
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 2 282 – 287

282
IJRITCC | February 2014, Available @ http://www.ijritcc.org

Development in Key Share Management to Protect Data over Cloud

Priyanka Ambatkar

Dept. of Computer Sci & Engg

TGPCET, RTMNU

Nagpur, India.
piyuambatkar@gmail.com

Prof. P. Velavan

Head, Dept. of Computer Sci &Engg

 TGPCET, RTMNU

Nagpur, India.
sppvels@gmail.com

Prof. Arun Katara

Dept. of Electronics Engineering

DMIETR, Sawangi (M) RTMNU.
Wardha, India.

arunkatara@gmail.com

Abstract—User data may be stored in a cloud to take advantage of its scalability, accessibility, and economics. However, data of a sensitive
nature must be protected from being read in the clear by an untrusted cloud provider. This triggered a lot of research activities, resulting in a

quantity of proposals targeting the various cloud security threats. A key management scheme is proposed where encrypted key shares are stored
in the cloud and automatically deleted based on passage of time or user activity. The process does not require additional coordination by the data
owner, which is of advantage to a very large population of resource-constrained mobile users. The rate of expiration may be controlled through
the initial allocation of shares and the heuristics for removal. A simulation of the scheme and also its implementation on commercial mobile and
cloud platforms demonstrate its practical performance.

Index Terms—Distributed systems, mobile computing, security, cryptography, scalability.

___*****__

I. INTRODUCTION

There is a critical need to securely store, manage, and

analyze the massive data. Cloud computing systems offer

nearly area of vast storage and computation for clients. In

many applications, however, the provider of cloud services

cannot be deemed to be sufficiently trustworthy to permit

storing and processing of data in the clear. Given that

contemporary cloud applications are accessed by potentially

thousands of mobile device users, an encrypted cloud

storage solution requires scalable key management. In

addition, because many users will be operating resource-

constrained devices, any security protocol employed must

minimize the amount of communication sessions required.

Current key management practices typically focus on key

generation and distribution among a large population of

users.

Key management scheme is proposed where encrypted key

shares are stored in cloud. The primary concern is that as

authorized users join and leave a system, current keys must

be re-generated and re-distributed to valid users, which is an

unrealistic cost for mobile device users. As a key is

generated it automatically gets deleted based on passage of

time. The accessibility of the data gradually expires and

revocation occurs as a result of the loss of sufficient key

share. Some approaches suggest performing

computationally-intensive key regeneration operations

within the cloud to take advantage of its scalability, but

these computations may prove too expensive in certain

applications where processing overhead is undesirable. This

work suggests concentrating on the utility of another highly

economical asset of a cloud system: its permanent replicated

storage, which can scale according to client demand, and is

typically billed at a small fraction of a dollar per GB of data

per month [1].

The key design factors for a cloud-based secure storage

system that motivate this work include: no additional server-

side logic being required on the cloud provider end; fine-

grained data access; highly scalable sharing among multiple

readers and writers; minimal computation required by

mobile users; minimal communication required with the

cloud provider; and no inherent trust of the provider

existing, in terms of the administrator having unrestricted

access to stored user data.

II. PROPOSED WORK

In this Proposed System we used various access control

techniques have been proposed for encrypted file and key

storage in the cloud. The cloud provider typically controls

key management activities, or the data owner does so if the

provider is untrusted, requiring additional network

communication and components [2]. In some mechanisms

where control rests within the domain of the client, such as

cloud-based data re-encryption, the ability of the provider to

scale for computation has been exploited by performing

intensive cryptographic computation in the cloud [3]. The

cloud’s potential for scalable storage, however, has

apparently been under-utilized for key management

operations.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 2 282 – 287

283
IJRITCC | February 2014, Available @ http://www.ijritcc.org

NIST (National Institute of Standards and Technology),

in its Electronic Authentication Guideline [4], recommends

secret sharing as a technique to be used to protect long-term

credentials in its level 3 security definition for a CSP (Cloud

Service Provider). Secret key sharing allows a secret such as

key information to be divided into multiple shares [5]; these

shares may be distributed among key generators using the

concept of threshold decryption [6], or portions of a private

key are distributed among users [7]. The challenge is that

the client must assemble a key from multiple sources,

potentially resulting in expensive communication overhead.

Rather than key shares being distributed on demand by some

authority, it has been proposed that they be distributed

across a network of nodes whose accessibility is subject to

degradation over time. The Vanish system [8] distributes

shares onto a DHT (Distributed Hash Table) that underlies a

peer-to-peer file sharing network. It suggests the concept of

―self-destructing data,‖ where copies of data become

unreadable over time due to the effect of user churn on the

index. The problem with adapting the scheme to a cloud-

based context is that it relies upon the availability of the

shares among the nodes, which cannot be guaranteed. It
requires that each user obtain key shares from multiple other

nodes that form the index, which is an expensive proposition

if the user is operating a mobile device. In the DEPSKY [9]

storage system, shares are necessarily distributed across

multiple clouds to form distributed trust and to restrict

access. Each cloud provider has access to a single share and

thus cannot decode the stored data; this requires support for

a cloud-of-clouds. Also, because the data shares are

unencrypted, each cloud must be independent and collusion

assumed to be impossible. A straightforward approach

employing PGP and AES encryption [10] would encounter

challenges with scalability; for instance, the symmetric key
used for encryption of user data may need to be encoded

with the public key of each recipient. Rather, it is preferable

for a data owner to perform a one-time encryption. If the

same private key is shared by all users, then revocation

would require some form of authentication to prevent

access; the enforcement of it would require trust in the

provider. So we will provide a key for amount of data store

and then it is deployed on cloud.

III. SYSTEM AND CLOUD SERVICE MODELS

The main contribution of this proposed work is the novel

utilization of a cloud’s centralized data storage facility to

store encryption key material as shares such that the

provider cannot use them to decode user data also stored in

the cloud. Unlike other key sharing techniques, the proposal

makes use of the cloud’s economical storage cost to

maintain key material, and to degrade it over time, so that

the cost of key re-generation is minimized. The proposed

work is the first that the authors are aware of that exploits

self-eroding key material in the cloud to achieve highly

scalable access management for mobile users (see Fig. 1).

 A. System model

Consider a large population of mobile device users that

accesses data in the cloud. The users are highly constrained

in terms of the number of communication sessions that they

may engage in, due to the costly energy drain associated

with wireless transmission. Users are expected to only

communicate directly with the cloud, which is assumed to

be nearly always available. Communication between users

and the cloud takes place over an insecure wireless medium

subject to the risk of eavesdropping; hence, communication

security is necessary. The permanent cloud data store is

accessed through a key-value mechanism, in which a valid

key index must be supplied to retrieve the value stored at the

index location.

 Fig. 1. Three types of cloud service

 B. Cloud service models

Cloud Software as a Service (SaaS): The capability provided

to the consumer is to use the provider’s applications running

on a cloud infrastructure, which is accessible from various

client devices, such as a Web browser. The consumer does

not manage or control the underlying cloud infrastructure, or

even individual application capabilities, with the possible

exception of initial user-specific application configuration

settings. The cloud provider is assumed to be an untrusted

entity. It is honest, but may be curious, in that it will provide

reliable service to users, including the provision of persistent

storage capacity on demand, data replication to the extent

that it is paid for, and will honors all data upload and

download requests. However, the cloud administrator must

be assumed to technically have full access to all data stored

in the cloud, and may share knowledge of it with any party

unbeknownst to the client. Thus, the supposition is that data

must remain in encrypted format rest in the cloud. The

provider may have malicious intent, and serve incorrect or

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 2 282 – 287

284
IJRITCC | February 2014, Available @ http://www.ijritcc.org

modified data to a user upon request; any such modification

must be detected.

The mobile device users all belong to the same organization

and can freely share information. Once a user’s access rights

are revoked, any valid key information in the user’s

possession may continue to provide access to encrypted user

data. However, this apparent vulnerability is deemed to be

only temporary in nature; in practice, mobile users have

limited storage capacity and are unable to cache large data,

including numerous key materials, for extended periods of

time. This is especially true of a data storage system

consisting of fine-grained access, where even individual

data records may be encrypted with unique keys, and the

storage of key material itself is onerous. Also, it is assumed

that mobile device users cannot become compromised; other

techniques related to computer security are required to

ensure that secret information is not divulged between a

mobile user and an outside attacker. Even if such an attack

occurs, then the information illicitly gained must eventually

become stale and unusable.

A supporting public key infrastructure is required to provide

optional verifiability of key material, as will be discussed.

IV. CLOUD FRAMEWORK ARCHITECTURE

The architectural pattern described in the previous enables

the cloud user to get some evidence on the integrity of the

computations performed on a third-party’s resources or

services.
The architecture introduced in this section targets the risk

of undesired data leakage. It answers the question on how a

cloud user can be sure that the data access is implemented

and enforced effectively and that errors in the application

logic do not affect the user’s data?
To limit the risk of undesired data leakage due to

application logic flaws, the separation of the application

system’s tiers and their delegation to distinct clouds is

proposed (see Fig. 2). In case of an application failure, the

data are not immediately at risk since it is physically

separated and protected by an independent access control

scheme. Moreover, the cloud user has the choice to select a

particular—probably specially trusted—cloud provider for

data storage services and a different cloud provider for

applications.

It needs to be noted, that the security services provided

by this architecture can only be fully exploited if the

execution of the application logic on the data is performed

on the cloud user’s system. Only in this case, the application

provider does not learn anything on the users’ data. Thus,

the SaaS-based delivery of an application to the user side in

conjunction with the controlled access to the user’s data

performed from the same user’s system is the most far-

reaching instantiation. Besides the introduced overhead due

to the additionally involved cloud, this architecture requires,

moreover, standardized interfaces to couple applications

with data services provided by distinct parties. Also generic

data services might serve for a wide range of applications

there will be the need for application specific services as

well.

The partitioning of application systems into tiers and

distributing the tiers to distinct clouds provides some coarse-

grained protection against data leakage in the presence of

flaws in application design or implementation. This

architectural concept can be applied to all three cloud layers.

In the next section, a case study at the SaaS-layer is

discussed.

Fig. 2. Cloud service model

Only needs to rely on the assumption, that the cloud

providers do not collaborate maliciously against herself.

Assume that n > 1 clouds are available (like, e.g., Clouds A

and B in Fig. 1). All of the n adopted clouds perform the

same task. Assume further that f denotes the number of

malicious clouds and that n f > f the majority of the clouds

are honest. The correct result can then be obtained by the

cloud user by comparing the results and taking the majority

as the correct one. There are other methods of deriving the

correct result, for instance using the TurpinCoan algorithm

[13] for solving the General Byzantine Agreement problem.

Instead of having the cloud user performing the

verification task, another viable approach consists in having

one cloud monitoring the execution of the other clouds. For

instance, Cloud A may announce intermediate results of its

computations to an associated monitoring process running at

Cloud B. This way, Cloud B can verify that Cloud A makes

progress and sticks to the computation intended by the cloud

user. As an extension of this approach, Cloud B may run a

model checker service that verifies the execution path taken

by Cloud a on-the-fly, allowing for immediate detection of

irregularities.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 2 282 – 287

285
IJRITCC | February 2014, Available @ http://www.ijritcc.org

This architecture enables to verify the integrity of results

obtained from tasks deployed to the cloud. On the other

hand, it needs to be noted that it does not provide any

protection in respect to the confidentiality of data or

processes. On the contrary, this approach might have a

negative impact on the confidentiality because—due to the

deployment of multiple clouds—the risk rises that one of

them is malicious or compromised. To implement protection

against an unauthorized access to data and logic this

architecture needs to be combined with the architecture

described in Section V.

 The idea of resource

replication can be found in many other disciplines. In the

design of dependable systems, for example, it is used to

increase the robustness of the system especially against

system failures [14]. In economic business processes—and

especially in the management of supply chains—single-

source suppliers are avoided to lower the dependency on

suppliers and increase the flexibility of the business process

[15]. In all these cases, the additional overhead introduced

by doing things multi-ple times is accepted in favor of other

goals resulting from this replication.

This architectural concept can be applied to all three cloud

layers. A case study at the SaaS-layer is discussed in Section

V.1.

V.1 CASE STUDIES: REPLICATING OF
APPLICATION TASKS

Imagine a cloud provider named Instant Reporting that

provides the service of creating annual accounting reports

automatically out of a given set of business data. This is a

very typical scenario of cloud usage, because such a report

has to be published by all commercial entities once a year.

Hence, the resources required to create such reports are only

necessary for a small period of time every year. Thus, by

using a third-party cloud service for this, in-house resources

can be omitted, which would run idle most of the year. On

the other side, by sharing its service capabilities among a

large set of companies—all of which have to create their

reports at different times of the year—a cloud service

provider gains large benefits from providing such a shared

service ―on the cloud.‖

However, as promising as this scenario seems to be in terms

of using the cloud computing paradigm, it contains a

fundamental flaw: The cloud customers cannot verify that

the annual report created by the cloud service is correct.

There might have been accidental or intentional

modifications of the source data for the report, or the

processing logic that creates the reports from the source data

might contain errors. In the worst case, the cloud system

itself was compromised (e.g., by a malicious competitor)

and all reports are slightly modified so that they look

conclusive but contain slightly reduced profit margins,

intended to make a competing company look bad or even

insolvent.

Fig. 3. Cloud framework architecture

V.1.1 DUAL EXECUTION

In such a situation, a first and trivial approach for

verification might be that a cloud customer triggers the

creation of its annual accounting report more than once. For

instance, instead of giving the same request to one cloud

provider only (called Cloud A hereafter), a second cloud

provider (called Cloud B) that offers an equivalent type of

service is invoked in parallel. By placing the same request at

Clouds A and B, a cloud user can immediately identify

whether his request was processed differently in Clouds A

and B. Hence, this way, a secret exploitation of either side’s

service implementation would be detected. However,

besides the doubled costs of placing the same request twice,

this approach additionally relies on the existence of at least

two different cloud providers with equivalent service

offerings and comparable type of result. Depending on the

type of cloud resources used, this is either easily the case—

as even today there already exist many different cloud

providers offering equivalent services (see Section 1)—or

difficult in cases in which very specific resources are

demanded

 V.1.2 n CLOUDS APPROACH

A more advanced, but also more complex approach comes

from the distributed algorithms discipline: the Byzantine

Agreement Protocol. Assume the existence of n cloud

providers, of which f collaborate maliciously against the

cloud user, with n > 3f. In that case, each of the n clouds

performs the computational task given by the cloud user.

Then, all cloud providers collaboratively run a distributed

algorithm that solves the General Byzantine Agreement

problem (e.g., the TurpinCoan [16] or Exponential

Information Gathering [16, 6.2.3] algorithms). After that it

is guaranteed that all no malicious cloud providers know the

correct result of the computation. Hence, in the final step,

the result is communicated back to the cloud user via a

Secure Broadcast algorithm (e.g., plain flooding, with the

cloud user taking the majority as the result). Hence, the

cloud user can determine the correct result even in presence

of f malicious clouds.

 V.1.3 PROCESSOR AND VERIFIER

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 2 282 – 287

286
IJRITCC | February 2014, Available @ http://www.ijritcc.org

Instead of having Clouds A and B perform the very same

request, another viable approach consists in having one

cloud provider ―monitor‖ the execution of the other cloud
provider. For instance, Cloud A may announce intermediate

results of its computations to a monitoring process run at

Cloud B. This way, Cloud B can verify that Cloud A makes

progress and sticks to the computation intended by the cloud

customer. As an extension of this approach, Cloud B may

run a model checker service that verifies the execution path

taken by Cloud a on-the-fly, allowing for immediate

detection of irregularities.

One of the major benefits of this approach consists in its

flexibility. Cloud B does not have to know all details of the

execution run at Cloud A—especially not about the data

values processed—but is able to detect and report anomalies

to the cloud customer immediately. However, the guarantees

given by this approach strongly depend on the type, number,

and verifiability of the intermediate results given to Cloud

B.

VI. PARTITION OF APPLICATION

 SYSTEM INTO TIERS

The architectural pattern described in the previous Section 4

enables the cloud user to get some evidence on the integrity

of the computations performed on a third-party’s resources

or services.

The architecture introduced in this section targets the risk of

undesired data leakage. It answers the question on how a

cloud user can be sure that the data access is implemented

and enforced effectively and that errors in the application

logic do not affect the user’s data?

To limit the risk of undesired data leakage due to application

logic flaws, the separation of the application system’s tiers

and their delegation to distinct clouds is proposed (see Fig.

2). In case of an application failure, the data are not

immediately at risk since it is physically separated and

protected by an independent access control scheme.

Moreover, the cloud user has the choice to select a

particular—probably specially trusted—cloud provider for

data storage services and a different cloud provider for

applications.

It needs to be noted, that the security services provided by

this architecture can only be fully exploited if the execution

of the application logic on the data is performed on the

cloud user’s system. Only in this case, the application

provider does not learn anything on the users’ data. Thus,

the SaaS-based delivery of an application to the user side in

conjunction with the controlled access to the user’s data

performed from the same user’s system is the most far-

reaching instantiation. Besides the introduced overhead due

to the additionally involved cloud, this architecture requires,

moreover, standardized interfaces to couple applications

with data services provided by distinct parties. Also generic

data services might serve for a wide range of applications

there will be the need for application specific services as

well.

The partitioning of application systems into tiers and

distributing the tiers to distinct clouds provides some coarse-

grained protection against data leakage in the presence of

flaws in application design or implementation. This

architectural concept can be applied to all three cloud layers.

In the next section, a case study at the SaaS-layer is

discussed.

VII. CONCLUSION

The use of multiple cloud providers for gaining security and

privacy benefits is nontrivial. As the approaches

investigated in this paper clearly show, there is no single

optimal approach to foster both security and legal

compliance in an omniapplicable manner. Moreover, the

approaches that are favorable from a technical perspective

appear less appealing from a regulatory point of view, and

vice versa. The few approaches that score sufficiently in

both these dimensions lack versatility and ease of use, hence

can be used in very rare circumstances only.

As can be seen from the discussions of the four major

multicloud approaches, each of them has its pitfalls and

weak spots, either in terms of security guarantees, in terms

of compliance to legal obligations, or in terms of feasibility.

Given that every type of multicloud approach falls into one

of these four categories, this implies a state of the art that is

somewhat dissatisfying.

However, two major indications for improvement can be

taken from the examinations performed in this paper. First

of all, given that for each type of security problem there

exists at least one technical solution approach, a highly

interesting field for future research lies in combining the

approaches presented here. For instance, using the n clouds

approach (and its integrity guarantees) in combination with

sound data encryption (and its confidentiality guarantees)

may result in approaches that suffice for both technical and

regulatory requirements. We explicitly do not investigate

this field here due to space restrictions; however, we

encourage the research community to explore these

combinations, and assess their capabilities in terms of the

given evaluation dimensions.

Second, we identified the fields of homomorphic encryption

and secure multiparty computation protocols to be highly

promising in terms of both technical security and regulatory

compliance. As of now, the limitations of these approaches

only stem from their narrow applicability and high

complexity in use. However, given their excellent properties

in terms of security and compliance in multi-cloud

architectures, we envision these fields to become the major

building blocks for future generations of the multi-cloud

computing paradigm.

It has been demonstrated that scalable key management may

be attained by leveraging the inexpensive storage capacity

and high accessibility offered by a cloud provider. One of

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 2 282 – 287

287
IJRITCC | February 2014, Available @ http://www.ijritcc.org

the benefits of using centralized and reliable cloud storage

for key shares is that there is full control over share

management; it is not subject to outside factors such as user

churn. Thus, various additional heuristics for key share

deletion may be explored. For instance, high-priority or

trustworthy users could retain key shares for longer or be

assigned a greater number.

REFERENCES

[1] Amazon. (2012) Amazon S3 Pricing. [Online]. Available:

http://aws.amazon.com/s3/pricing/

[2] [2] S. Jahid, P. Mittal, and N. Borisov, ―EASiER: encryption- based

access control in social networks with efficient evocation,,‖ in

Proceedings of the 6th ACM Symposium on Information, Computer

and Communica-tions Security, ASIACCS ’11. New York, NY,

USA: ACM, 2011, 411–415.

[3] P. Tysowski and M. A. Hasan, ―Towards Secure Communication for

Highly Scalable Mobile Applications in Cloud Computing System, ‖

Centre for Applied Cryptographic Research, University of Waterloo,

Tech. Rep. CACR 2011-33, 2011.

[4] W. E. Burr, D. F. Dodson, E. M. Newton, R. A. Perlner, W. T. Polk,

S. Gupta, and E. A. Nabbus, ―Electronic Authentication Guideline,‖

National Institute of Standards and Technology (NIST), Tech. Rep.

Special Publication 800-63-1, December 2011.

[5] A. Shamir, ―How to share a secret,‖ Commun. ACM, vol. 22 no. 11,

612–613, Nov. 1979.

[6] D. Boneh and M. Franklin, ―Identity-based encryption from the

weil pairing,‖ in Advances in Cryptology — CRYPTO 2001,

Lecture Notes in Computer Science, J. Kilian, Ed. Springer Berlin /

Heidelberg, 2001, vol. 2139, pp. 213–229.

[7] J. Baek and Y. Zheng, ―Identity-Based Threshold Decryption,‖ in

Public Key Cryptography – PKC 2004, ser. Lecture Notes in

Computer Science, F. Bao, R. Deng, and J. Zhou, Eds. Springer

Berlin / Heidelberg, 2004, vol. 2947, pp. 262–276.

[8] R. Geambasu, T. Kohno, A. Levy, and H. M. Levy, ―Vanish:

Increasing data privacy with self-destructing data,‖ in Proc. Of Ment

To Multivalued Byzantine Agreement,‖ Information Processing

Letters, vol. 18, no. 2, pp. 73-76, 1984.

[9] A. Bessani, M. Correia, B. Quaresma, F. Andre,´ and P. Sousa,

―Depsky: dependable and secure storage in a cloud-of-clouds,‖ in

Proceedings of the sixth conference on Computer systems,.

[10] P. Zimmermann, ―Pretty good privacy: public key encryption for the

masses,‖ in Building in big brother, L. J. Hoffman, Ed. New

York, NY, USA: Springer-Verlag New York, Inc., 1995, pp. 93–

107.

[11] D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond, and M.

Morrow, ―Blueprint for the Intercloud—Protocols and Formats for

Cloud Computing Interoperability,‖ Proc. Int’l Conf. Internet and

Web Applications and Services, pp. 328-336, 2009.

[12] A. Celesti, F. Tusa, M. Villari, and A. Puliafito, ―How to Enhance

Cloud Architectures to Enable Cross-Federation,‖ Proc. IEEE Third

Int’l Conf. Cloud Computing (CLOUD), pp. 337-345, 2010.

[13] R. Turpin and B.A. Coan, ―Extending Binary Byzantine Agree-ment

To Multivalued Byzantine Agreement,‖ Information Proces-sing

Letters, vol. 18, no. 2, pp. 73-76, 1984.

[14] I. Koren and C.M.C. Krishna, Fault-Tolerant Systems. Morgan

Kaufmann, 2007.

[15] J.D.J. Wisner, G.K.G. Leong, and K.-C. Tan, Principles of Supply

Chain Management: A Balanced Approach. South- Western, 2011.

[16] D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond, and M.

Morrow, ―Blueprint for the Intercloud—Protocols and Formats for

Cloud Computing Interoperability,‖ Proc. Int’l Conf. Internet and

Web Applications and Services, pp. 328-336, 2009.

