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Abstract: Lattice gauge theoryprovides a non-perturbative quantization of gauge fields by a lattice.The results of lattice gauge theory approach 

to those of continuum gauge theory as the separation of lattice points approaches to zero. Continuum gauge theory provides the linear 

relationship between quarks potential and the distance between them indicating Quark confinement. 
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I. INTRODUCTION 

Wilson loops[1] play a central role in the lattice formulation of 

gauge theories. These arethe phase factor in Abelian and Non 

Abelian gauge theories. An analogy of phase factor was first 

introduced by H.Weyl in 1919[2] to describe gravitational and 

electromagnetic interactions of an electron. Until 1970s all the 

predictions of Quantum Chromodynamics (QCD) [3] were 

restricted to the perturbative regime. In 1974 K.G. Wilson 

used lattice regularization and introduced a phase factor for 

the simplest closed contour on the lattice called Wilson loop. 

Wilson loop contains theholonomy of the gauge connection 

around the given loop and is used for the study of non 

perturbative phenomenon of confinement of quark in QCD via 

the static quark antiquark potential. Lattice gauge theory 

therefore, is a nonperturbative regularization of gauge theory. 

It uses an analogy between quantum field theory and statistical 

mechanics and offers a possibility of applying non-

perturbative methods such as the strong-coupling expansion or 

the numerical Monte Carlo method [4] to QCD. It provides a 

non-perturbative quantization of gauge fields by a lattice. 

  

II. LINK AND PLAQUETTE OF A LATTICE  

 A lattice approximates continuous space by a discrete 

set of points. The lattice is along all four coordinates in 

Euclidian formulation. However, the Hamiltonian approach 

considers the time coordinate as non-discrete or 

continuous.The lattice is defined as a set of points, called the 

lattice sites,in d-dimensional Euclidean space with coordinates 

  xμ = nμa  (1) 

 Here „a‟ is a dimensional constant, called the lattice 

spacing and is defined as the distance between the 

neighbouring sites. The spacings are measured in units of a, 

thereby setting a = 1.Here nμ =  (n1 , n2 , . . . , nd ) is a vector 

whose componentsni; i=1,2,…..d  are integer numbers, d is 

the dimension of the space. 

 
Figure 2.  Link (left) and Plaquette (right) 

 

A 2d lattice with periodic boundary conditions is depicted in 

Figure1. The spatial size of the depicted lattice is L1 = 6 and L2 

= 4. An analogous 4d lattice is called hyper cubic. 

 The link and plaquette of a lattice, which are shown in 

Figure 2.  A link l = {x; μ} connects two neighboring sites xand 

x + aμ , where μ is a unit vector along the μ-direction (μ = 1, . . 

. , d). A plaquettep =  x; μ, ν  is an elementary square enclosed 

byfour links in the directions μ and ν. The set of four 

linkswhich bound the plaquettepis denoted as ∂p. The number 

of degrees of freedom for an infinite lattice is infinity (=)but 

enumerable. The lattice is considered to have a finite size 

L1 × L2 × ……× Ld  in all directions to limit this number. The 

periodic boundary conditions are imposed to reduce the finite-

size effects. 

 

III. LINK VARIABLES AS GAUGE FIELDS  

 Matter field, say a quark field, is attributed to the 

lattice sites; therefore a continuous field ϕ x is approximated 

by its values at the lattice sites 

  ϕ(x)  ⇒ ϕx   (2) 
 The lattice field ϕx  is a good approximation of a 

continuous field ϕ(x)when a is much smaller (≪) than the 

characteristic size of a given configuration. Fine lattice sites in 

Figure 3(b) with a smaller lattice spacing are closer to 

 
Figure1. Two dimensional lattice with 

periodic boundary conditions 
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continuum field configuration as compared to the “coarse” 

lattice in Figure 3(a).   

 The link  x;  μ as we know, connects two 

neighbouring sites xand x + aμ , where μ is a unit vector along 

the μ-direction (μ = 1, . . . , d).   

 ThelinkvariableUμ(x)like Aμ(x) is characterized by a 

coordinate and a direction.The gauge field Aμ x is therefore, 

related to the links Uμ x  

 or Aμ x ⇒ Uμ x  (3) 

 The link variableUμ x , as we know, is defined as 

  Uμ x  =  P ei  dzμAμ  z 
x+aμ 

x (4) 

where the integral is along the link x;  μ .  

Therefore, Uμ x  =  eiaA μ  x as a → 0(5) 

 This means Uμ x  varies as the exponential of the 

μthcomponent of the vector potential Aμ x at the center of the 

link. Since the path-ordered integral in Eq. (4) depends on the 

orientation of the link. The same link connecting the points 

xandx + aμ , can be written either as{x; μ} or as { x + aμ ;−μ}. 

The orientation of the link {x; μ} is positive that is along the 

positive of the co-ordinate axis. The orientation of the 

link{ x + aμ ;−μ}on the other hand, is negative.The link 

variable Uμ x usually represents the links with positive 

orientations. The negative orientation link variable is given  

  U−μ x + aμ  = Uμ
† x  (6) 

 Equation(5) shows the way toevaluate latticephase 

factors (Wilson loops) by constructing contours from the small 

links of the lattice. 

 
Figure 3.Description of Continuum Configuration by lattices 

 

IV. DERIVATION OF THE WILSON LOOP  

 Let us choose a pathfrom x → y  and divide into 

infinitesimal small segments z1, z2 … . . zn   as shown in 

Fig.6.The explicit form of the finite parallel transport or the 

phase factor as we discussed above is given by  

   U y, x = U y , zn U zn  , zn−1 ……U ( z1, z)      (7)             

Foran infinitesimal segment 𝑧 → 𝑧1, we can write 

  U z1 , z ≈ e[ieAμ  z1−z μ ]⁡  

andtherefore as discussed above  

U y, x  = e
ie  Aμ  z γ

dzμ
  (8) 

 The parallel transport 𝑈 𝑦, 𝑥 is not necessarily path 

independent𝑈1(𝑦, 𝑥) ≠ 𝑈2(𝑦, 𝑥)                   
𝑈 𝑦, 𝑥 = 𝑙𝑖𝑚

𝑛→∞
𝑈 𝑦 , 𝑧𝑛 𝑈 𝑧𝑛  , 𝑧𝑛−1 ……𝑈 ( 𝑧1, 𝑧) 

  = lim
∆xj→0

 (1 + igAμ
n
j=0 (zj)∆zj

μ
)   

with∆zj
μ

= zj+1
μ

− zj 
μ

, z0 = x , zn+1 = y. 

As 𝐴𝜇  𝑧 is a matrix and so is non-abelian i.e. 

[Aμ zj , Aυ(zk)] ≠ 0. 

𝑈 𝑦, 𝑥 = 1 + 𝑖𝑔 𝐴𝜇 (𝑧𝑘

𝑛

𝑘=0

)∆𝑧𝑘
𝜇

+ 

+  ig 2   Aμ
j−1
k=0

n
k=0  zj ∆zk

μ
Aυ(zl)∆zl

υ …+  

Now we introduce zμ r  to parameterise with different 

segments𝑟1,𝑟2………..𝑟𝑛 . 

𝑧𝜇  0 = 0, 𝑧𝜇  1 =𝑦𝜇 ,r ∈ [0,1]   

𝑈 𝑦, 𝑥 = 1 + 𝑖𝑔 𝑑𝑟1

1

0

𝐴𝜇  𝑧 𝑟1  
𝑑𝑥𝜇

𝑑𝑟1
 

+ ig 2  dr1
1

0
 dr2

r1

0
Aμ x r1  

dxμ

dr 1
Aυ x r2  

dxυ

dr 2
+...=

  ig n∞
n=0  dr1  dr2

r1

0

1

0
… drn

rn−1

0
Aμ1 x r1  

dx μ1

dr 1
 

…… . 𝐴𝜇𝑛  𝑥 𝑟𝑛  
𝑑𝑥 𝜇 𝑛

𝑑𝑟𝑛
   

=   ig n

∞

n=0

 dr1 …… . drn
r≥r1≥r2…≥rn≥0

Aμ1 x r1  
dxμ1

dr1

 

… . Aμn x rn  
dx μn

dr n
     

= Peig  dr
dx μ

dr

1

0
Aμ (x(r))

   

= Peig  Aμ (x)dx μΓ    (9) 

For an infinitesimal closed loop 𝑥 → 𝑦,  

 UΓ x, x = Peig  Aμ  x dx μ
Γ  

where the loop 𝛤 approaches a point „x‟   

Using Strokes theorem UΓ x, x = Peig  Fμυ dσμυΓ   

where𝜎𝜇𝜐  is the area element encircled by the infinitesimal 

loop and Fμυ = ∂μAν x − ∂νAμ x  

Therefore UΓ x, x = eig Fμυ σ
μυ

 

By construction, under a gauge transformation, 

 UΓ y, x → Ω y UΓ y, x Ω† x   (10) 

Therefore for an infinitesimal loop 𝑥 → 𝑦 

UΓ x, x → Ω x UΓ x, x Ω† x  
and hence 

  WΓ x = Tr (UΓ(x, x) =  Tr(eig Fμυ σ
μυ

)  (11) 

is gauge invariant. This is the non-abelian Wilson loop. 

 

V. PROPERTIES OF WILSON LOOP 

Hermiticity –It implies that theHermitian conjugate of a 

Wilson line gives the same line in opposite direction. Let 𝛾 is a 

Wilson line from a to b along the direction y then- 

  γx
†[a, b]  =   γ−x[b , a]  (12) 

Causality- If we first have a Wilson line from a to b then a 

line along the same direction y from b to c, we can glue them 

together into the Wilson line from a to c- 

  γy  b, c =  γy a, b =  γy [a, c]  (13) 

Unitarity- If we have a Wilson line from a to b and then a line 

back from b to a in the opposite direction, they will give 

1.  γy [a, b]   γy [a , b]  =  1   (14) 

 

VI. THE WILSON ACTION 

The phase factor U(x,y) plays an important role in the 

lattice formulation of closed contours. Let us consider the 

simplest closed contour which is the boundary of a plaquette 

oriented properly (i.e. clockwise or anti-clockwise). Since a 

plaquette consists of four sides or links forming its sides. The 
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plaguette phase factor is the product of the phase factors of 

these four links, that is  

U ∂p = Uν
† x Uμ

† x + aν  Uυ x + aμ  Uμ x  (15) 

The gauge transformation equation for the link 

variable is given by    

     UΓ x → Ω x + aμ  Uμ x Ω
† x   (16) 

Lattice gauge transformation is defined as the gauge 

transformation in which the matrix 𝛺 𝑥 in above equation is a 

function of the lattice sites distribution. The plaquette phase 

factor transforms under the lattice gauge transformation as  

U(∂p) → Ω x U(∂p)Ω†(x)  (17) 

 The gauge invariance of the trace of U(∂p)or 

trU(∂p) →  trU(∂p)    (18) 

is used in constructing the action of the lattice gauge theory 

called the Wilson action Slat  U which is given as  

 Slat  U =  1 −p  
1

N
RetrU(∂p)   (19) 

 The summation in Slat  U is over all the elementary 

plaquettes p of the lattice (i.e. over all x, and ), regardless of 

their orientations.  

 The reversal of the orientation means the complex 

conjugate of the trace, as from Eq.(54), we get 

 trU ∂p 
reorientation
           trU† ∂p =  trU ∂p  ⋆(20) 

 The lattice action, in terms of similarly oriented 

plaquette link variable, is given as 

  Slat  U =
1

2
  1 −

1

N
trU(∂p) p  (21) 

 This lattice action becomes the continuum gauge 

theory action as 𝑎 → 0.  It can be shown using Strokes 

theorem that, for abelian fields, link variable at a point x has 

the form 

  UΓ x = eigFμυ σ
μυ

  (22) 

However, for non-Abelian field strength 𝐹𝜇𝜐 (𝑥) and for a 

square lattice, that is  𝜎𝜇𝜐 = 𝑎2, we get 

  U(∂p) → e ia
2ℱμυ  x +O(a3)   (23) 

 The third order term 𝑂(𝑎3) arises because of the non-

zero commutator term of Aμ(x) and Aν(x)in non-Abelian field 

strengthFμυ (x). 

Then, as we knowa4  … . .p

a→0
   

1

2
 d4 x … . .μ,ν  (24) 

Using expansion of Eq.(23) in Eq. (21), and using  result of 

Eq.(24), we get 

 Slat

a→0
   

1

4N
 d4 x trℱ2

μυ (x)μ,ν   (25) 

Also the QCD action is written in matrix notation as 

S A, ψ, ψ   is given by 

 d4x  ψ γμ ∂μ − iAμ ψ + mψ ψ +
1

4g2 trℱμν
2        (24) 

Where ℱμν = ∂μAν − ∂νAμ − i[Aμ , Aν](26) 

 

VII. WILSON LOOPS ON A LATTICE 

 Let us represent the lattice contour C by its initial 

point x and by the directions of the links forming the contour, 

some of these directions may be negativeas well 

 C =  x, μ1 , ………… . , μn    (27) 

The lattice phase factor U(C) is given by 

U C = Uμn
 x + aμ 1 + ⋯+ aμ n−1 ………× Uμ2

 x +

aμ1Uμ1x     (28) 

 As discussed earlier the following equation  can be 

used for dealing with the links with negative directions. 

  U−μ x + aμ  = Uμ
† x   (29) 

For a closed contourμ1 + ⋯⋯⋯+ μn = 0.(30) 

The gauge invariant trace of the phase factor for a 

closed contour is called the Wilson loop. 

 The Wilson loop average over Contour C is 

determined as 

W C ≡  
1

N
trU C   

 = Z−1 β   dUμx,μ  x e−βS U 1

N
trU(C) 

where 

 Z β =   dUμx,μ  x e−βS U  (31) 

is the partition function for a pure lattice gauge theory at an 

inverse temperature  which is given by comparing gauge 

field part 𝑡𝑟ℱ2
𝜇𝜐 (𝑥)results by substituting using QCD action 

in Eqs.(25) and Eq.(26) 

   β =
N

g2  (32) 

 This concept of partition function is similar to that in 

the statistical mechanics. The average of the physical 

quantities in terms of partition function 𝑍 𝛽 is given by 

  F U  = Z−1 β   dUμx,μ  x e−βS U F U (33) 

𝐹 𝑈 is a gauge-invariant function of 𝑈𝜇 (𝑥) and becomes the 

expectation value in the continuum theory as 𝑎 → 0withβ =
N

g2  

. 

It can be shown that the Wilson loop 

average𝑊 𝐶 over a contour C is related to the minimum 

surface area 𝐴𝑚𝑖𝑛 (𝑐)(measured in units of a
2
) enclosed by the 

contour  𝑊 𝐶 =  𝑊 𝜕𝑝  𝐴𝑚𝑖𝑛 (𝑐)  (34)  

Where𝑊 𝜕𝑝  is the plaquette average and is given by 

 
W ∂p   =

β

2N2  for SU N with N ≥ 3 

=   
β

4
for SU(2) 

 (35) 

 Wilson loop average over a rectangular contour of 

dimensions 𝑅 × 𝑇  as shown in Figure 4 is related to the 

interaction energy of the static quark, separated by the 

distance R by the formula 

  W R × T ∝  e−E0 R T  (36) 

 Considering the case of axial gauge 𝐴4 = 0 and so 

𝑈4 𝑥 = 1.Only vertical segments contribute to 𝑈 𝑅 × 𝑇 . 

Using ψij t =  Pei  dz1A1(z1 ,⋯⋯
R

0 ,t) 
ij
 

As we have 

W R × T =  
1

N
tr ψ(0)ψ†(T)  

 The sum over a complete set of intermediate states is 

given by 

      n  n   n = 1  (37) 

Inserting this sum, Wilson loop average W R × T is given by 

W R × T =  
1

Nn  ψij (0) n  n ψji
† (T)  

 
Figure 4. Rectangular Wilson Loop 
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  =  
1

Nn   ψij (0) n  
2

e−En T  (38) 

whereEn  is the energy of the state   n  . The ground state with 

the lowest energy is the only state which survives in the sum 

over the states as T → ∞. Therefore 

  W 𝑅 × 𝑇 
𝐿𝑎𝑟𝑔𝑒  𝑇
      𝑒−𝐸0(𝑅)𝑇   (39) 

This derivation is independent of the lattice parameters 

and therefore, the result is equally true for a rectangular loop 

in the continuum. 

    

  

VIII. AREA LAW AND CONFINEMENT 

 The Wilson loop averageW C over a contour C is 

related to the minimum surface area Ami n(C)(measured in 

units of a
2
) enclosed by the contour  

  W C = e−KA min (C) (40) 

 The exponential dependence of the Wilson loop 

average on the area of the minimal surface as in above 

equation is called the area law. If the area law holds for loops 

of large area in the pure SU(3) gauge theory then quarks are 

confined. This means there are no physical   in    or   out   quark 

states and this is the essence of Wilson‟s confinement 

criterion. This is because the physical amplitudes such as the 

polarisation operator do not have quark singularities when the 

Wilson criterion is satisfied. 

We have from Eq.(39) for large T values 

W R × T 
Large  T
     e−E0(R)T  

Comparing with Eq.(40) for contour  C~R × T, forAmin =
R × T,  E(R)= KR   (113) 

 This shows that the potential energy is a linear 

function of the distance between the quarks.Thecoefficient K 

is the string tension given by the energy of the string per unit 

length. The gluon field between the quarks contracts to a tube 

or string, with its energy proportional to its length. The string 

stretchesas the distance between quarks increases. It therefore, 

prevents them from moving apart to macroscopic 

distances.Equation (34) then gives 

  K =
1

a2 ln
2N2

β
=

1

a2 ln⁡(2Ng2)        (41) 

to the leading order of the strong coupling expansion. The 

next orders of the strong coupling expansion result in 

corrections in β to this formula. Confinement holds in the 

lattice gauge theory to any order of the strong coupling 

expansion. 

IX. ASYMPTOTIC SCALING 

 Eq.(41) establishes the relationship between lattice 

spacing aand the coupling g2. Let K equals its experimental 

value      K =  400MeV 2 ≈ GeV fm      

 This gives a→ ∞ as g2 → ∞.i.e. the lattice spacing is 

large in the strong coupling limit, compared to 1fm. This 

coarse lattice cannot however, describe the continuum,which 

requires smaller lattice spacings. Also from this equation,a 

decreases with decreasing g2.However, this formula ceases to 

be applicable in the intermediate region of g2~1or a 

~ 1fm.For pure SU(3) Yang Mills, Eq.(41) is replaced at 

smallg2by- 

 K = const.
1

a2  
8π2

11 g2 

102

121
e
−

8π2

11g2   (42) 

where the two loop Gell-Mann Low function is used. 

Thisexponential dependence of K on 1 g2  is called asymptotic 

scaling and sets in forhigher valuesof1 g2 . As shown in 

Figure 5, the strong coupling formula holds for 

smaller1
g2 .Both formulas are however, not applicable in the 

intermediate region 1
g2 ~1.For such values ofg2, where 

asymptotic scaling holds, the lattice gauge theory is said to 

have a continuum limit. 

 

CONCLUSION 

 The QCD studies have been done using the gauge 

invariance of the Wilson loop. The Wilson loop is a non 

abelian path ordered phase factor.Continuum gauge theory 

provides the linear relationship between quarks potential and 

the distance between them. This linear relationship 

indicatesthe confined nature of the quarks.The proportionality 

constant of this relation (string tension) shows strong coupling 

in large lattice spacing region and the asymptotic scaling in 

small spacing region. The intermediate region does not show 

any analytic relationship. Confinement holds in the lattice 

gauge theory for any order of the strong coupling region. 
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