
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 2 249 – 259

__

249
IJRITCC | February 2014, Available @ http://www.ijritcc.org

__

Dynamic Slice of Aspect Oriented Program: A Comparative Study

Sk. Riazur Raheman, Amiya Kumar Rath, Hima Bindu M

Dept. of CSE, Raajdhani Engineering College, Bhubaneswar, Odisha, 751017, India

Professor in Dept. of CSE & Principal DRIEMS, Cuttack, Odisha, 754022, India

Professor & Head Dept. of Computer Science and Application, NOU, Odisha, 757003, India

skriazur79@gmail.com, amiyaamiya@rediffmail.com, mhimabindu@yahoo.com

Abstract-- Aspect Oriented Programming (AOP) is a budding latest technology for separating crosscutting concerns. It is very difficult to

achieve crosscutting concerns in object-oriented programming (OOP). AOP is generally suitable for the area where code scattering and code

tangling arises. Due to the specific features of AOP language such as joinpoint, point-cut, advice and introduction, it is difficult to apply existing

slicing algorithms of procedural or object-oriented programming directly to AOP.

This paper addresses different types of program slicing approaches for AOP by considering a very simple example. Also this paper addresses a

new approach to calculate the dynamic slice of AOP. The complexity of this algorithm is better as compared to some existing algorithms.

Keywords – Program Slicing, Aspect, AOP, OOP, SDG, Data dependence, Control dependence, Static Slice, Dynamic Slice

__*****__

1. Introduction

The goal of AOP is to separate concerns in

software. It is possible to encapsulate the

crosscutting concerns as module unit aspect that is

easier to develop, maintain and reuse [7, 40, 42,

8]. Aspects separated from an object-oriented

program are composed by Aspect Weaver to

construct the program with the crosscutting

concerns. AspectJ is an aspect weaver for Java.

AspectJ is developed by Xerox Parc. It works as a

precompiler and you can see the generated code. It

also gives the advantage that the end users don’t

need to install anything special to run the

programs except the virtual machine.

There are number of differences between

procedural or object-oriented programming

languages and aspect-oriented programming

languages. [45]. The concepts of aspect oriented

programming like, aspects, join points, advice,

and their associated constructs are different from

procedural or object-oriented programming

languages [44]. All these concepts of aspect-

oriented programming should be handled

appropriately, because it plays a measure role on

the calculation of program slices for aspect-

oriented program [6, 28].

2. Aspects

AOP complements OOP by providing a different

way of thinking about program structure. AOP

defines an innovative program construct, called an

aspect. The key unit of modularity in OOP is the

class, whereas in AOP the unit of modularity is

the aspect. Like classes in object oriented

programs aspects in aspect oriented Programs

gathers all the functionality inside of it. The

application classes keep their well-defined

responsibilities. Consider the example of an aspect

given below.

Aspect ExampleAspect

{

}

This example declares a new aspect with the name

“ExampleAspect” [20, 33, 41].

mailto:skriazur79@gmail.com
mailto:amiyaamiya@rediffmail.com
mailto:mhimabindu@yahoo.com

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 2 249 – 259

__

250
IJRITCC | February 2014, Available @ http://www.ijritcc.org

__

An AspectJ program is divided into two parts.

Base code or non-aspect code, which includes

classes, interfaces and other standard Java

constructs. Aspect code, which implements the

cross-cutting concerns in the program. Given

below (figure-1) is an aspect program to test a

number is prime or not.

3. Features of AspectJ

AspectJ adds some new features to Java

[8].

These features include

 join points

 point-cut

 advice

 introduction

 point-cut designator

3.1 Join Points

These are the points through which we can link

the aspect and non aspect code. Examples of some

join points are, method call (a point where method

is called), method execution (a point where

method is invoked) and method reception join

points (a point where a method received a call, but

this method is not executed yet) [10, 33, 39].

 3.2 Point-cut

This is a predicate that matches join points.

Advice is associated with a pointcut expression

and runs at any join point matched by the

pointcut. AspectJ defines different types of point-

cut designators that can identify all types of join

points [10]. For example in figure-1 the point-cut

primeoperation at statement 12 picks out each call

to the method isprime() of an instance of the class

prime, where an int is passed as an argument and

Non aspect code

Import java.util.*;

public class prime{

private static int n;

1. public static void main(String

args[]){

2. n=Integer.parseInt(args[0]);

3. if(isprime(n))

4. System.out.println(“IS PRIME”);

 else

5. System.out.println(“IS NOT

PRIME”);

}

6. public static boolean isprime(int n){

7. for(int i=2; i<=n/2; i++){

8. if(n%i == 0){

9. return false;

} }

10. return true;

 } }

Aspect code

11. public aspect PrimeAspect{

12. public pointcut primeoperation(int

n): call (boolean prime.isprime(int) &&

args(n);

13. before (int n): primeoperation(n){

14. System.out.println(“Testing the

prime number for “ +n); }

15. after(int n) returning (boolean

result): promeoperation(n){

16. system.out.println(showing the

prime status for” + n);

}

}

Figure-1 (Aspect program to test a number is prime or not)

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 2 249 – 259

__

251
IJRITCC | February 2014, Available @ http://www.ijritcc.org

__

it makes the value to be available to the point-cut

and advice [33, 34, 38].

 3.3 Advice

Actions taken by an aspect at a particular join

point. It is a method-like construct which is used

to define cross-cutting behaviour at join points

[37]. Using advice we can define certain code to

be executed when a point-cut is reached [10, 33].

There are three types of advice in AspectJ:

after

 before

 around

After advice on a particular join point runs after

the program proceeds with that join point. For

example in figure-1, after advice at statement 15

runs after each join point picked out by the point-

cut primeoperation and before the control is return

to the calling function.

Before advice runs as a join point is reached,

before the program proceeds with the join point.

For example in figure-1 the before advice at

statement 13 runs before the join point picked out

by the point-cut primeoperation.

Around advice on a join point runs as the join

point is reached, and has explicit control over

whether the program proceeds with the join point.

 3.4 Introduction

It allows an aspect to add methods, fields or

interfaces to existing classes. It can be public or

private [10]. An introduction declared as private

can be referred or accessed only by the code in the

aspect that declared it. An introduction declared as

public can be accessed by any code [39, 41].

3.5 Point-cut Designator

A point-cut designator identifies all types of join

points. A point-cut designator simply matches

certain join points at runtime. For example in

figure-1 the point-cut designator Call (boolean

prime.isprime(int), at statement 12 matches all the

method calls to factorial from an instance of the

class prime [41].

4. Comparison of OOP and AOP

OOP AOP

Class: Code unit that

encapsulates methods

and attributes.

Aspect: Code unit

that encapsulates

pointcuts, advice,

and attributes.

Method signatures:

Define the entry

points for the

execution of method

bodies.

Pointcut: Define the

set of entry points in

which advice is

executed.

Method bodies:

Implementations of

the primary concerns.

Advice:

Implementations of

the crosscutting

concerns.

Compiler: Converts

source code into

object code.

Weaver: Instruments

code (source or

object) with advice.

5. Some of the existing slicing techniques

of AOP

The first attempt towards the development of

aspect-oriented system dependence graph (ASDG)

to represent aspect oriented programs was made

by Zhao [18]. To construct the ASDG of aspect

code, Zhao first constructed the SDG of non

aspect code then aspect dependence graph (ADG)

for aspect code. He combined the SDG and ADG

using some extra dependence arcs to construct

ASDG [10, 4]. Zhao used the two-phase slicing

algorithm proposed by Larsen and Harrold to

compute the static slice of aspect oriented

programs [15].

Let’s implement the Zhao approach to calculate

the static slice of the program given in figure-1.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 2 249 – 259

__

252
IJRITCC | February 2014, Available @ http://www.ijritcc.org

__

To represent the aspect oriented program, aspect-

oriented system dependence graph (ASDG) is

constructed by combining SDG and ADG using

some additional arcs (figure-2).

By applying the two-phase slicing algorithm in

figure-2 the static slice comes as: 1 , 2 , 3 , 6 , 7 , 8

, 9 , 10 , 13 , 14 , 15 , 16.

D P Mohapatra et. al., [10] has proposed an

algorithm to calculate the dynamic slice of aspect-

oriented programs. They have used Dynamic

Aspect-Oriented Dependence Graph (DADG) to

represent the aspect oriented program. Initially

they have executed the aspect program for any

particular input and the execution history of the

program is traced using a trace file.

Let’s implement the D P Mohapatra et al.

approach to calculate the dynamic slice of the

program given in figure-1. First we have to

execute the program for a given input. Lets

execute the program for the value of n=7. The

execution trace of the program is as follows:

1(1) : Public static void main(String

args[])

2(1) : n=Integer.parseInt(args[0])

3(1) : if(isprime(n))

12(1) : public pointcut primeoperation(int

n): call (boolean prime.isprime(int) &&

args(n)

13(1) : before (int n): primeoperation(n)

14(1) : system.out.println(“Testing the

prime number for “ +n)

6(1) : public static boolean isprime(int n)

7(1) : for(int i=2; i<=n/2; i++)

8(1) : if(n%i == 0)

7(2) : for(int i=2; i<=n/2; i++)

8(2) : if(n%i == 0)

7(3) : for(int i=2; i<=n/2; i++)

15(1) : after(int n) returning (boolean

result): promeoperation(n)

16(1) : system.out.println(showing the

prime status for” + n)

10(1) : return true

4(1) : system.out.println(“IS PRIME”)

Now construct the Dynamic Aspect-Oriented

Dependence Graph (DADG) for the execution

trace of the program [figure-3]. To compute the

dynamic slice for the slicing criterion < 10, n >,

apply either the breadth first search or depth first

search algorithm on the DADG [12]. The dynamic

slice comes as : 1 , 2 , 3 , 6 , 7 , 10 , 13 , 14 , 15 ,

16.

Figure-2 (ASDG of the program given in figure-1)

1

2

3

4

6

1

0

1

2

8

7

Control Dependence:
Data Dependence :
Weaving Arc :

13

14

15 16

7

7 8

Figure-3 (DADG for the execution trace of the

program given in Fig - 1)

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 2 249 – 259

__

253
IJRITCC | February 2014, Available @ http://www.ijritcc.org

__

This paper proposes a graph called Aspect-

Oriented System Dependence Graph (AOSDG) to

represent aspect program. This AOSDG

represents all the features of an aspect program as

well as it also represents the weaving arc. The

construction of AOSDG can be carried out in two

phases, first construction of system dependence

graph for non aspect code then construction of

system dependence graph for aspect code and

finally linking the system dependence graph of

aspect and non aspect code using call and weaving

arc.

6. Proposed Algorithm

We discussed two existing techniques to calculate

the static and dynamic slice os aspect oriented

program. The existing techniques discussed can be

improved on certain points. In the first technique

proposed by Zhao, the point-cuts are not handled

properly and also the weaving process is not

represented correctly. In the second technique

proposed by D. P. Mohapatra et. al., If a statement

will execute for n number of times it will create n

vertices for each iteration of the statement, which

will be a difficult task. To overcome all these we

have proposed a new approach to compute the

dynamic slice of aspect oriented program.

1. Construction of System Dependence Graph

(SDG) for non-aspect code.

2. Construction of System Dependence Graph

(SDG) for aspect code.

3. Construction of Aspect-Oriented System

Dependence Graph (AOSDG).

4. To compute the dynamic slice traverse the

AOSDG using breadth first search or depth

first search taking a vertex as starting point of

traversal.

7. Construction of System Dependence

Graph (SDG) for aspect and non-aspect

code

This section describes the construction of SDG for

aspect and non-aspect code [7, 9, 11, 15, 19, 24,

26, 31]. In SDG of an aspect program, following

types of dependence arcs may exist.

 control dependence arc

 data dependence arc

 call arc

Control dependence represents the control flow

relationship of a program i.e, the predicates on

which a statement or an expression depends

during execution [2]. Consider statements s1 and

s2 in a source program p. When all of the

following conditions are satisfied, we say that

control dependence (CD), from statement s1 to

statement s2 exists [16, 20, 21, 22, 29, 32, 36]:

1. s1 is a conditional predicate, and

2. the result of s1 determines whether s2 is

executed or not.

For example, in the Figure-1, there is a control

dependency between statement 3 and 4, because

statement 3 is a conditional predicate and the

result of 3 determines whether 4 will be executed

or not.

Data dependences represent the relevant data flow

relationship of a program i.e., the flow of data

between statements and expressions. When the

following conditions are satisfied, we say that data

dependence (DD), from statement s1 to statement

s2 by a variable v, exists [17, 20, 21, 22, 32]:

1. s1 defines v, and

2. s2 refers to v, and

3. at least one execution path exists from s1

to s2 without redefining v.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 2 249 – 259

__

254
IJRITCC | February 2014, Available @ http://www.ijritcc.org

__

For example, in the Figure-1, there is a data

dependency between statement 7 and 8, because

statement 7 is defining the value of i and

statement 8 is using the value of i defined by

statement 7 and in between statement 7 and 8

there is no redefinition of value of i.

Call arc represents the function call in a program.

For example in figure-1, there is a call arc from

statement 3 to statement 6. Because function

isprime() is called at statement 3 and the function

isprime() is defined at statement 6.

8. Construction of Aspect-Oriented System

Dependence Graph (AOSDG)

This section describes the construction of AOSDG

for aspect program [43, 45]. The AOSDG is a

graph (V, A), where V represents the set of

vertices and A represents the set arcs to connect

the two vertices. Each statement and predicates of

the aspect-oriented program is represented as one

vertex.

11

12

13 15

Control Dependence:
Data Dependence :

14 16

Figure-5 (SDG for aspect code of the program given in

figure-1)

1

2 3

4

6

10

8

7

Control Dependence:
Data Dependence :
Call Arc :

5

9

Figure-4 (SDG for non-aspect code of the program given in

figure-1)

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 2 249 – 259

__

255
IJRITCC | February 2014, Available @ http://www.ijritcc.org

__

AOSDG of an aspect program consists of

following types arcs.

 control dependence arc

 data dependence arc

 call arc

 weaving arc

Weaving arc reflects the joining of aspect code

and non-aspect code at appropriate join points.

For example in figure-1, there is a weaving arc

from statement 3 to statement 13. Because at

statement 3 there is function call isprime() and at

statement 13 a before advice is defined related to

function call.

Statement 13 represents a before advice. This

means that the advice is executed before control

flows to the corresponding function i.e., to the

function isprime(). So, we add a weaving arc from

vertex 14 to vertex 6. Similarly, statement 15

represents an after advice. This means that the

advice is executed after the function isprime() has

been executed and before control flows to the

calling function i.e., the function main(). That’s

why we add a weaving arc from vertex 8 to vertex

15. After the execution of after advice at

statement 16, control transfers to statement 9 or 10

where it returns a value to the calling function

main(). So, a weaving arc is added from vertex 16

to vertex 9 and 10 [45].

To compute the dynamic slice we can perform

either the breadth first search or depth first search

algorithm on the AOSDG [1, 3, 12, 5, 23] in

figure - 6. For the slicing criterion < 10, n >, the

dynamic slice comes as 1 , 2 , 3, 6 , 7 , 8 , 10 , 11,

12 , 13 , 14 , 15 , 16.

9. Complexity analysis

The proposed technique is having some

advantages in terms of time and space complexity

as compared to previous techniques.

1

2 3

4

6

10

8

7

Control Dependence:
Data Dependence :
Call Arc :
Weaving Arc :

5

9

11
12

13 15 14

16

Figure-6 (AOSDG for the aspect program given in figure-1)

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 2 249 – 259

__

256
IJRITCC | February 2014, Available @ http://www.ijritcc.org

__

9.1 Space complexity:

Let P be an aspect-oriented program with N

number of statements. Each statement of the

program will be represented by a single vertex in

the AOSDG. Thus, there are N numbers of

vertices in the AOSDG corresponding to all the

statements of program P. So, the space complexity

is O(N).

9.2 Time complexity:

Let P be an aspect-oriented program with N

number of statements. The total time complexity

is for finding the dynamic slice of aspect oriented

program is:

1. Time required for constructing the

AOSDG with respect to the N number of

statements in the program which is O(N).

2. Time required to traverse the AOSDG

either using Breadth First Search or Depth

First Search, which is O(N
2
).

So, the time complexity is O(N
2
).

The proposed algorithm is better than the D. P.

Mohapatra et. al. approach in terms of space and

time complexity. In D. P. Mohaptra et. al.

approach S represents the length of execution of

the program. Thus S may be same or more than

the number of statements in the program. Where

as in proposed approach N represents the number

of statements in the program, hence number of

nodes created in proposed approach may be same

or less than the D. P. Mohaptra et. al. approach.

While calculating the dynamic slice of the aspect

program given in figure-1 using D.P.Mohapatra

et. al. technique, we are creating three vertices for

statement 7 and two vertices for statement 8 as

given in figure-3. This is a repeating work which

will take more space.

10. Comparison of existing slicing

algorithm with proposed algorithm

Zhao

Approach

1. Time Complexity: O(S
2
),

Where S represents the number

of statements in the program.

2. Space Complexity: O(S), Where

S represents the number of

statements in the program.

3. Drawbacks: point-cuts are not

handled properly and also the

weaving process is not

represented correctly.

D P

Mohapatr

a et. al.

Approach

1. Time Complexity: O(S
2
),

Where S represents the length of

execution of the program.

2. Space Complexity: O(S), Where

S represents the length of

execution of the program.

3. Drawbacks: If a statement will

execute for n number of times in

the execution trace, it will create

n vertices for each iteration of

the statement.

Proposed

Approach

1. Time Complexity: O(N
2
),

Where N represents the number

of statements in the program.

2. Space Complexity: O(N),

Where N represents the number

of statements in the program.

3. Advantage: Its time and space

complexity is less as compared

to D. P. Mohapatra et. al,

approach and it handles the

point-cut and weaving process

efficiently as compared to Zhao

approach.

11. Conclusion

This paper discussed the features of aspect

oriented programs. Also we have discussed about

various types of existing slicing approaches for

Aspect Oriented Program (AOP) with example.

Also this paper proposed an approach to slicing

aspect oriented programs using an Aspect-

Oriented System Dependence Graph (AOSDG),

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 2 249 – 259

__

257
IJRITCC | February 2014, Available @ http://www.ijritcc.org

__

which extends previous system dependence

graphs, to represent Aspect Oriented Program.

The complexity of the proposed algorithm is also

calculated, it comes better than some existing

algorithm.

12. References

[1] B. Korel et. al., Dynamic program slicing,

Information Processing Letters, 29(3):155–163, 1988.

[2] Sebastian Danicic et. al, A unifying theory of

control dependence and its application to arbitrary

program structures, Theoretical Computer Science 412

6809–6842, 2011.

[3] Frank Tip, A Survey of Program Slicing

Techniques, Journal of Programming Languages,

1995.

[4] Baowen Xu, Ju Qian, Xiaofang Zhang, Zhongqiang

Wu, and Lin Chen. A brief survey of program slicing.

SIGSOFT Softw. Eng. Notes, 30(2):1-36, March 2005.

[5] Binkley D.W. and Gallagher K.B, program

slicing, Frontiers of Software Mentenance, 58-67,

2008.

[6] M. Weiser, Program slices, IEEE Transactions on

Software Engineering, VOL. SE-10, NO. 4, Pages 352-

357, JULY 1984.

[7] Zhao J, Dynamic Slicing of Object-Oriented

Programs, Uhan University Journal of Natural

Sciences, Vol 6, No 1-2, 391-397, 2001.

[8] Abhishek Ray et. al., An Approach for Computing

Dynamic Slice of Concurrent Aspect-Oriented

Programs, International Journal of Software

Engineering and Its Applications, Vol. 7, No. 1,

January, 2013.

[9] Horwitz S et. al., Inter-Procedural Slicing Using

Dependence Graphs, ACM Transactions on

Programming Languages and Systems, 12(1):26–60,

January 1990.

[10] Mohapatra D. P. et. al., Dynamic Slicing of

Aspect-Oriented Programs, informatica 32, 261-274,

2008.

[11] Liang D. and Harrold M. J., Slicing Objects Using

System Dependence Graph, In Proceedings of the

International Conference on Software Maintenance,

IEEE, pages 358–367, November 1998.

[12] Agrawal H. and Horgan J. R., Dynamic Program

Slicing, In Proceedings of the ACM SIGPLAN’90

Conference on Programming Languages Design and

Implementation, SIGPLAN Notices, Analysis and

Verification, volume 25, pages 246–256, 1990.

[13] Mohapatra D. P. et. al., A Node-Marking

Technique for Dynamic Slicing of Object-Oriented

Programs, In Proceedings of Conference on Software

Design and Architecture (SODA’04), 2004.

[14] G.A.Venkatesh, The semantic approach to

program slicing, In Proceedings of the

ACMSIGPLAN’91 Conference on Programming

Language Design and Implementation, pages 107–119,

1991.

[15] Larsen L. and Harrold M. J., Slicing Object-

Oriented Software, In Proceedings of 18th

International Conference on Software Engineering,

pages 495–505, March 1996.

[16] S. Horwitz and T. Reps, Efficient comparison of

program slices, Acta Informatica, 28, Volume 28 Issue

9, pages 713–732, 1991.

[17] G B Mund and R mall, An efficient dynamic

program slicing technique, Information and Software

Technology, Volume 44, Number 2, pp. 123-132(10),

15 February 2002.

[18] Zhao J., Slicing Aspect-Oriented Software, In

Proceedings of 10th International Workshop on

Program Comprehension, pages 251–260, June 2002.

[19] M. Sahu and D. P. Mohapatra, A Node-Marking

Technique for Slicing Concurrent Object-Oriented

Programs, International Journal of Recent Trends in

Engineering, Vol 1, No. 1, May 2009.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 2 249 – 259

__

258
IJRITCC | February 2014, Available @ http://www.ijritcc.org

__

[20] Takashi Ishio et. al., Program Slicing Tool for

Effective Software Evolution Using Aspect-Oriented

Technique, Proceedings of the Sixth International

Workshop on Principles of Software Evolution

(IWPSE’03), page 3, 2003.

[21] G. B. Mund et. al., Computation of

intraprocedural dynamic program slices, Information

and Software Technology 45, 499–512, 2003.

[22] G. B. Mund and Rajib Mall, An efficient

interprocedural dynamic slicing method, The Journal

of Systems and Software 79, 791–806, 2006.

[23] N. Sasirekha et. al., Program Slicing Techniques

And Its Applications, International Journal of Software

Engineering & Applications (IJSEA), Vol.2, No.3,

July 2011.

[24] Durga Prasad Mohapatra, Rajib Mall and Rajeev

Kumar, An Overview of Slicing Techniques for

Object-Oriented Programs, Informatica 30, 253–277,

2006.

[25] Jeff Russell, Program Slicing Literature Survey,

December 2001.

[26] Mohapatra D. P., Mall R., and Kumar R. An Edge

Marking Technique for Dynamic Slicing of Object-

Oriented Programs. In Proceedings of the 28th Annual

International Computer Software and Applications

Conference (COMPSAC’04), vol -1 , pp 60-65, Sept.

2004.

[27] B. Korel and J. Laski. Dynamic slicing of

computer programs. Journal of Systems and Software,

13:187–195, 1990.

[28] Mrs. Sonam Jain et. al., A New approach of

program slicing: Mixed S-D (static & dynamic)

slicing, International Journal of Advanced Research in

Computer and Communication Engineering Vol. 2,

Issue 5, May 2013.

[29] Zhao J. and Rinard M. System Dependence Graph

Construction for Aspect-

Oriented Programs. Technical report, Laboratory for

Computer Science, Massachusetts Institute of

Technology, USA, March 2003.

[30] On bytecode slicing and AspectJ interferences,

Antonio Castaldo D’Ursi, Luca Cavallaro, Mattia

Monga, Proceedings of the 6th workshop on

Foundations of aspect-oriented languages, Pages 35-

43, 2007.

[31] S. R. Mohanty et. al., A Simplified Approach to

Compute Dynamic Slices Of Procedural Programs,

International Journal of Research in Engineering, IT

and Social Sciences, Volume 2, Issue 11, November,

2012.

[32] Application of Aspect-Oriented Programming to

Calculation of Program Slice Takashi Ishio, Shinji

Kusumoto, Katsuro Inoue. Technical Report,

Submitted to ICSE2003,

[33] Aspect Oriented Programming, By Gustav

Evertsson, 2002

[34] Aspect-Oriented Programming, Jyri Laukkanen ,

seminar paper, UNIVERSITY OF ELSINKI , 2008.

[35] Keith Brian Gallagher, Using program slicing for

program maintenance, PhD thesis, University of

Maryland, College Park, Maryland, 1990.

[36] S. Gupta et. al., An Effective Methodology for

Slicing C++ Programs, International Journal of

Advances in Engineering Research(IJAER), Vol. No. 1,

Issue No. VI, JUNE 2011.

[37] Ishio , Shinji Kusumoto, Katsuro Inoue

Debugging Support for Aspect-Oriented Program

Based on Program Slicing and Call Graph,

Proceedings of the 20th IEEE International Conference

on Software Maintenance (ICSM’04), 2004.

[38] Gary Pollice, A look at aspect-oriented

programming, Worcester Polytechnic Institute, from

The Rational Edge, ibm.com/developerWork, 2004.

[39] Madhusmita Sahu, Durga Prasad Mohapatra, A

Node-Marking Technique for Dynamic Slicing of

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 2 249 – 259

__

259
IJRITCC | February 2014, Available @ http://www.ijritcc.org

__

Aspect Oriented Programs, published in the

proceedings of 10th International Conference on

Information Technology(ICIT), pages 155-160, 2007.

[40] David Robinson, “An Introduction to Aspect

Oriented Programming in e”, Rel_1.0: 21-JUNE-2006.

[41] Gregor Kiczales et. al., An Overview of AspectJ,

published in proceedings of the 15
th
 European

Conference on Object Oriented Programming, pages

327-353, 2001.

[42] Amogh Katti et. al., Application of Program

Slicing for Aspect Mining and Extraction – A

Discussion , International Journal of Computer

Applications (0975 – 8887) Volume 38– No.4, January

2012.

[43] SHI Liang et. al., System Dependence Graph

construction for Aspect Oriented C++, Wuhan

University Journal of Natural Sciences, Vol-11, No-3,

Pages 555-560, 2006.

[44] P. Sikka et. al., Program Slicing Techniques and

their Need in Aspect Oriented Programming,

International Journal of Computer Applications(0975

– 8887) Volume 70– No.3, May 2013.

[45] Sk. Riazur Raheman et. al., Dynamic Slicing of

Aspect-Oriented Programs using AODG, (IJCSIS)

International Journal of Computer Science

and Information Security,Vol. 9, No. 4, April 2011.

