

International Journal on Recent and Innovation Trends in Computing and Communication ISSN 2321 – 8169

Volume: 1 Issue: 4 373 – 379

__

373
 IJRITCC | MAR 2013, Available @ http://www.ijritcc.org

__

BATTLE AGAINST PHISHING

Bharat Gautam
1
, Mukesh Agrawal

2
, Anishma Talwar

3
, Rajan Jha

4

1 Graduate Scholar, Computer Science & Engineering, JECRC Jaipur, Rajasthan, India, gautambharat.gautam@gmail.com

2 Associate Professor, Computer Science & Engineering, JECRC Jaipur, Rajasthan, India, mukeshsir@gmail.com

3 Lecturer, Computer Science & Engineering, JECRC Jaipur, Rajasthan, India, talwaranishma@gmail.com

4 Lecturer, Computer Science & Engineering, JECRC Jaipur, Rajasthan, India, jharajan8@gmail.com

Abstract: - Phishing is a model problem for illustrating usability concerns of privacy and security because both system designers and

attackers battle using user interfaces to guide (or misguide) users.

There are two novel interaction techniques to prevent spoofing. First, our browser extension provides a trusted window in the browser

dedicated to username and password entry. We use a photographic image to create a trusted path between the user and this window to

prevent spoofing of the window and of the text entry fields.

Second, our scheme allows the remote server to generate a unique abstract image for each user and each transaction. This image creates a

“skin” that automatically customizes the browser window or the user interface elements in the content of a remote web page. Our extension

allows the user’s browser to independently compute the image that it expects to receive from the server. To authenticate content from the

server, the user can visually verify that the images match.

We contrast our work with existing anti-phishing proposals. In contrast to other proposals, our scheme places a very low burden on the user

in terms of effort, memory and time. To authenticate himself the user has to recognize only one image and remember one low entropy

password, no matter how many servers he wishes to interact with. To authenticate content from an authenticated server, the user only needs

to perform one visual matching operation to compare two images. Furthermore, it places a high burden of effort on an attacker to spoof

customized security indicators.

Index Terms: Phishing, Security Properties, Protection

__*****___

1. INTRODUCTION

Phishing is a model problem for usability concerns in privacy

and security because both system designers and attackers

battle in the user interface space. Careful analysis of the

phishing problem promises to shed light on a wide range of

security usability problems.

In this paper, we examine the case of users authenticating web

sites in the context of phishing attacks. In a phishing attack,

the attacker spoofs a website (e.g., a financial services

website). The attacker draws a victim to the rogue website,

sometimes by embedding a link in email and encouraging the

user to click on the link. The rogue website usually looks
exactly like a known website, sharing logos and images, but

the rogue website serves only to capture the user’s personal

information. Many phishing attacks seek to gain credit card

information, account numbers, usernames and passwords that

enable the attacker to perpetrate fraud and identity theft. Data

suggest that some phishing attacks have convinced up to 5%

of their recipients to provide sensitive information to spoofed

websites. About two million users gave information to spoofed

websites resulting in direct losses of $1.2 billion for U.S.

banks and card issuers in 2003. 2780 unique active phishing

attack websites were reported in the month of March 2005
alone.

Data suggest that some phishing attacks have convinced up to

5% of their recipients to provide sensitive information to

spoofed websites [1]. About two million users gave

information to spoofed websites resulting in direct losses of

$1.2 billion for U.S. banks and card issuers in 2003 [2]. 2780

unique active phishing attack websites were reported in the

month of March 2005 alone [3].

We examine security properties that make phishing a

challenging design problem. We discuss a user task analysis of

the skills required to detect a phishing attack. We present the

design of a new authentication prototype in Section 4, analyze

its security in Section 5 and discuss user testing. We discuss
related work.

2. TYPES OF PHISHING

2.1 Deceptive

Sending a deceptive email, in bulk, with a “call to action” that

demands the recipient click on a link.

2.2 Malware-Based

Running malicious software on the user’s machine. Various

forms of malware-based phishing are:

Key Loggers & Screen Loggers

Session Hijackers

Web Trojans

Data Theft

International Journal on Recent and Innovation Trends in Computing and Communication ISSN 2321 – 8169

Volume: 1 Issue: 4 373 – 379

__

374
 IJRITCC | MAR 2013, Available @ http://www.ijritcc.org

__

2.3 DNS-Based

Phishing that interferes with the integrity of the lookup

process for a domain name. Forms of DNS-based phishing

are:

Hosts file poisoning

Polluting user’s DNS cache

Proxy server compromise

2.4 Content-Injection

Inserting malicious content into legitimate site.

Three primary types of content-injection phishing:

Hackers can compromise a server through a security

vulnerability and replace or augment the legitimate content

with malicious content.

Malicious content can be inserted into a site through a cross-

site scripting vulnerability.
Malicious actions can be performed on a site through a SQL

injection vulnerability.

2.5 Man-in-the-Middle Phishing

Phisher positions himself between the user and the legitimate

site.

2.6 Search Engine Phishing

Create web pages for fake products, get the pages indexed by

search engines, and wait for users to enter their confidential

information as part of an order, sign-up, or balance transfer.

3. SECURITY PROPERTIES

Paragraph Why is security design for phishing hard?[6] a

variety of researchers have proposed systems designed to

thwart phishing; yet these systems appear to be of limited
success. Here are some properties that come into play:

3.1 The limited human skills property

Humans are not general purpose computers. They are limited

by their inherent skills and abilities. This point appears

obvious, but it implies a different approach to the design of

security systems. Rather than only approaching a problem

from a traditional cryptography-based security framework

(e.g., “what can we secure?”), a usable design must take into

account what humans do well and what they do not do well.

3.2 The general purpose graphics property

Operating systems and windowing platforms that permit

general purpose graphics also permit spoofing. The

implications of this property are important: if we are building
a system that is designed to resist spoofing we must assume

that uniform graphic designs can be easily copied. As we will
see in next section, phishers use this property to their

advantage in crafting many types of attacks.

3.3 The golden arches property

Organizations invest a great deal to strengthen their brand

recognition and to evoke trust in those brands by consumers.

Just as the phrase “golden arches” is evocative of a particular

restaurant chain, so are distinct logos used by banks, financial

organizations, and other entities storing personal data. Because

of the massive investment in advertising designed to

strengthen this connection, we must go to extraordinary

lengths to prevent people from automatically assigning trust

based on logos alone.
We revisit two properties proposed by Whitten and Tygar [8]:

3.4 The unmotivated user property

Security is usually a secondary goal. Most users prefer to

focus on their primary tasks, and therefore designers can not

expect users to be highly motivated to manage their security.

For example, we can not assume that users will take the time

to inspect a website certificate and learn how to interpret it in

order to protect themselves from rogue websites.

3.5 The barn door property

Once a secret has been left unprotected, even for a short time,

there is no way to guarantee that it can not been exploited by

an attacker. This property encourages us to design systems
that place a high priority on helping users to protect sensitive

data before it leaves their control.

While each of these properties by themselves seem self-

evident, when combined, they suggest a series of tests for

proposed anti-phishing software. We argue that to be fully

effective, anti-phishing solutions must be designed with these

properties in mind.

4. SOLUTIONS

4.1 Design Requirements

With the security properties and task analysis in mind, our

goal is to develop an authentication scheme that does not

impose undue burden on the user, in terms of effort or time. In

particular, we strive to minimize user memory requirements.

Our interface has the following properties:
To authenticate himself, the user has to recognize only one

image and remember one low entropy password, no matter

how many servers he wishes to interact with.

To authenticate content from a server, the user only needs to

perform one visual matching operation to compare two

images.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN 2321 – 8169

Volume: 1 Issue: 4 373 – 379

__

375
 IJRITCC | MAR 2013, Available @ http://www.ijritcc.org

__

It is hard for an attacker to spoof the indicators of a successful
authentication. We use an underlying authentication protocol

to achieve the following security properties:

At the end of an interaction, the server authenticates the user,

and the user authenticates the server.

No personally identifiable information is sent over the

network.

An attacker can not masquerade as the user or the server, even

after observing any number of successful authentications.

4.2 Overview

Solution is that we have to develop an extension for the

Mozilla Firefox browser. We chose the Mozilla platform for

its openness and ease of modification. The standard Mozilla
browser interface and our extension are built using Mozilla's

XML-based User interface Language (XUL), a mark up

language for describing user interface elements. In this

section, we provide an overview of our solution before

describing each component in depth.

First, our extension will provide the user with a trusted

password window. This is a dedicated window for the user to

enter usernames and passwords and for the browser to display

security information. We present a technique to establish a

trusted path between the user and this window that requires

the user to recognize a photographic image.
Next, we present a technique for a user to distinguish

authenticated web pages from “insecure” or “spoofed” web

pages. Our technique does not require the user to recognize a

static security indicator or a secret shared with the server.

Instead, the remote server generates an abstract image that is

unique for each user and each transaction. This image is used

to create a “skin”, which customizes the appearance of the

server’s web page. The browser computes the image that it

expects to receive from the server and displays it in the user’s

trusted window. To authenticate content from the server, the

user can visually verify that the images match. We implement
the secure Remote Password Protocol (SRP), a verifier-based

protocol developed by Tom Wu, to achieve mutual

authentication of the user and the server. We chose to use SRP

because it aligns well with users’ preference for easyto -

memorize passwords, and it also does not require passwords to

be sent over the network. We adapted the SRP protocol to

allow the user and the server to independently generate the

skins described above. (We note that all of interface

techniques we propose can be used with other underlying

authentication protocols. We also note that simply changing

the underlying protocol is not enough to prevent spoofing).

4.3 Trusted Path to the Password Window

How can a user trust the client display when every user
interface element in that display can be spoofed? We propose

a solution in which the user shares a secret with the display,

one that can not be known or predicted by any third party. To

create a trusted path between the user and the display, the
display must first prove to the user that it knows this secret.

Our approach is based on window customization. If user

interface elements are customized in a way that is

recognizable to the user but very difficult to predict by others,

attackers can not mimic those aspects that are unknown to

them.

Our extension provides the user with a trusted password

window that is dedicated to password entry and display of

security information. We establish a trusted path to this

window by assigning each user a random photographic image

that will always appear in that window. We refer to this as the
user’s personal image. The user should easily be able to

recognize the personal image and should only enter his

password when this image is displayed. As shown in Figure 1,

the personal image serves as the background of the window.

The personal image is also transparently overlaid onto the

textboxes. This ensures that user focus is on the image at the

point of text entry and makes it more difficult to spoof the

password entry boxes (e.g., by using a pop-up window over

that area).

As discussed below, the security of this scheme will depend

on the number of image choices that are available. For higher
security, the window is designed so that users can also choose

their own personal images. Figure 1 shows examples of the

trusted window with images chosen by the user.

We chose photographic images as the secret to be recognized

because photographic images are more easily recognized than

abstract images or text and because users preferred to

recognize images over text in our early prototypes. However,

any type of image or text could potentially be used to create a

trusted path, as long as the user can recognize it. For example,

a myriad of user interface elements, such as the background

color, position of textboxes and font, could be randomly

altered at first use to change the appearance of the window.
The user can also be allowed to make further changes,

however security should never rely on users being willing to

customize this window themselves.

The choice of window style will also have an impact on

security. In this example, the trusted window is presented as a

toolbar, which can be “docked” to any location on the

browser. Having a movable, rather than fixed window has

advantages (because an attacker will not know where to place

a spoofed window), but can also have disadvantages (because

naïve users might be fooled by false windows in alternate

locations). We are also experimenting with representing the
trusted window as a fixed toolbar, a modal window and as a

side bar.

Unlike the shared secret schemes discussed in the Related

Work section, this scheme requires the user to share a secret

with himself (or his browser) rather than with the server he

wishes to authenticate. This scheme requires no effort on the

part of the user (or a one-time customization for users who use

their own images), and it only requires that the user remember

one image. This is in contrast to other solutions that require

International Journal on Recent and Innovation Trends in Computing and Communication ISSN 2321 – 8169

Volume: 1 Issue: 4 373 – 379

__

376
 IJRITCC | MAR 2013, Available @ http://www.ijritcc.org

__

users to make customizations for each server that they interact
with and where the memory burden increases linearly with

each additional server.

4.4 Secure Remote Password Protocol

It is well known that users have difficulty in remembering

secure passwords. Users choose passwords that are

meaningful and memorable and that as a result, tend to be

“low entropy” or predictable. Because human memory is

faulty, many users will often use the same password for

multiple purposes.

In our authentication prototype, our goal is to achieve

authentication of the user and the server, without significantly

altering user password behavior or increasing user memory
burden. We chose to implement a verifier-based protocol.

These protocols differ from conventional shared-secret

authentication protocols in that they do not require two parties

to share a secret password to authenticate each other. Instead,

the user chooses a secret password and then applies a one-way

function to that secret to generate a verifier, which is

exchanged once with the other party. After the first exchange,

the user and the server must only engage in a series of steps

that prove to each other that they hold the verifier, without

needing to reveal it.

In our prototype, we adapt an existing protocol, the Secure
Remote Password protocol (SRP), developed by Tom Wu.

SRP allows a user and server to authenticate each other over

an untrusted network. We chose SRP because it is lightweight,

well analyzed and has many useful properties. Namely, it

allows us to preserve the familiar use of passwords, without

requiring the user to send his password to the server.

Furthermore, it does not require the user (or his browser) to

store or manage any keys. The only secret that must be

available to the browser is the user’s password (which can be

memorized by the user and can be low entropy). The protocol

resists dictionary attacks on the verifier from both passive and
active attackers , which allows users to use

weak passwords safely.

Here, we present a simple overview of the protocol to give an

intuition for how it works. To begin, Carol chooses a

password, picks a random salt, and applies a one-way function

to the password to generate a verifier. She sends this verifier

and the salt to the server as a one-time operation. The server

will store the verifier as Carol’s “password”. To login to the

server, the only data that she needs to provide is her username,

and the server will look up her salt and verifier. Next, Carol’s

client sends a random value to the server chosen by her client.

The server in turn sends Carol its own random values. Each
party, using their knowledge of the verifier and the random

values, can reach the same session key, a common value that

is never shared. Carol sends a proof to the server that she

knows the session key (this proof consists of a hash of the

session key and the random values exchanged earlier). In the

last step, the server sends its proof to Carol (this proof consists

of a hash of the session key with Carol’s proof and the random
values generated earlier). At the end of this interaction, Carol

is able to prove to the server that she knows the password

without revealing it. Similarly, the server is able to prove that

it holds the verifier without revealing it.

The protocol is simple to implement and fast. Furthermore, it

does not require significant computational burden, especially

on the client end. A drawback is that this scheme does require

changes to the web server, and any changes required (however

large or small), represent an obstacle to widespread

deployment. However, there is work on integrating SRP with

existing protocols (in particular, there is an IETF standards
effort to integrate SRP with SSL/TLS), which may make

widespread deployment more feasible.

One enhancement is to only require the user to remember a

single password that can be used for any server. Instead of

forcing the user to remember many passwords, the browser

can use a single password to generate a custom verifier for

every remote server. This can be accomplished, for example,

by adding the domain name (or some other information) to the

password before hashing it to create the verifier. This reduces

memory requirements on the user, however it also increases

the value of this password to attackers.
We note that simply designing a browser that can negotiate the

SRP protocol is not enough to stop phishing attacks, because i

t does not address the problem of spoofing. In particular, we

must provide interaction mechanisms to protect password

entry, and to help the user to distinguish content from

authenticated and non-authenticated servers.

4.5 Dynamic Security Skins

Assuming that a successful authentication has taken place,

how can a user distinguish authenticated web pages from those

that are not “secure”? In this section we explore a number of

possible solutions before presenting our own.

4.5.1 Static Security Indicators

One solution is for the browser to display all “secure”
windows in a way that is distinct from windows that are not

secure. Most browsers do this today by displaying a closed

lock icon on the status bar or by altering the location bar (e.g.,

Mozilla Firefox uses a yellow background for the address bar)

to indicate SSL protected sites. For example, we could display

the borders of authenticated windows in one color, and

insecure windows in another color. We rejected this idea

because our analysis of phishing attacks suggests that almost

all security indicators commonly used by browsers to indicate

a “secure connection” will be spoofed. Previous research

suggests that it is almost impossible to design a static indicator

that can not be copied.
In our case, because we have established a trusted window, we

could use that window to display a security indicator (such as

an open or closed lock icon) or a message that indicates that

International Journal on Recent and Innovation Trends in Computing and Communication ISSN 2321 – 8169

Volume: 1 Issue: 4 373 – 379

__

377
 IJRITCC | MAR 2013, Available @ http://www.ijritcc.org

__

the current site has been authenticated. However, this
approach is also vulnerable to spoofing if the user can not

easily correlate the security indicator with the appropriate

window.

4.5.2 Customized Security Indicators

Another possibility is for the user to create a custom security

indicator for each authenticated site, or one custom indicator

to be used for all sites. A number of proposals require users to

make per site customizations by creating custom images or

text that can be recognized later. In our case, the user could

personalize his trusted window, for example by choosing a

border style, and the browser could display authenticated

windows using this custom scheme. We rejected this idea
because it requires mandatory effort on the part of the user,

and we believe that only a small number of users are willing to

expend this effort. Instead, we chose to automate this process

as described in the next section.

4.5.3 Automated Custom Security Indicators

We chose to automatically identify authenticated web pages

and their content using randomly generated images. In this

section we describe two approaches.

Browser-Generated Random Images

Ye and Smith proposed that browsers display trusted content

within a synchronized-random-dynamic boundary. In their

scheme, the borders of trusted windows blink at a certain
frequency in concert with a reference window.

5. SECURITY ANALYSIS

In this section, we discuss the vulnerability of our scheme to

various attacks.

5.1 Leak of the Verifier

The user’s verifier is sent to the bank in a one-time operation.

Thereafter, the user must only supply his password to the

browser and his username to the server to login.

The server stores the verifier, which is based on the user’s

password but which is not password-equivalent (it can not be

used as a password). Servers are still required to guard the

verifier to prevent a dictionary attack. However, unlike
passwords, if this verifier is stolen (by breaking into the server

database or by intercepting it the one time it is sent to the

bank), the attacker does not have sufficient information to

impersonate the user, which makes the verifier a less valuable

target to phishers.

If a verifier is captured it can, however, be used by an attacker

to impersonate the bank to one particular user. Therefore, if

the verifier is sent online, the process must be carefully

designed so that the user can not be tricked into providing it to

a rogue site.

5.2 Leak of the Images

Our scheme requires two types of images, the personal image

(a photographic image assigned or chosen by the user) and the

generated image used to create the security skin. The user’s

personal image is never sent over the network and only

displayed to the user. Therefore, the attacker must be

physically present (or must compromise the browser) to

observe or capture the personal image.

If the generated image is observed or captured, it can not be

replayed in subsequent transactions. Furthermore, it would
take an exhaustive dictionary attack to determine the value

that was used to generate the image, which itself could not be

used to not reveal anything about the password.

5.3 Man-in-the-Middle Attacks

SRP prevents a classic man-in-the middle attack, however a

“visual man-in-the-middle” attack is still possible if an

attacker can carefully overlay rogue windows on top of the

trusted window or authenticated browser windows. As

discussed in Section 4, we have specifically designed our

windows to make this type of attack very difficult to execute.

5.4 Spoofing the Trusted Window

Because the user enters his password in the trusted password

window, it is crucial that the user be able to recognize his own

customized window and to detect spoofs. If the number of

options for personalization is limited, phishers can try to

mimic any of the available choices, and a subset of the

population will recognize the spoofed setting as their own

(especially if there is a default option that is selected by many

users). If an attacker has some knowledge of the user, and if

the selection of images is limited, the choice of image may be
predictable. In addition to a large number of randomly

assigned personal images, we will encourage unique

personalization (e.g., allow the users to use their own photos).

User testing is needed to determine if users can be trained to

only enter their passwords when their own personal image

shown.

5.5 Spoofing the Visual Hashes

If this system were widely adopted, we expect that phishers

will place false visual hashes on their webpages or web forms
to make them appear secure. Users who do not check their

trusted window, or users who fail to recognize that their

personal image is absent in a spoofed trusted window, could

be tricked by such an attack. It is our hope that by simplifying

the process of website verification, that more users (especially

unsophisticated users) will be able to perform this important

step.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN 2321 – 8169

Volume: 1 Issue: 4 373 – 379

__

378
 IJRITCC | MAR 2013, Available @ http://www.ijritcc.org

__

6. RELATED WORK

In this section, we provide an overview of the anti-phishing
proposals. In general, attempts to solve the phishing problem

can be divided into three approaches: third party certification

and direct authentication, and phishing specific tools.

6.1 Third Party Certification

6.1.1 Hierarchical and Distributed Trust Models

Third party certification includes hierarchical trust models,

like Public Key Infrastructure (PKI), which has long been

proposed as a solution for users to authenticate servers and

vice-versa. In PKI, chains of Certificate Authorities (CAs)

vouch for identity by binding a public key to a entity in a

digital certificate. The Secure Sockets Layer (SSL) and

Transport Layer Security (TLS), its successor, both rely on

PKI.

In the typical use of SSL today only the server is

authenticated. SSL also supports mutual authentication, and in

theory it is possible for both servers and users to obtain

certificates that are signed by a trusted CA. By displaying

seals as graphics that can be easily copied, trusted seal

programs ignore the “general purpose graphics” property.

6.1.2 Trustbar

The “Trustbar” proposal is a third party certification solution,

where websites logos are certified. However, we must
consider the “general purpose graphics” and “golden arches”

properties. Because the logos do not change, they can be

easily copied and the credentials area of the browser can be

spoofed. Therefore, careful consideration must be given to the

design of an indicator for insecure windows so that spoofed

credentials can be easily detected.

6.2 Direct Authentication

Direct authentication approaches include user authentication

and server authentication schemes.

6.2.1 Multi-Factor User Authentication

These schemes use a combination of factors to authenticate the

user. The factors can be something you know (e.g., a password
or PIN), something you have (e.g., a token or key) or

something you are (e.g., biometrics).

6.2.1.1 AOL Passcode

America Online’s Passcode has been proposed as a phishing

defense. This program distributes RSA SecurID devices to

AOL members. The device generates and displays a unique

six-digit numeric code every 60 seconds, which can be used as

a secondary password during login to the AOL website.

6.2.1.2 Secondary SMS Passwords

Other two factor user-authentication schemes, such as issuing

secondary passwords to users via Short Message Service

(SMS) text messages on their cell phones are also vulnerable

to MITM attacks. In general, two factor user authentication

schemes serve to protect the server from fraud, rather than

protecting the user from phishing attacks if they do not

provide a mechanism for the user to authenticate the server.

This ignores the “limited human skills” property.

6.2.2 Server Authentication Using Shared Secrets

Passmark and Verified by Visa Shared-secret schemes have

been proposed as one simple approach to help users identify

known servers. For example in proposals such as Passmark
and Verified by Visa, the user provides the server with a

shared secret, such as and image and/or passphrase, in addition

to his regular password. The server presents the user with this

shared secret, and the user is asked to recognize it before

providing the server with his password.

6.3 Anti-Phishing Tools

6.3.1 eBay Toolbar

The eBay Toolbar is a browser plug-in that eBay offers to its

customers to help keep track of auction sites. The toolbar has a

feature, called AccountGuard, which monitors web pages that

users visit and provides a warning in the form of a colored tab

on the toolbar. The tab is usually grey, but turns green if the

user is on an eBay or PayPal site or red if the user is on a site

that is known to be a spoof by eBay. The toolbar also allows
users to submit suspected spoof sites to eBay. One drawback

to this approach is that it only applies to eBay and PayPal

websites. Users are unlikely to want to use several types of

toolbars (though it may be possible to develop a toolbar that

would work for a range of sites). The main weakness is that

there will always be a period of time between the time a spoof

is detected and when the toolbar can begin detecting spoofs

for users. If spoofs are not carefully confirmed, denial of

service attacks are possible. This implies that some percentage

of users will be vulnerable to spoofing. For these users, “the

barn door” property implies that their personal data will not be
protected.

6.3.2 SpoofGuard

SpoofGuard is an Internet Explorer browser plug-in that

examines web pages and warns users when a certain page has

a high probability of being a spoof. This calculation is

performed by examining the domain name, images and links

and comparing them to the stored history and by detecting

common characteristics of spoofed websites. If adopted it will

force phishers to work harder to create spoof pages. However,

SpoofGuard needs to stay one step ahead of phishers, who can

International Journal on Recent and Innovation Trends in Computing and Communication ISSN 2321 – 8169

Volume: 1 Issue: 4 373 – 379

__

379
 IJRITCC | MAR 2013, Available @ http://www.ijritcc.org

__

test their webpages against SpoofGuard. New detection tests
will continuously need to be deployed as phishers become

more sophisticated.

SpoofGuard makes use of PwdHash, an Internet Explorer

plug-in that replaces a users password with a one way hash of

the password and the domain name. As a result, the web server

only receives a domain-specific hash of the password instead

of the password itself. This is a simple but useful technique in

addressing the “barn door property” and preventing phishers

from collecting user passwords. Both SpoofGuard and

PwdHash ignore the “general purpose graphics” property by

using a security indicator (a traffic light) that can be easily
copied.

6.3.3 Spoofstick

Spoofstick is a toolbar extension for Internet Explorer and

Mozilla Firefox that provides basic information about the

domain name of the website. For example, if the user is

visiting Ebay, the toolbar will display "You're on ebay.com".

If the user is at a spoofed site, the toolbar might instead

display "You're on 10.19.32.4". This toolbar can help users to

detect attacks where the rogue website has a domain name that

syntactically or semantically similar to a legitimate site.
Unfortunately, the current implementation of Spoofstick can

be fooled by clever use of frames when different websites are

opened in multiple frames in the browser window. This

ignores the “limited human skills” property, because users

must be aware of the use of hidden frames on a webpage.

Spoofstick does address the “general purpose graphics”

property by allowing users to customize the appearance of the

toolbar.

REFERENCES:

[1] Loftesness, Scott, Responding to "Phishing" Attacks. 2004,

Glenbrook Partners,

http://www.glenbrook.com/opinions/phishing.htm

[2] Litan, Avivah, Phishing Attack Victims Likely Targets for

Identity Theft, in Gartner First Take FT-22-8873. 2004,

Gartner Research

[3] Anti-Phishing Working Group, Phishing Activity Trends

Report March 2005, http://antiphishing.org/
APWG_Phishing_Activity_Report_March_2005.pdf

[4] Ed Felten, D. Balfanz, D. Dean, D. Wallach, Web

Spoofing: An Internet Con Game. Proceedings of the 20th

Information Security Conference, 1996.

[5] Bugzilla, Bugzilla Bug 22183 - UI spoofing can cause user

to mistake content for chrome (bug reported 12/20/1999,

publicly reported 7/21/2004),

https://bugzilla.mozilla.org/show_bug.cgi?id=22183

[6] Rachna Dhamija, J.D. Tygar, Phish and HIPs: Human

Interactive Proofs to Detect Phishing Attacks. Proceedings of

the 2nd International Workshop on Human Interactive

Proofs (HIP05), Springer Verlag Lecture Notes in Computer

Science, 2005.

[7] Nathan Good, Rachna Dhamija, Jens Grossklags, David

Thaw, Steven Aronowitz, Deirdre Mulligan, Joseph Konstan,

Stopping Spyware at the Gate: A User Study of Privacy,

Notice and Spyware. Proceedings of the Symposium on

Usable Privacy and Security, 2005.

[8] Alma Whitten, J.D. Tygar, Why Johnny Can't Encrypt: A

Usability Evaluation of PGP 5.0. Proceedings of the 8th

Usenix Security Symposium, 1999.

[9] Anti-Phishing Working Group, APWG Phishing Archive,

http://anti-phishing.org/phishing_archive.htm

http://www.glenbrook.com/opinions/phishing.htm
http://antiphishing.org/
https://bugzilla.mozilla.org/show_bug.cgi?id=22183

