
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 1 68 – 72

68
IJRITCC | January 2014, Available @ http://www.ijritcc.org

Review on Software Testing Techniques

Bindia Tarika
Computer Programmer

Computer Science & Engineering Department

Guru Nanak Dev Engg. College, Ludhiana.

Punjab-India
Email: bindiatarika11@gmail.com

ABSTRACT—Evaluating the software system is a complex issue. This Paper attempts to provide a comprehensive view of the field software
Testing Techniques. Software Testing provides a way to analyzing a software item to detect the differences between existing and required

conditions. It also means to find the various errors that occur in the software because of which the software is not able to give the correct output.
From last few decades numerous software testing tools & techniques have emerged to evaluate the system. The major issue within software
testing field is to detect bugs. There are various techniques available for testing software.

Keywords: Software Testing, Testing Levels, Testing Techniques

___*****___

I. INTRODUCTION

Software Testing is one of the broader topics. It is a very
complex activity deserving a first-class role in software
development. Software Testing is nothing but error detection.
Thus, whenever to design and implement the computer based
system or product one should keep in mind the testability.
Testing is a process of evaluating the system or its components
to find out the differences between existing conditions and the
required conditions.

A. Who Does Testing

Testing can be done by everyone who involved in the
development of software. Actually performance of testing
depends upon the process and associated stakeholders of the
project. Most of the time, following professionals is involved in
software testing:

 Project Manager

 Software Tester

 Software Developer

 End User
It is not possible to test the software at any time during
Software Development Life Cycle. So following describes
when to start & stop the testing.

B. When to Start Testing

In simple saying Software Testing can be started from first
phase of SDLC i.e. Requirement Gathering and can be
performed till the last phase i.e. Deployment phase. But in actual
it depends upon the type of model, the software developer, is
using. For example if one is using Waterfall Model then testing
performance will be done in testing phase only, and if one is
using incremental/Evolutionary Model then testing will be
performed at each increment and so on.

C. When to Stop Testing

Software Testing is a Never Ending Process. Even after
Satisfactorily completion of testing phase, we can’t say that
software is error free. Because the Input Domain to the system
is very large and it is not possible to test each & every input.

Figure 1. Software Testing

Terminology-

 Fault - An incorrect requirement (functional/non-
functional) causes program to perform in
unanticipated manner.

 Error – Any mistake committed by developer at the
time of development.

 Failure – Symptom of error.

Fault Error Failure

Thus, According to me, whenever there is any fault in

the program, Program is still able to run, But Performance will

QUALITY

ASSURANCE

Processes & Procedure

related quality is

improved to ensure

quality.
QUALITY

CONTROL

Evaluates whether the

customer’s

expectations are met.

TESTING

Find defects in

the Product.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 1 68 – 72

69
IJRITCC | January 2014, Available @ http://www.ijritcc.org

be degraded. Whenever there is any Failure, Program is not
able to run.

 Test Case – Can be denoted as triple [I,S,O] as shown below.

 I S O

Input to system State of system Output from System

 Test Suite – Set of test cases using which software is tested.

II. TESTING MYTHS

Following are some common myths about software testing.

Myth: Testing is too expensive.

Reality: There is always saying that we should pay less for

testing and more for maintenance. But in actual If there will be

no proper testing then it may result in improper design of the

software which will be expensive.

Myth: Missed defects are due to Testers.

Reality: It is not correct saying. The Main reason behind this is

requirement changing. As requirements are keep on changing

every time and it is also possible that test strategy result in bugs

missed by testing team.

Myth: Complete Testing is Possible.

Reality: Due to the fact that during the lifetime of a software

product a user never uses all the possible scenarios of the

product execution as a result of which a software tester

similarly exempt these, not so used, scenarios from testing.

Myth: Testing is Time Consuming.

Reality: It is very wrong to say that testing is time consuming.

However, diagnosing and fixing the error during testing is time

consuming but, It is a part of Software Development or we can

say it is a Productive activity. If Testers will not identify the

errors during testing phase then it will take more time to

identify the errors.

Myth: Can only Testing Team perform the Testing.

Reality: No, Along with the testing team, also the end-user and

customers are in better state of testing a software product as

they are ultimate consumer of the product.

Myth: Quality of Product is responsibility of Testers.

Reality: No, in actual testers are just responsible for indentify

the errors, and then it will depend upon the development team

that whether they want to fix that error or not, If they release

the product as it is then the blame of errors comes on the

testers.

Myth: Testing is done only after product is fully developed.

Reality: There is no Doubt that testing depends on the source

code But it can also be done in previous phases like in

requirement phase reviewing requirement and developing test

cases.

Myth: After testing Product is fully bug free.

Reality: This is very common myth that management team and

end-user believe in. But in actual even after satisfactorily

completion of testing we can’t say that product is 100% bug

free. The main reason behind this is the requirement changing

time to time.

Myth: Task of Tester is only to find bugs.

Reality: The main task of tester is to find the bug but as well as

they also come to know the whole working of the software

whereas developers are just aware of specific area which are

assigned to them.

Myth: Testing is a lengthy process.

Reality: According to me we can’t say it, if there is a proper

testing team who is performing testing time to time then it will

take less time. A Proper test plan helps to reduce it which

describes the objectives, scope and purpose of system testing.

This plan identifies the testing tasks and persons involved in

performing the testing. An incomplete test plan result in the

failure of check how the systems works on different operating

systems or hardware. Thus Test Plan provides insight into the

reliability of the system.

III. TESTING LEVELS

Whenever software is tested it has to go through three stages a)
Unit Testing b) Integration Testing c) System Testing as shown
in the following figure.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 1 68 – 72

70
IJRITCC | January 2014, Available @ http://www.ijritcc.org

Figure 2. Testing Levels

A. Unit Testing

This is the first level in which each and every module of
software is tested separately. In this output of one module can
be the input to the other. But unfortunately if output is wrong
then another module to which we give the input will also
collapse

Thus it’s better to test each and every module separately so that
there will be less chance of collapse.

B. Integration Testing

After Unit Testing there comes Integration Testing in which all
modules tested during unit testing are integrated together and
then performing testing on them. It provides testing again on all
that modules so that if any error remains that will be removes.
It is of three types.

 Top-Down Testing:

In this first of all main modules called Top module is tested
only after that rest of the modules are tested.

 Bottom-Up Testing:

In This firstly bottom up module is tested after that all the
modules are tested.

 Mixed-Approach
This is the best approach because it combines the features of
Top-Down and Bottom-Up Approach. In this all the modules
firstly present then testing is performed.

C. System Testing:

After all the bugs, errors have been removed it’s the turn of
system testing to occur. As shown in the figure it includes three
sub-categories.

 α Testing:

This type of system testing is performed by the developers of
the software. So Development team is basically responsible for
testing.

 Customer Test

 System

Figure 3. α Testing

 β Testing:

This testing is performed by friendly set of customers .It means
developers release their product from their side and then end-
user test the product, but it is not the final delivery of the
product.
 Customer Test

 System

 Figure 4. β Testing

 Acceptance Testing:

This testing we can say the combination of both α and β
Testing in which customers test whether to accept the delivered
product or not.

IV. TESTING TECHNIQUES

Here, I am discussing two testing techniques.
A. White Box Testing
B. Black Box Testing

A. White Box Testing :

 Used to check the internal structure of the system.

 Performed to test all the Branches, Segments, Loops, and
Conditions of the program.

 Testers who perform testing should have through knowledge of
the system code and they should also know the aim [purpose]
of the system for which it is developed.
White-Box Testing can be either fault based or coverage based.

a. Fault-Based :
Fault-Based as the name implies refers to detect certain types
of faults. Main Example of fault based testing is Mutation
Testing where errors or bugs are inserted by the programmer or
testers their self and then to verify whether the test cases are
able to detect those errors or not.

b. Coverage-Based Testing
Coverage Based Testing as the name implies refers to cover the
elements of a program. Examples are Statement Coverage, Path
Coverage.
Statement Coverage means there is no other way to check
whether the errors exist in the statement unless that statement is
executed at least once. So, in order to check a statement, it is
necessary to execute it. Following Example will give an idea.

1. While(x!=y){
2. If(x<=y) then
3. y=y-x;

Testing

Levels

Integration

Testing

Unit Testing

Acceptance

Testing

β

Testing

α

Testing

System

Testing

Developer

Site

Customer

Site

Developer

Site

Customer

Site

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 1 68 – 72

71
IJRITCC | January 2014, Available @ http://www.ijritcc.org

4. else x=x-y;
5. }
6. Return x;

}
So, for this program, by choosing the test case
{(x=2,y=2),(x=3,y=2),(x=2,y=3)}, then all the statement of the
program will be executed at least once.
Path Coverage means all basis paths in the program are
executed at least once. For this CFG (Control Flow Graph) is
used that describes the sequences in which different
instructions of the program are executed. Following Example
will give an idea.

1. If (x > y)
2. z = 4
3. else z = 5
4. z= z + z

 Figure 5. Control Flow Graph

B. Black-Box Testing :

 Used to check the functional requirements.

 Performed to check all the inputs and outputs of these
requirements.

 Includes interaction between Input, Requirement, Events
and output.

Black-Box Testing can be either:
a. Equivalence Class Partitioning
b. Boundary Value Analysis

McCabe’s Cyclomatic Complexity Metric:
It defines an upper bound on the no. of basis path in program.
Here I will discuss three ways to compute it. Let us take an
example.

 Figure 6. McCabe’s Metric

Method 1:

i.e. x and y are predicates, So

2 + 1 = 3
Method 2:

Where E is Edge and N is Node, So

6 – 5 + 2 = 3
Method 3:

i.e. 2 + 1 = 3

V. NEW APPROACH:OBJECT ORIENTED

 PROGAMS TESTING
Earlier when object oriented programming was developed, it
was believed that object oriented testing will definitely reduce
the cost & effort. This thinking was based on the various new
programming features provided by object oriented
programming including Encapsulation, Polymorphism, Data
Abstraction, Inheritance etc.
But very soon, it came to know that object oriented testing is
taking more time, cost & effort as compare to testing of
procedural programs. This is because the new features provide
additional complications & various new types of bugs in the
program which requires additional test cases to perform the
testing. Thus, here I am going to discuss two types of testing
schemes performed on object oriented programs.

A. Gray-Box Testing:

It is done from the outside of the system. Actually we can say
that it is the combination of white-box and black-box testing
which can be applied in real time systems. Following are some
subtypes of gray-box testing.

 State-Model-Testing: It tests each method of an object,
transition & transition paths at each state of an object.

 Class-Diagram Testing: It tests all the derived classes
of the base class.

 Sequence-Diagram Testing: It tests all the methods
occurring in sequence diagram.

B. Integration Testing:

It includes two main types as following:

 Thread-Based Testing: In this all the classes of a
single Use Case are integrated together and then
testing is performed. This process is going on until all
the classes of all Use Cases have been considered.

 Use-Based Testing: It performs the testing on the
classes that either need the services from other classes
or does not need any services.

1

2
3

4

x

y

r

t

s

No. of Predicate + 1

E – N + 2

No. of enclosed area + 1

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 1 68 – 72

72
IJRITCC | January 2014, Available @ http://www.ijritcc.org

VI. CONCLUSION

 Software Testing is and will forever be a fundamental
activity of Software Engineering.

 We will never find a test approach that is guaranteed
to deliver a “perfect” product, whichever is the effort
we employ.

 Software Testing is a trial-and-error methodology.

 Software Testing can never be satisfactorily
completed because of the input domain from
customer.

 Testing costs can be reduced by using different test
automation tools.

 Testing helps to detect the errors in system but does
not prove that system is error free.

 Testing Object Oriented Programs provides new
features but including additional complications as
well.

 Object Oriented Testing Techniques takes more time
as compare to testing of Procedural Programs.

REFERENCES

[1] C.Easteal and G.Davis, Software Engineering Analysis and
Design, Tata McGraw Hill.

[2] Richard Fairley ,Software Engineeering Concepts ,Tata

Mcgraw Hill.

[3] Ian Sommeriele, “Software Engineering” , Addison

Wesley.

[4] Pressman, Software Engineering –A Practitioner’s

Approach.

[5] Pankaj Jalote , An Integrated Approach to Software

engineering, Narosa Publication.
[6] T.H.Shivkumar,”Software Testing Techniques”Volume

2,Issye 10,ISSN:2277 128X.
[7] Jovanovi,ć, Irena,”Software Testing Methods and

Techniques”Page No-30-41
[8] SoftwareTestingOverview,available:http://www.tutorialsp

oint.com/software_testing/software_testing_quick_guide.h
tm

