

International Journal on Recent and Innovation Trends in Computing and Communication ISSN 2321 – 8169

Volume: 1 Issue: 4 339 – 342

__

339
 IJRITCC | MAR 2013, Available @ http://www.ijritcc.org

__

SPRING TECHNOLOGY AND USE IN BUSINESS APPLICATION

Ashish pandey
M.Tech (CSE)

Bhagwant University

Ajmer (Raj), India
Email: aspokn@gmail.com

Abstract— this paper discusses spring technology and use in business application development. Focus on object creation, dependency

satisfaction & life-cycle management must be delegated by spring framework (IOC, AOP, TX, and ORM). Spring doesn’t confine itself

to any specific domain. It can be use in a simple console application or in a distributed business application. Development point of view

Spring reduces 70% of coding efforts [1]. It helps in object creation, transaction- management, connectivity with database Testing and

deploying an application.

Index Terms— spring, IOC, AOP, TX

___*****___

INTRODUCTION

Spring is general purpose framework which is based on two

concepts name IOC (Inversion of control) and AOP (Aspect

oriented programming). [1]

Spring doesn’t confine itself to any specific domain. It can be

use in a simple console application, in a web-application or in

a distributed-application.

 This framework is divided in different modules
which can be use individually or collectively [1].

Core: This module provides the implementation of basic IOC

container

Context: This module is build over core and provides the

implementation of an advanced IOC container

AOP: Aspect oriented programming module provides the

implementation of spring.

Core, AOP & Context: These three modules represents the

basic concepts of spring framework rest of modules represent

the application of these concepts into different domain

TX (Transaction): This module provides the implementation

of transaction management using the concept of AOP.

JDBC: This module provides the implementation for JDBC
operations.

ORM (Object Relational Mapping): This module facilitates

integration of spring framework to ORM framework. Such as

hibernate, ibatis etc.

WEB: This module provides the implementation of common

operations of web-application such as transfer of request data

to module objects, type conversion, exception handling, file

uploading and downloading.

WEB-MVC: This module provides implementation of MVC

for developing web-application

Struts-integration: This module facilitates integration of

spring framework to struts framework.

Enterprise-Integration: This module facilitates integration to

enterprise services such as JMS, JNDI, Web-services, java-

mail etc.

Testing: This module facilitate IOC base unit testing &

integration Testing.

CORE : IOC (INVERSION OF CONTROL)

One of the basic concepts of spring framework is IOC this
concept deals with the creation & use of objects[2].

 This concept states the application-program must

only be concerns with the use of object creation, dependency

satisfaction & life-cycle management. Must be delegated to

some other party. This is called Ioc-Container in spring.

Implementation of IOC is provided through:

mailto:aspokn@gmail.com

International Journal on Recent and Innovation Trends in Computing and Communication ISSN 2321 – 8169

Volume: 1 Issue: 4 339 – 342

__

340
 IJRITCC | MAR 2013, Available @ http://www.ijritcc.org

__

(i) DI (dependency Injection) : dependency

Injection is satisfy dependency un-asked

(with-out asking)

(ii) DL (Dependence Look-up) : dependency

Look-up are satisfy only when the container

is asked

DI & DL are mean and IOC is the end.

Spring IOC implementation support only DI

(Dependency Injection)

IOC Container use two-approaches of injection (injecting)

dependency

(i) Setter Injection

(ii) Construction Injection

Dependency of object can be of two types

(i) Mandatory: Mandatory dependencies are

injected by constructor.

Example: Let object ‘A’ has a mandatory dependency on

object ‘B’. This dependency will be injected by IOC container.

Using constructor injection as follow

1.0 object ‘A’ is requested

1.1 object ‘B’ is created to satisfy the dependency of ‘A’

1.2 objects ‘A’ is created & reference of ‘B’ is provided as

constructor parameter

1.3 reference of ‘A’ is returned
1.4 ‘A’ object is used

Note: In this case object ‘A’ will be created if only if object

‘B’ is created.

(ii) Optional: Optional dependencies are injected

through setter injection.

Example: Let object ‘A’ has optional dependency on object

‘B’ these dependencies will be injected by IOC container using

setter injection as follow

1.0 object ‘A’ is requested

1.1 object ‘A’ is created

1.2 ‘B’ object is created to satisfy the dependency of object ‘A’

1.3 setB (---), reference of ‘B’ is made available to object ‘A’

1.4 reference of ‘A’ is returned

1.5 ‘A’ object is used.

Note: In this case object ‘A’ will be made available even

object ‘B’ is not created.

ARCHITECTURE OF SPRING

1.0 Resource object is created

1.1 Read configuration from configuration file.

1.2 BeanFactory is created & reference object provided to it

International Journal on Recent and Innovation Trends in Computing and Communication ISSN 2321 – 8169

Volume: 1 Issue: 4 339 – 342

__

341
 IJRITCC | MAR 2013, Available @ http://www.ijritcc.org

__

1.3 A bean requested from the container

1.4 Configuration of bean is requested from the resource

object

1.5 Configuration information is provided to the BeanFactory

1.6Bean is instantiated & its dependency are satisfied

1.7bean reference is returned.

1.8 Bean is used

Terminology of spring:

Bean: In spring a bean is an object which is created and

managed by Ioc-container.

BeanFactory: BeanFactory is an interface which describes

functionality of basic Ioc-container

 The most commonly used method of interface is
getBean (). This method is used to requested a Bean from Ioc-

container

Configuration Information: Information required by Ioc-

container for creating & managing beans is called

configuration information. Configuration information is

provided through annotation and through xml file.

Resource: Resource is an interface which provides method for

managing configuration-information in object form. Multiple

implementation of this interface are provided by the
framework

Classpathresource: Classpathresource is used when
configuration file can be located using class path or inside

source folder

FileSystemResource: FileSystemResource is used when
configuration file can be located outside source folder using

path

SPRING CONFIGURATION

Spring is managed by configuration file that contain

information required by Ioc-container for creating & managing

Beans

Spring configuration [1] in programmatic means of

Business application

MyShape_Draw

 Org.pandey

 Triangle.jawa

 DrawingApp.java

 MyFactory.java

 JRE System Library

 Spring_Lib

 MySpring.xml

Triangle.java

package org.pandey;

Public class Triangle {

public void MyDrawing(){

System.out.println("Triangle is Drawing started soon...");

}

}

DrawingApp.java

package org.pandey;

import org.springframework.beans.factory.BeanFactory;[1]

public class DrawingApp {

 public static void main(String[] ss) {

 BeanFactory f =

Myfactory.getBeanFactory();

 Triangle tri = (Triangle) f.getBean("draw");

 tri.MyDrawing();

 }

}

MyFactory.java

package org.pandey;

International Journal on Recent and Innovation Trends in Computing and Communication ISSN 2321 – 8169

Volume: 1 Issue: 4 339 – 342

__

342
 IJRITCC | MAR 2013, Available @ http://www.ijritcc.org

__

import org.springframework.beans.factory.BeanFactory;[1]

import org.springframework.beans.factory.xml.*;

import org.springframework.core.io.FileSystemResource;[1]

public class Myfactory {

static BeanFactory factory;

static {
factory = new XmlBeanFactory(new

FileSystemResource("myspring.xml"));

}

public static BeanFactory getBeanFactory() {

return factory;

}

}

MySpring.xml

<? xml version="1.0" encoding="UTF-8"?>

<beans

xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

 xsi:schemaLocation="http://www.springframework.o

rg/schema/beans

http://www.springframework.org/schema/beans/spring-

beans.xsd">[1]

<bean id="draw" class="org.pandey. Triangle"/>

</beans>

V ADVANTAGES AND DISADVANTAGES OF SPRING

Advantages of spring

 Spring is Lightweight container

 Spring in not depended on application server like :

EJB, JNDI etc

 Objects are created lazily, singleton – by

configuration or annotation [5].

 Component can added in declarative manner [5].

 Application code is much easier in testing : unit

testing

 With Dependency Injection approach, dependencies

are explicit, and satisfying in constructor or Setter

properties

 Not required special deployment steps [5]

 Productivity of programmer is increase as they are

only concern with the use of objects.

 Reusability of object is may possible because object

creation and managed by single party in the

application

 Maintenance of application is simplify because

dependency are managed declaratively

Disadvantages of Hibernate

 Need to learn lots of API: A lot of effort is required

to learn spring. So, not very easy to learn spring for a

beginner.

 Debugging: sometime debugging and performance

tuning take time.

VI CONCLUSION

This paper has illustrated an introduction of what spring can

do. What we can achieve using spring in business application.

And how using spring deliver high performance. We explain

architecture of spring and describe CORE, AOP, transaction,
JDBC, ORM, WEB, WEB-MVC, Struts-integration,

Enterprise-integration, and Testing, Developer point of view

Spring reduce 70% of coding effort. It helps in coding

(creation of objects), reusability, maintenance and unit- testing

of an application [1]. Spring also facilitate to integration with

hibernate, ibatis and other frameworks.

VII REFERENCES:

[1] www.springsource.org

[2] Spring In Action 3.0: Craig Walls.

[3] www.mkyong.com

[4] javabrains.koushik.org
[5] www.techfaq360.com

[6] Pro Springs 3.0: Apress

VIII AUTHOR:

 Ashish pandey is pursuing M.Tech in Computer
Science from Bhagwant University, Ajmer (Rajasthan), India.

He is very vast experience in computer science and

engineering area and participated in academic and industry

related real time projects. He is working as freelancer and

engages with enterprise application development industry. He

can be reached at: aspokn@gmail.com

http://www.mkyong.com/

