a semi ideal. 2) If $I \subseteq J$ then to prove that (a) $J^{\perp} \subseteq I^{\perp}$ and (b) $(I^{\perp})^{\perp} = I^{\perp \perp} \subseteq (J^{\perp})^{\perp} = J^{\perp \perp}$ (a) Let $x \in J^{\perp}$ Implies $x \land a = s$ for all $a \in J$ Implies $x \land a = s$, for all $a \in I$ since $I \subseteq J$ Implies $x \in I^{\perp}$ So $J^{\perp} \subseteq I^{\perp}$ (b) Let $x \in I^{\perp \perp} = (I^{\perp})^{\perp}$ Implies $x \land a = s$ for all $a \in I^{\perp}$ Implies $x \land a = s$ for all $a \in J^{\perp}$ since $J^{\perp} \subseteq I^{\perp}$ Implies $x \in (J^{\perp})^{\perp} = J^{\perp \perp}$ Therefore $(I^{\perp})^{\perp} = I^{\perp \perp} \subseteq (J^{\perp})^{\perp} = J^{\perp \perp}$ 3) To prove $(I \lor J)^{\perp} = I^{\perp} \cap J^{\perp}$ Let $x \in I^{\perp} \cap J^{\perp}$ Implies $x \in I^{\perp}$ and $x \in J^{\perp}$ Implies $x \land a = s$ for all $a \in I$ and $x \land b = s$ for all $b \in J$ Let $t = a \lor b \in I \lor J$ where $a \in I$ and $b \in J$ Now $x \wedge t = x \wedge (a \vee b)$ $= (x \land a) \lor (x \land b)$ $= s \lor s = s \text{ for all } t \in I \lor J$ Implies $x \in (I \lor J)^{\perp}$ implies $I^{\perp} \cap J^{\perp} \subseteq (I \lor J)^{\perp}$ -----(1) Now let $x \in (I \lor J)^{\perp}$ Implies $x \land t = s$ for all $t \in I \lor J$ Let $t = (a \lor b)$ Implies $x \wedge t = x \wedge (a \vee b) = s$ Implies $(x \land a) \lor (x \land b) = s$ but s is an element satisfying property $s \lor s = s$ Implies $(x \land a) = s$ and $(x \land b) = s$ for all $a \in I$ and for all $b \in J$ Implies $x \in I^{\perp}$ and $x \in J^{\perp}$ Implies $x \in I^{\perp} \cap J^{\perp}$ Therefore $(I \lor J)^{\perp} \subseteq I^{\perp} \cap J^{\perp}$ ------(2) From (1) and (2) we get $(I \lor J)^{\perp} = I^{\perp} \cap J^{\perp}$

(4) To prove $(I \cap J)^{\perp} = I^{\perp} \cap J^{\perp}$ Let $x \in (I \cap J)^{\perp}$ Implies $x \land a = s$ for all $a \in I \cap J$ Implies $x \land a = s$ for all $a \in I$ and $a \in J$ Implies $x \land a = s$ for all $a \in I$ and $x \land a = s$ for all $a \in J$ Implies $x \in I^{\perp}$ and $x \in J^{\perp}$ Implies $x \in I^{\perp} \cap J^{\perp}$ Therefore $(I \cap J)^{\perp} \subseteq I^{\perp} \cap J^{\perp}$ ------ (1) Now let $x \in I^{\perp} \cap J^{\perp}$ Implies $x \in I^{\perp}$ and $x \in J^{\perp}$ Implies $x \land a = s$ for all $a \in I$ and $x \land b = s$ for all $b \in J$ Implies $x \land a = s$ for all $a \in I$ and $a \in J$ Implies $x \land a = s$ for all $a \in I \cap J$ Implies $x \in (I \cap J)^{\perp}$ Therefore $I^{\perp} \cap J^{\perp} \subseteq (I \cap J)^{\perp}$ ------ (2) From (1) and (2) we get $(I \cap J)^{\perp} = I^{\perp} \cap J^{\perp}$ (5) If $J \subseteq I$ then to prove that $(I^{\perp} \lor J^{\perp})^{\perp} \subseteq I^{\perp \perp}$ Let $x \in I^{\perp}$ Then $x \land a = s$ for all $a \in I$ Implies $x \land a = s$ for all $a \in J$ since $J \subseteq I$ Let $t = a \lor b \in I \lor J$ where $a \in I$ and $b \in J$ Now $x \wedge t = x \wedge (a \vee b) = (x \wedge a) \vee (x \wedge b)$ $= s \lor s = s$ Implies $x \in I^{\perp} \vee J^{\perp}$ Therefore $I^{\perp} \subseteq I^{\perp} \lor J^{\perp}$ and using property (2) $(I^{\perp} \lor J^{\perp})^{\perp} \subseteq I^{\perp \perp}$ (6) To prove that $I^{\perp \perp} \cap J^{\perp \perp} \subseteq (I^{\perp} \lor J^{\perp})^{\perp}$ Let $x \in I^{\perp \perp} \cap J^{\perp \perp}$ Implies $x \in I^{\perp \perp}$ and $x \in J^{\perp \perp}$ and let $y \in I^{\perp} \lor J^{\perp}$ Then $y = i \lor j$ for some $i \in I^{\perp}$ and $j \in J^{\perp}$ Now $\mathbf{x} \wedge \mathbf{y} = \mathbf{x} \wedge (\mathbf{i} \vee \mathbf{j}) = (\mathbf{x} \wedge \mathbf{i}) \vee (\mathbf{x} \wedge \mathbf{j})$ $= s \vee s = s$ Implies $x \in (I^{\perp} \lor J^{\perp})^{\perp}$ Therefore $I^{\perp \perp} \cap J^{\perp \perp} \subseteq (I^{\perp} \vee J^{\perp})^{\perp}$ (7) prove that $I \subseteq I^{\perp \perp}$ Proof: Let $p \in I, y \in I^{\perp}$, $x \in I^{\perp \perp}$ As $y \in I^{\perp}$ implies $y \land p = s$ for all $p \in I$ Also as $x \in I^{\perp \perp}$ implies $x \land y = s$ for all $y \in I^{\perp}$ Implies $p \land y = s$ for all $y \in I^{\perp}$ Implies $p \in I^{\perp \perp}$ Therefore $I \subseteq I^{\perp \perp}$

Definition: 3.7.

Let A and A' be two distributive q-lattices with special elements s and s' respectively. Then a mapping f: $A \rightarrow A'$ is called a homomorphism if it satisfies $f(a \lor b) = f(a) \lor f(b)$ and $f(a \land b) = f(a) \land f(b)$

Theorem: 3.5.

Let $f: A \to A'$ be an onto homomorphism then for any semi ideal I^{\perp} of A then $f(I^{\perp})$ is semi ideal of A'

Proof: Let f: A \rightarrow A' be an onto homomorphism. Let I^{\perp} be semi ideal of A we have to show that f(I^{\perp}) is semi ideal of A' Let $f(x), f(y) \in f(I^{\perp})$ Now $f(x) \lor f(y) = f(x \lor y)$ As x, $y \in I^{\perp}$ and I^{\perp} is semi-ideal hence $x \lor y = x'$ (say) $\in I^{\perp}$ Implies $f(x) \lor f(y) = f(x \lor y)$ $= f(x') \in f(I^{\perp})$ Therefore f(I^{\perp}) is semi-ideal of A' Theorem: 3.6. Let f: A \rightarrow A' be a homomorphism with property f(s) = s' where s' is special element of A' satisfying s' \lor s' = s' then for any non empty subset I of A we have $f(I^{\perp}) \subseteq (f(I))^{\perp}$ Proof: Let $a \in f(I^{\perp})$ and $y \in f(I)$ Then there exists $b \in I^{\perp}$ and $x \in I$ such that a = f(b) and y = f(x)Now $a \land y = f(b) \land f(x) = f(b \land x) = f(s)$ for all $y \in f(I)$ Hence $a \in (f(I))^{\perp}$ Therefore $f(I^{\perp}) \subseteq (f(I))^{\perp}$. Theorem:3.7. Let A and A' be two distributive q-lattice with special element s and s' respectively and f: $A \rightarrow A'$ be one one, onto homomorphism then prove that $\{f^{-1}(B)\}^{\perp} \subseteq \{f^{-1}(B^{\perp})\}$ Proof: Let $x \in {f^1(B)}^{\perp}$ Implies $x \wedge b = s$ for all $b \in f^{-1}(B)$ Implies $x \land b = s$ for all $f(b) \in B$ Implies $f(x \land b) = f(s)$ for all $f(b) \in B$ Implies $f(x) \land f(b) = f(s) = s'$ for all $f(b) \in B$ Implies $f(x) \in B^{\perp}$

Implies $x \in f^{-1}(B^{\perp})$

Hence $\{f^{1}(B)\}^{\perp} \subseteq \{f^{1}(B^{\perp})\}$

References:

- [1] G. C. Rao , P. Sundarayya, S. Kalesha Vali and Ravi Kumar Bandaru : Some remarks on Distributive Q-lattices. International Journal of compitational cognition Vol. 9 No; 79 -81 ,2 June 2011
- [2] Ivan Chajada. Lattices in quasiordered sets. Acta Uni. Pal. Olo.Fac.,105: 6-12, 1992
- [3] G.C. Rao and M. Sambasiva Rao Annihilators ideals in Almost Distributive Lattices., International Mathematical Forum, 4, 2009, no. 15, 733-746
- [4] A. D. Lokhande, Ashok S. Kulkarni Filter and Annihilator in Distributive q-lattices, online international interdisciplinary research journal [bi-monthly] volume III issue I Jan-Feb 2013
- [5] Ashok S Kulkarni, A. D. Lokhande Remarks on ideal in Distributive Q-lattices. online international interdisciplinary research journal [bi-monthly] volume III, Nov 2013 Special issue.
- [6] Ms. Manisha Vasantrao Patil,"Generalizations Of Distributive Lattices", Doctoral Thesis (2008), Dept. of Mathematics, Shivaji University, Kolhapur
- [7] G.C. Rao and S. Ravikumar, Minimal prime ideals in Almost Distributive Lattices., Int. Contemp. Math. Sciences, Vol.4, 2009, no. 10, 475-484