
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 2 391 – 397

__

391
IJRITCC | February 2014, Available @ http://www.ijritcc.org

A Framework for Vulnerability Detection in Software Application “H2S” and

Protection Against Command Injection Flaw

Anshika pandey

1
, Mr.Vishal Shrivastava

2

1
Student M.Tech(CS), Arya College of Engineering,Jaipur

2
Professor, Arya College of Engineering, Jaipur

1
anshika1987@gmail.com

2
vishal500371@yahoo.com

Abstract- “Application Security Assessment” is a process of providing complete security to the application from various vulnerabilities. Through this

paper we are trying to detect what all vulnerabilities does our application “H2S” has and try to understand how can it affect our application.

Application is taken as input from the user along with application’s documentation. Also, User ID and password is to be given by the customer. After

having all the required documents, application is deeply studied and understood.

The main benefit of this application is that users can prevent their application and the essential information that an application has from getting

affected by the external attackers. Firstly a threat profile is created and then vulnerabilities are checked. Various vulnerabilities checked by the

project are:

INJECTION FLAW, CROSS-SITE SCRIPTING (XSS), CROSS SITE REQUEST FROGERY (CRSF), RE-DIRECTIONAL FLAW, SESSION

MANAGEMENT, MALICIOUSFILE EXECUTION, INSECURE DIRECT OBJECT REFERENCE, INFORMATION LEAKAGE AND

IMPROPER ERROR HANDLING

After checking for available vulnerabilities, risk is calculated using risk ranking matrix and finally provide solution so that application fully

secured from external attacks.

Keywords-H2S, Vulnerability, Assessment

__*****___

(1). INTRODUCTION

More and more businesses are seeing information security as a

business enabler, the enabler that can make or break a

business, especially when there is heavy dependence on IT

assets. A secure IT environment gives organization a

competitive advantage over the competition. Threats to IT

assets are ever changing. Applications are an IT component

which sits on the top of IT assets. To secure and review an

application it requires a great level of skills and knowledge

[1]. With time there are a number of problems particularly

SECURITY PROBLEMS that arises with the web

applications.

A few are listed below-:

 Attacks on database and OS

 Fake emails

 Unauthorized access to the secured information

 Emails carrying malicious code

 Other hacker attacks like spoofing, DoS etc.

These security issues have come into play because the web

application has some vulnerability better known as loop holes

that are being exploited to breach the security wall that an

application provides [2]. It is like a challenge to stop this

exploitation as the exploiters keep coming up with new ways

to carry out this malpractice. This dissertation takes up the

challenge to counter this malpractice posing security threats to

the users of the application. Some of the specific security

problems (i.e. vulnerabilities) addressed by this paper are:

 Injection flaws

 Cross-site scripting (xss)

 Cross site request forgery (csrf)

 Re-directional flaw

 Session management

 Malicious file execution

 Insecure direct object reference

APPLICATI

ON

CHECK FOR

VULNERABILI

TIES AND FIX

THEM

SECURED

SYSTEM

mailto:1anshika1980@gmail.com
mailto:2vishal500371@yahoo.com

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 2 391 – 397

__

392
IJRITCC | February 2014, Available @ http://www.ijritcc.org

 Information leakage and improper error handling

 Insecure communication

(2). OVERVIEW

“H2S” is a vulnerable application build using PHP with

APACHE server and SQL SERVER is used as backend tool

for database storage[4].

Functionalities included in “H2S” application:

 Register new user

 Enables us to enter a new user to the application who

can have access to the features available in

application.

 Login/logout

 Setup/Reset the DB

 This feature enables us to reset the database back to

its original state. Whenever, the check for any

vulnerability is performed, there’re some changes

that are made in the database [16]. So, in order to

avoid the affect of such changes over the rest of

application when checking it for other vulnerabilities,

this feature is included[6].

 Add/view someone’s blog

 Show log

 Enables us to view all the pages that have been

visited by a user in the application

 Browser info

Gives us the details about the current configuration of the

browser such as:

 IP address

 Hostname

 OS

 Remote client port etc

 User info Specifies all the details about the user

who’s currently logged in

 DNS lookup gives the IP address of the site we put in

textbox. The pre-requisite for this feature is that there

has to connectivity with internet.

 Text file viewer enables user to view the content of

the text file he chooses

 Source viewer enables user to view the source code

of the page he wish to

(2.1) VULNERABILITIES

2.1.1 INJECTION FLAWS

Injection flaws allow attackers to relay malicious code through

a web application to another system. These attacks include

calls to the operating system via system calls, the use of

external programs via shell commands, as well as calls to

backend databases via SQL (i.e., SQL injection) Many web

applications use operating system features and external

programs to perform their functions[15]. Attacker can inject

special (meta) characters, malicious commands, or command

modifiers into the information and the web application will

blindly pass these on to the external system for execution[2,8].

2.1.2 SQL INJECTION

A SQL injection attack consists of insertion or "injection" of a

SQL query via the input data from the client to the

application[14]. A successful SQL injection exploit can read

sensitive data from the database, modify database data

(Insert/Update/Delete), execute administration operations on

the database (such as shutdown the DBMS), recover the

content of a given file present on the DBMS file system and in

some cases issue commands to the operating system. To

exploit a SQL injection flaw, the attacker must find a

parameter that the web application passes through to a

database. By carefully embedding malicious SQL commands

into the content of the parameter, the attacker can trick the

web application into forwarding a malicious query to the

database [3,10]. These attacks are not difficult to attempt and

more tools are emerging that scan for these flaws. The

consequences are particularly damaging, as an attacker can

obtain, corrupt, or destroy database contents.

2.1.3 COMMAND INJECTION

The purpose of the command injection attack is to inject and

execute commands specified by the attacker in the vulnerable

application. In situation like this, the application, which

executes unwanted system commands, is like a pseudo system

shell, and the attacker may use it as any authorized system

user. An OS command injection attack occurs when an

attacker attempts to execute system level commands through a

vulnerable application. Applications are considered vulnerable

to the OS command injection attack if they utilize user input in

a system level command [2].

2.1.4 CROSS-SITE SCRIPTING (XSS)

Cross-Site Scripting attacks are a type of injection problem, in

which malicious scripts are injected into the otherwise benign

and trusted web sites. Cross-site scripting (XSS) attacks occur

when an attacker uses a web application to send malicious

http://www.owasp.org/index.php/SQL_injection

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 2 391 – 397

__

393
IJRITCC | February 2014, Available @ http://www.ijritcc.org

code, generally in the form of a browser side script, to a

different end user. Flaws that allow these attacks to succeed

are quite widespread and occur anywhere a web application

uses input from a user in the output it generates without

validating or encoding it[15].

An attacker can use XSS to send a malicious script to an

unsuspecting user. The end user’s browser has no way to

know that the script should not be trusted, and will execute the

script [2,10].

2.1.5 CROSS SITE REQUEST FROGERY (CRSF)

CSRF is an attack which forces an end user to execute

unwanted actions on a web application in which he/she is

currently authenticated. With a little help of social engineering

(like sending a link via email/chat), an attacker may force the

users of a web application to execute actions of the attacker's

choosing. A successful CSRF exploit can compromise end

user data and operation, when it targets a normal user. If the

targeted end user is the administrator account, a CSRF attack

can compromise the entire web application[17].

2.1.6 RE-DIRECTIONAL FLAW

If a user gets an email from his bank stating that he has

received some promotion offers so he should click on the link

below to avail those offers. User ensures that the site is

authentic by checking the name of his bank in the URL as he

is aware of phishing attacks[2]. He finds it to be a genuine

URL of the bank, so he clicks the link. On clicking the link the

login page of his bank is displayed to him. He enters his

username and password on the login page. He gets an error

page saying “The server is unable to process your request”[3].

2.1.7 SESSION MANAGEMENT

Session Management broadly covers all controls on a user

from authentication to leaving the application. HTTP is a

stateless protocol, meaning that web servers respond to client

requests without linking them to each other. Even simple

application logic requires a user's multiple requests to be

associated with each other across a "session”[5].

 Most popular web application environments, such as ASP and

PHP, provide developers with built-in session handling

routines. Some kind of identification token will typically be

issued, which will be referred to as a “Session ID” or Cookie.

There are a number of ways in which a web application may

interact with a user. Each is dependent upon the nature of the

site, the security, and availability requirements of the

application[4].

2.1.8 MALICIOUS FILE EXECUTION

Developers will often directly use or concatenate potentially

hostile input with file or stream functions, or improperly trust

input files. On many platforms, frameworks allow the use of

external object references, such as URLs or file system

references. When the data is insufficiently checked, this can

lead to arbitrary remote and hostile content being included,

processed or invoked by the web server[6].

This allows attackers to perform:

 Remote code execution

 Remote root kit installation and complete system

compromise

 On Windows, internal system compromise may be

possible through the use of PHP’s SMB file wrappers

This attack is particularly prevalent on PHP, and extreme care

must be taken with any stream or file function to ensure that

user supplied input does not influence file names.

2.1.9 INSECURE DIRECT OBJECT REFERENCE

A direct object reference occurs when a developer exposes a

reference to an internal implementation object, such as a file,

directory, database record, or key, as a URL or form

parameter. An attacker can manipulate direct object references

to access other objects without authorization, unless an access

control check is in place[7].

For example, in Internet Banking applications, it is common to

use the account number as the primary key. Therefore, it is

tempting to use the account number directly in the web

interface.

2.1.10 INFORMATION LEAKAGE AND IMPROPER

ERROR HANDLING

Applications can unintentionally leak information about their

configuration, internal workings, or violate privacy through a

variety of application problems. Applications can also leak

internal state via how long they take to process certain

operations or via different responses to differing inputs, such

as displaying the same error text with different error numbers.

Web applications will often leak information about their

internal state through detailed or debug error messages [19].

(3). FOR RUNNING APPLICATION

As we looked in the detail of all attacks vulnerability. The

problem resides in our application as vulnerability assessment.

We find out all the vulnerability in our application and then

provide the detailed description and solution of one of the

vulnerability. Here we mainly focus on Command injection

flaw [2]. But before this we perform all the attacks in our

application H2S to find out the vulnerability.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 2 391 – 397

__

394
IJRITCC | February 2014, Available @ http://www.ijritcc.org

 We are using VMware to setup a server of window 7

operating system.

 The Ip address of server is given as-192.168.10.10

 The Ip address of client is given as-192.168.10.11

 The DNS address is given as 127.0.0.1

 IP address of www.google.com-173.194.36.52

 IP address of www.yahoo.com-206.106.90.245

3.1 Risk Rating Matrix

Level of

access

required

Complexit

y of

Attack

Impact

High Medium Low

No

Physical

Access

Required

Easy High High Medium

Requires

Skills
High Medium Low

Difficult Medium Medium Low

Physical

Access

Required

Easy Medium Medium Low

Requires

Skills
Medium Low Low

Difficult Low Low Low

(4). EXPLOTING VULNERABILITY

4.1 SQL INJECTION

There are three types of SQL comments:-

1.' or 1=1 --

2.’or1=1({

3.’or 1=1/*’

By applying simple SQL comment or 1=1--, the application

shows all the account made in the application with their

password and signature. If attacker wants to directly login

with admin account he can use this comment on login

window. After that he has full control on admin account and

do whatever he wants to do in application [19].

4.2 COMMAND INJECTION

Using DIR

After applying www.google.com && DIR the application

shows all the files of H2S application

Using SHUTDOWN

By Applying command shutdown www.google.com &

shutdown –t 30 the server will shutdown in given time

4.3 CROSS SITE SCRIPTING (XSS)

By applying <script>alert(“vulnerable to XSS”);</script> XSS

can be displayed on every blog view as alert[2].

4.5 RE-DIRECTIONFLAW

By this flaw victim redirected to specific site given by

attacker.

4.6 INSECURE DIRECT OBJECT REFERENCE

By this attack attacker can view or redirect the victim to open

another documents.

(5). EVALUATION (Paper Work)

There is exponential increase in vulnerabilities found in Web

Applications putting significant financial impact to the

enterprise and privacy of the end users. 75% of total attacks

now occur on Web applications. Systems and network

administrators in last 5-10 years (end 1990s to early 00s) have

achieved significant maturity on controlling OS and network

level attacks. Strong OS hardening/patching procedures

coupled with well managed firewalls provides sufficient surety

to the business that these layers are secure and not easy to

penetrate [15].

http://www.google.com-173.194.36.52/
http://www.yahoo.com-206.106.90.245/
http://www.google.com/
http://www.google.com/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 2 391 – 397

__

395
IJRITCC | February 2014, Available @ http://www.ijritcc.org

Web applications provide a logical tunnel from

outside/Internet to the backend databases inside the enterprise.

Web applications are complex piece of code with a mix of

customized business logic, third party libraries, back-end

database routines and integration to multiple other

applications. Complexity increases potential points of failures

[2].

The following are the activities involve in deploying the above

said solution-:

 Study of application received from customer

 Create a threat profile

 Expose all possible vulnerabilities in the existing

application.

 Assign risk rating to vulnerabilities

 Propose a solution for the vulnerabilities exposed.

 Implement and test the solutions proposed,

independent of each other.

(6). IMPLEMENTATION

We focus on command injection flaw.

6.1 COMMAND INJECTION

Command injection is basically injection of operating system

commands to be executed through a web-app. The purpose of

the command injection attack is to inject and execute

commands specified by the attacker in the vulnerable

application. In situation like this, the application, which

executes unwanted system commands, is like a pseudo system

shell, and the attacker may use it as any authorized system

user. However, commands are executed with the same

privileges and environment as the application has. Command

injection attacks are possible in most cases because of lack of

correct input data validation, which can be manipulated by the

attacker (forms, cookies, HTTP headers etc.)[2,3].

Command injection attacks can occur when a web application

executes system commands – say – a webapp that runs

nslookup queries for you. If the input that is passed to the shell

command is not correctly sanitized, an attacker can *inject*

extra shell commands and have your application run them

under the privileges of the webapp – normally the privileges

of the web-server.

Put simply, it means the attacker can execute commands on

your box, leading to total system compromise. Yes, this is a

very serious vulnerability.

Ok, so how does all this work?

Simple example.

<?php

 $host = 'google';

 if (isset($_GET['host']))

 $host = $_GET['host'];

 system("nslookup " . $host);

?>

<form method="get">

<select name="host">

 <option value="google.com">google</option>

 <option value="yahoo.com">yahoo</option>

 </select>

 <input type="submit">

</form>

This piece of code accepts the GET parameter “host” and runs

the nslookup command on it, giving you output regarding its

IP address.

The important part is to see how the $host parameter (the GET

parameter) is passed directly to the system () function without

any filtering or sanitization of input[19].Those of you familiar

with the Unix command line will know we can “stack”

commands by using a semicolon, like so…nslookup

google.com;cat /etc/passwd

6.2 Command Injections types:

&& dir

&& wmic process list

&& wmic useraccount list

&& copy c:\WINDOWS\repair\sam && copy

c:\WINDOWS\repair\system.bak

6.3 SOLUTION:-

We explained above that by applying both command injection

our application gives vulnerability on DNS Lookup and

shutdown the server. Basically the attack name is

“shell_exec”.

The script is as follow

// Grab inputs

$targethost = $_REQUEST["target_host"];

echo "<pre>";

echo shell_exec("nslookup " . $targethost);

echo "</pre>";

//phpinfo();

Here the shell_exec is the command injection attack which

targeted on nslookup.

Solution:

By changing the script in application to this the output will

show the ip address of google.com, yahoo.com, client.com,

H2S.com.

// Grab inputs

$targethost = $_REQUEST["target_host"];

//echo "<pre>";

$ip = gethostbyname($targethost);

echo $ip;

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 2 391 – 397

__

396
IJRITCC | February 2014, Available @ http://www.ijritcc.org

//echo "</pre>";

//phpinfo();

6.4 AFTER APPLYING SOLUTION-

IP address of www.google.com-173.194.36.52

The IP address of www.yahoo.com-206.106.90.245

DIR command injection is not working now.

www.google.com & shutdown –t 30

(7). CONCLUSION

Any business application is vulnerable to threats. Thus, it is

necessary to test the application security to make sure it is

prevented from outside attacks. Due to the nature of

application of being getting attacked from external sources,

proposed solution was required. Threat profile is created

which consists of all the threats that an application faces.

System’s security highly depends upon the quality of threat

profile. Using this threat profile, we check the system for the

available vulnerabilities and fix them, making the application

more secure. We try to secure application from getting

affected by the outside attackers. Not only application but

database, Operating System, web browser etc are also

prevented to get affected. We targeted on command injection

flaw and apply the solution to remove the vulnerability.

 The solution would also lead ISP's and companies to ensure

that their servers are not misused and/or take steps to quickly

remedy the situation when they are. The risk ranking

framework enables us to determine the risk for each

vulnerability. Hence, through this procedure we ensure

application to be secured.

7.1 Limitations of the System

 Although this project gives an understanding of

various application level vulnerabilities which are

common to many applications but information

security field is so vast that I can’t cover all aspects

of it.

 Things like creating exploits (For platforms eg.

Windows, Unix etc.), Secure Network design,

Vulnerability assessment of different platform and

other Information security standard like would

remain untouched.

 Good networking knowledge and knowledge of

protocols is required.

7.2 Future Scope for Modification

As for future work, an extension of our work is possible. We

would like to investigate the application for other professional

services i.e. penetration testing, vulnerability assessment etc.

We are confident that these extensions of the measurements

cannot harm the validity of our current results, but can

furthermore help us to get a more secured application Also

there might be some shortcomings in our proposed solution

which we would like to test and fix.

(8). ACKNOWLEDGEMENT

This work was supported by the Arya College of Engineering

and Technology, Jaipur Rajasthan.

(9). REFRENCES/BIBLOGRAPHY

[1] Steven, J. “State of Application Assessment”

Security & Privacy, IEEE (Volume:6 , Issue: 6)

Nov.-Dec. 2008

[2] Curphey, M. ; Foundstone, Mission Viejo, CA ;

Arawo, R.” Web application security assessment

tools” Security & Privacy, IEEE (Volume:4 , Issue:

4) July-Aug. 2006 ISSN :1540-7993

[3] Teodoro, N. ; DCTI/ADETTI, ISCTE-IUL, Lisbon,

Portugal ; Serrao, C.” Assessing the Portuguese Web

applications security” Internet Security (WorldCIS),

2011 IEEE World Conference on 21-23 Feb. 2011

,London

[4] Maan, F. ; Nat. Univ. of Sci. & Technol. (NUST),

Islamabad, Pakistan ; Abbas, Y. ; Mazhar, N.”

Vulnerability assessment of AODV and SAODV

routing protocols against network routing attacks and

performance comparisons” Wireless Advanced

(WiAd) IEEE, 2011 20-22 June 2011 London

[5] Mallah, G.A. ; Shaikh, Z.A.” Vulnerability

assessment through mobile agents” IEEE E-Tech

2004 31 July 2004

[6] VULNERABILITY ASSESS MENT

WHITEPAPERINTRODUCTION,IMPLEMENTAT

ION AND TECHNOLOGY DISCUSSION

copyright© 2003 security METRICS

[7] Vulnerability Assessment Susan Cima July 6, 2001

Version 1.2e

[8] What is a vulnerability assessment? Prepared on July

17, 2011 by: Demyo Inc.American

www.demyo.com, info@demyo.com, Miami,

Florida, USA

[9] Joel Scambray, Mike Shoma “Hacking Exposed-web

applications”, McGraw Hill

[10] Susan Elizabeth Young, Dave Aitel “The hacker's

handbook”, CRC Press

[11] Mark O'Neill, Phillip Hallam-Baker “Web services

security”, McGraw-Hill Professional.

[12] “PLYNT”- the newsletter of PALADION

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 2 391 – 397

__

397
IJRITCC | February 2014, Available @ http://www.ijritcc.org

[13] Implementing a Successful Security Assessment

Process, Bradley Hart, GSEC Version 1.2e, August

21, 2001

[14] The Microsoft IT group shares its experiences, White

Paper, Published: January 2003

[15] V.Benjamin Livshits and Monica S. Lam”Finding

Security Vulnerabilities in Java Applications, with

Static Analysis” Computer Science Department

Stanford University{livshits,lam}@cs.stanford.edu.

[16] Laurie Williams, Michael Gerick, and Andrew

Meneely “Protection Poker: Structuring Software

Security Risk “Assessment and Knowledge Transfer,

North Carolina State University Department of

Computer Science {lawilli3, mcgegick,

impanel}@ncsu.edu

[17] Chuck Willis “WASC Web Application Security

Statistics Published on November 2, 2009

[18] OWASP_Application_Security_Assessment_Standar

ds_Project

[19] OWASP_webgoat_project

