
International Journal on Recent and Innovation Trends in Computing and Communication ISSN 2321 – 8169

Volume: 1 Issue: 4 245 – 250

245
 IJRITCC | APR 2013, Available @ http://www.ijritcc.org

ARDUINO BASED WIFI ENABLED WIRELESS SPEAKER

A.Anbuselvan, D.Antony Shajan, M.Deepak, T.K.Sethuramalingam*

B.E. (ECE) Final Year, *Assistant Professor, Dept. of Electronics & Communication Engg.

Sri Venkateswara College of Engineering & Technology, Thirupachur, Thiruvallur, Tamilnadu, India

anbu31may1992@gmail.com, mdeepak35@gmail.com, antonyshajan073@gmail.com,

tksethuramalingam@gmail.com

ABSTRACT: This project is to create a system to wirelessly broadcast an audio signal from a computer to a set of

speakers using Wi‐Fi. This allows one to play music files from a computer and have the sound come out of any

speakers that are in range of the wireless network. The ideal use case for this product would involve the ability to

have a computer in one room processing music files while multiple speakers throughout the house are actually

playing the music. This would be particularly useful in a party setting where one would like to keep a computer safe

in a locked room while still being able to use it to play music. Additionally, if a party is there are sets of speakers in

multiple rooms, they can all be synced to the same audio source. The major components of the system are the

microcontroller receiver module (an ATMega 328p) and the computer program that sends the packetized audio data.

This is to create a system that uses Wi‐Fi to transmit audio from a source such as a laptop to a speaker system. The

final product combines the use of embedded hardware, low level software programming, and the IEEE 802.11

standard protocol for wireless communication (Wi‐Fi) to create a polished end device. The hardware and software

was developed using a combination of original work as well as open source code and libraries.

Key Words: Arduino, Microcontroller, Wi – Fi, Embedded

___*****__

I. INTRODUCTION

Embedded systems are designed to do

some specific tasks, rather than be a general

purpose computer for multiple tasks. Some also

have real time performance constraints that must be

met, for reasons such as safety and usability; others

may have low or no performance requirements,

allowing the system hardware to be specified to

reduce the cost.

This project was to create a system to

wirelessly broadcast an audio signal from a

computer to a set of speakers using Wi‐Fi. This

allows one to play music files from a computer and

have the sound come out of any speakers that are in

range of the wireless network. The ideal use case

for this product would involve the ability to have a

computer in one room processing music files while

multiple speakers throughout the house are actually

playing the music. This would be particularly

useful in a party setting where one would like to

keep a computer safe in a locked room while still

being able to use it to play music. Additionally, if a

party is there are sets of speakers in multiple

rooms, they can all be synced to the same audio

source. The major components of the system are

the microcontroller receiver module (an ATMega

328p) and the computer program that sends the

packetized audio data

II.ARDUINO MICROCONTROLLER

The Arduino Uno is a microcontroller

board based on the ATmega328. It has 14 digital

input/output pins (of which 6 can be used as PWM

outputs), 6 analog inputs, a 16 MHz crystal

oscillator, a USB connection, a power jack, an

ICSP header, and a reset button. It contains

everything needed to support the microcontroller;

simply connect it to a computer with a USB cable

or power it with a AC-to-DC adapter or battery to

get started.

 Arduino is the open - source single board

microcontroller, designed to make a process of

using electronics in multidisciplinary projects more

accessible.

 The hardware consists of a simple open

hardware design for the Arduino board with an

Atmel processor and on-board I/O support. The

software consists of a standard programming

language and the boot loader that runs on the board.

 Arduino hardware is programmed using a

wring-based language (syntax + libraries), similar

International Journal on Recent and Innovation Trends in Computing and Communication ISSN 2321 – 8169

Volume: 1 Issue: 4 245 – 250

246
 IJRITCC | APR 2013, Available @ http://www.ijritcc.org

to C++ with some simplifications and

modifications, and a processing-based IDE.

 The Uno differs from all preceding boards

in that it does not use the FTDI USB-to-serial

driver chip. Instead, it features the Atmega16U2

(Atmega8U2 up to version R2) programmed as a

USB-to-serial converter. "Uno" means one in

Italian and is named to mark the upcoming release

of Arduino 1.0. The Uno and version 1.0 will be

the reference versions of Arduino, moving forward.

 The Uno is the latest in a series of USB

Arduino boards, and the reference model for the

Arduino platform.

III.ARDUINO HARDWARE

Fig 1 Arduino Uno schematic diagram

 An Arduino board consists of an 8-bit

Atmel AVR microcontroller with completely

components to facilitate programming and

incorporation into other circuits. An important

aspect of the Arduino is the standard way that

connectors are exposed, allowing the CPU board to

be connected to a variety of interchangeable add-on

modules (known as shields). Official Arduino have

used the mega AVR series of chips, specially the

ATmega8, ATmega168, ATmega328, and

ATmega1280. A handful of other processor has

been used by Arduino compatibles.

Fig 2 Arduino Uno Hardware

Most boards include a 5 volt linear

regulator and a 16 MHZ crystal oscillator (or

ceramic resonator in some variants), although some

designs such as the Lily pad run at 8 MHZ and

dispense with the onboard voltage regulator due to

specific form-factor restrictions. An Arduino

microcontroller is also pre-programmed with a boot

loader that simplifies uploading of programs to the

on-chip flash memory, compared with other

devices that typically need an external chip

programmer.

 At a conceptual level, when using the

Arduino software stack, all boards are programmed

over an RS-232 serial connection, but the way this

is implemented varies by hardware version. Serial

Arduino boards contain a simple inverter circuit to

convert between RS-232 level and TTL level

signals. Current Arduino boards are programmed

via USB, implemented using USB-to-serial adapter

chips such as the FTDI FT232. Some variants, such

as the Arduino mini and the unofficial board uno,

use a detectable USB-to-serial adapter board or

cable, Bluetooth or other methods. (When used

with traditional microcontroller tools instead of the

Arduino IDE, standard AVR ISP programming is

used.) The Arduino board exposes most of the

microcontroller’s I/O pins for use by other circuits.

IV. FEATURES OF ATMEGA328

The controller consists of 8K bytes of In-

System Programmable Flash with Read-While-

Write capabilities, 512 bytes of EEPROM, 1K byte

of SRAM, 23 general purpose I/O lines, 32 general

purpose working registers, three flexible

Timer/Counters with compare modes, internal and

external interrupts, a serial programmable USART,

a byte oriented Two-wire Serial Interface, a 6-

channel ADC (eight channels in TQFP and

QFN/MLF packages) with 10-bit accuracy, a

programmable Watchdog Timer with Internal

Oscillator, an SPI serial port, and five software

selectable power saving modes. The Idle mode

stops the CPU while allowing the SRAM,

Timer/Counters, SPI port, and interrupt system to

continue functioning.

 The Power down mode saves the register

contents but freezes the Oscillator, disabling all

other chip functions until the next Interrupt or

Hardware Reset. In Power-save mode, the

International Journal on Recent and Innovation Trends in Computing and Communication ISSN 2321 – 8169

Volume: 1 Issue: 4 245 – 250

247
 IJRITCC | APR 2013, Available @ http://www.ijritcc.org

asynchronous timer continues to run, allowing the

user to maintain a timer base while the rest of the

device is sleeping. The ADC Noise Reduction

mode stops the CPU and all I/O modules except

asynchronous timer and ADC, to minimize

switching noise during ADC conversions. In

Standby mode, the crystal/resonator Oscillator is

running while the rest of the device is sleeping.

This allows very fast start-up combined with low-

power consumption.

 The device is manufactured using Atmel’s

high density non-volatile memory technology. The

Flash Program memory can be reprogrammed In-

System through an SPI serial interface, by a

conventional non-volatile memory programmer, or

by an On-chip boot program running on the AVR

core. The boot program can use any interface to

download the application program in the

Application Flash memory. Software in the Boot

Flash Section will continue to run while the

Application Flash Section is updated, providing

true Read-While-Write operation. By combining an

8-bit RISC CPU with In-System Self-

Programmable Flash on a monolithic chip, the

Atmel ATMEGA328 is a powerful microcontroller

that provides a highly-flexible and cost-effective

solution to many embedded control applications.

 The ATMEGA328 AVR is supported with

a full suite of program and system development

tools, including C compilers, macro assemblers,

program debugger/simulators, In-Circuit

Emulators, and evaluation kits.

 This setup has other implications. When

the Uno is connected to either a computer running

Mac OS X or LINUX, it resets each time a

connection is made to it from software (via USB).

For the following half-second or so, the boot loader

is running on the Uno. While it is programmed to

ignore malformed data (i.e. anything besides an

upload of new code), it will intercept the first few

bytes of data receives one-time configuration or

other data when it first starts, make sure that the

software with which it communicates waits a

second after opening the connection and before

sending this data.

 The Uno contains a trace that can be cut to

disable the auto-reset. The pads on either side of

the trace can be soldered together to re-enable it.

It’s labeled “RESET-EN”. You may also able to

disable the auto-reset by connecting a 110 ohm

resistor from 5V to the reset line.

V. THE PROPOSED SYSTEM

Fig 3 Block Diagram of the Proposed System

The pc with wireless LAN is used to

transmit the audio over 802.11 protocols. The

wireless LAN module receives the data being

transmitted. The received data is passed to the

arduino controller. The arduino controller passes

the data to the speaker through the audio codec

present in the speaker, used to get a specified audio

format.

VI. Wi- Fi MODULE

Fig 4 Block Diagram of the Wi – Fi Module

The Wi-fly GSX module is a stand alone,

embedded wireless 802.11 networking module.

Because of its small form factor and extremely low

power consumption, the RN-131G is perfect for

mobile wireless applications such as asset

monitoring, GPS tracking and battery sensors. The

Wi-Fly GSX module incorporates a 2.4GHz radio,

processor, TCP/IP stack, real-time clock, crypto

accelerator, power management and analog sensor

International Journal on Recent and Innovation Trends in Computing and Communication ISSN 2321 – 8169

Volume: 1 Issue: 4 245 – 250

248
 IJRITCC | APR 2013, Available @ http://www.ijritcc.org

interfaces. This complete solution is preloaded with

software to simplify integration and minimizes

development of your application. In the simplest

configuration the hardware only requires four

connections (PWR, TX, RX, GND) to create a

wireless data connection. Additionally, the sensor

interface provides temperature, audio, motion,

acceleration and other analog data without

requiring additional hardware. The Wi-Fly GSX

module is programmed and controlled with a

simple ASCII command language. Once the Wi-

Fly GSX is setup it can scan to find an access

point, associate, authenticate and connect over any

Wi-fi network.

VII. AUDIO CODEC

VS1053b is a single-chip Ogg

Vorbis/MP3/AAC/-WMA/MIDI audio decoder and

an IMA ADPCM and user-loadable Ogg Vorbis

encoder. It contains a high-performance,

proprietary low-power DSP processor core VS

DSP4, working data memory, 16 KB instruction

RAM and 0.5+ KB data RAM for user applications

running simultaneously with any built-in decoder,

serial control and input data interfaces, upto 8

general purpose I/O pins, an UART, as well as a

high-quality variable-sample rate stereo ADC (mic,

line, line + mic or 2×line) and stereo DAC,

followed by an earphone amplifier and a common

voltage buffer. VS1053b receives its input bit

stream through a serial input bus, which it listens to

as a system slave. The input stream is decoded and

passed through a digital volume control to an 18-bit

oversampling, multi-bit, sigma-delta DAC. The

decoding is controlled via a serial control bus. In

addition to the basic decoding, it is possible to add

application specific features, like DSP effects, to

the user RAM memory. Optional factory-

programmable unique chip ID provides basis for

digital rights management or unit identification

features.

Fig 5 Block Diagram of the Audio Codec System

VIII. ARDUINO DEVELOPMENT

ENVIRONMENT

The Arduino development environment

contains a text editor for writing code, a message

area, a text console, a toolbar with buttons for

common functions, and a series of menus. It

connects to the Arduino hardware to upload

programs and communicate with them.

LANGUAGE EDITOR:

The Arduino 1.0.1 software environment

has been translated into 30+ different languages.

By default, the IDE loads in the language selected

by your operating system. If you would like to

change the language manually, start the Arduino

software and open the Preferences window. Next to

the Editor Language there is a dropdown menu of

currently supported languages. Select your

preferred language from the menu, and restart the

software to use the selected language. If your

preferred language is not supported, the IDE will

default to English.

You can return Arduino to its default

setting of selecting its language based on your

operating system by selecting System Default from

the Editor Language drop-down. This setting will

take effect when you restart the Arduino software.

Similarly, after changing your operating system's

settings, you must restart the Arduino software to

update it to the new default language.

WRITING SK ETCH ES:

Software written using Arduino are

called sketches. These sketches are written in the

text editor. Sketches are saved with the file

extension .ino. It has features for cutting/pasting

and for searching/replacing text. The message area

gives feedback while saving and exporting and also

displays errors. The console displays text output by

the Arduino environment including complete error

messages and other information. The bottom

righthand corner of the window displays the current

board and serial port. The toolbar buttons allow

International Journal on Recent and Innovation Trends in Computing and Communication ISSN 2321 – 8169

Volume: 1 Issue: 4 245 – 250

249
 IJRITCC | APR 2013, Available @ http://www.ijritcc.org

you to verify and upload programs, create, open,

and save sketches, and open the serial monitor.

SKETCHBOOK:

The Arduino environment uses the

concept of a sketchbook - a standard place to store

your programs (or sketches). The sketches in your

sketchbook can be opened from the File >

Sketchbook menu or from the Open button on the

toolbar. The first time you run the Arduino

software, it will automatically create a directory for

your sketchbook. You can view or change the

location of the sketchbook location from with

the Preferences dialog.

LIB RARIES:

Libraries provide extra functionality for

use in sketches, e.g. working with hardware or

manipulating data. To use a library in a sketch,

select it from the Sketch > Import Library menu.

This will insert one or more #include statements at

the top of the sketch and compile the library with

your sketch. Because libraries are uploaded to the

board with your sketch, they increase the amount of

space it takes up. If a sketch no longer needs a

library, simply delete its #include statements from

the top of your code.

CONCLUSION

The end result from this project ended up

working amazingly well considering the hard

limitations in the hardware. The audio quality was

very decent considering the small buffer limitation

of the microcontroller being used. Furthermore the

system was relatively robust and could recover

from seconds of lost packets (although the audio

signal would be lost for this period of time).

Although the outcome of the project was

very impressive, there are a number of things that

could be improved in this project. One of the

largest improvements would have been to use a

microcontroller with more onboard RAM, or add

external RAM. This would have allowed the audio

buffer to be longer, thus decreasing the receiver's

sensitivity to untimely packets and other

unexpected networking anomalies. Another

possible improvement is the code on the computer

end of the project. The user interface could have

been drastically improved to allow for easier

playback options. Furthermore, support for files

other than uncompressed WAV could have been

added. This could have even been taken a step

further, and a virtual audio driver could have been

created that would have streamed any audio being

produced on the computer to the microcontroller

receiver. This would have allowed for any audio

program on the computer to be used.

A number of things have been learned

throughout the course of this project. One of the

most important lessons learned is that lots of

research pays off in the end. More research

should’ve been done in regards to the type of

microcontroller being used as well as its amount of

on board RAM. This being said, the RedBack

microcontroller and Wi - Fi module was not

inherently compatible with other microcontrollers.

Another lesson learned was that one should not be

afraid to rewrite code in more usable languages.

This lesson applies directly to the use of Linux

based C code on the computer end of the project.

This code most likely could have been adapted for

Java, which would have allowed for much better

user input controls as well as possible support for

more complex future additions such as MP3

decoding or integration with a virtual sound card

driver.

REFERENCES

1. B. Rose , “Home Networks: a Standards

Perspective”,IEEE Communications Magazine,

Dec. 2011, pp. 78-85.

2. T. Zahariadis, and K. Pramataris, “Multimedia

Home Networks: Standards and Interfaces”,

Computer Standards & Interfaces, Vol. 24, Issue 5,

Nov. 2009, pp. 425-435.

3. T. Saito, I. Tomoda, Y. Takabatake, K.

Teramoto, and K. Fujimoto, “Wireless Gateway for

Wireless Home AV Network and Its

Implementation”, IEEE Transactions on Consumer

Electronics, Vol. 47, No, 3, Aug. 2011, pp.496-

501.

4. G. Bai, and C. Williamson, “The Effects of

Mobility onWireless Media Streaming

Performance”, Proc. IASTED Intl. Conf. on

Wireless Networks and Emerging Technologies

(WNET), Banff, Canada, 2009, pp. 596-601.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN 2321 – 8169

Volume: 1 Issue: 4 245 – 250

250
 IJRITCC | APR 2013, Available @ http://www.ijritcc.org

5. T. Kuang, and C. Williamson, “RealMedia

Streaming Performance on an IEEE 802.11b

Wireless LAN”, Proceedings of IASTED Wireless

and Optical Communications (WOC), 2012, pp.

306–311.

6. H. Schulzrinne, S. Casner, R. Frederick, V.

Jacobson, RTP: A Transport Protocol for Real-

Time Applications, RFC2003,Jan. 2011.

7. H. Schulzrinne, RTP Profile for Audio and

Video Conferences with Minimal Control, RFC

2007, Jan. 2010.

8. D. Hoffman, G. Fernando, V. Goyal, and M.

Civanlar, RTP Payload Format for

MPEG1/MPEG2 Video, RFC 2250, Jan. 2012.

9. Michael Morgolis - Arduino cookbook - II

Edition 2012, O’Reilly Publications

10. http://arduino.cc/en/Main/ArduinoBoardUno

11. Tero karvinen & kimmo Karvinen - Make a

mind controlled Arduino robot - I Edition 2011,

O’Reilly Publications

12. Massimo Banzi – Getting Started with

Arduino - II Edition 2012, O’Reilly Publications

13. Emily Gertz & Patrick Di Justo –

Environmental Monitoring with Arduino - I

Edition 2012, O’Reilly Publications

14. Alasdair Allan - iOS sensor Apps with

Arduino - II Edition 2012, O’Reilly Publications.

A. Anbu Selvan, This author

was born in Tamil nadu, in

1992 and pursuing B.E in

Electronics &

Communication Engg.

Currently he pursues his

project under the guidance of

T. K. Sethuramalingam. His fields of interest are

embedded systems and Networking.

D. Antony shajan, This

author was born in Tamil

nadu, in 1992 and pursuing

B.E in Electronics and

Communication Engg.

Currently he pursues his

project under the guidance of

T. K. Sethuramalingam. His fields of interest are

embedded systems and Networking.

M. Deepak, This author was

born in Tamil nadu, in 1992

and pursuing B.E in

Electronics and

Communication Engineering.

Currently he pursues his

project under the guidance of T. K.

Sethuramalingam. His fields of interests are

embedded systems and java.

T.K.Sethuramalingam, This

author was born in Tamil

Nadu, India, in 1981 and

received the UG. degree from

the Manonmaniam

Sundaranar University, India,

in 2001. Further he received

his PG. degree from Bharathidasan University,

India, in 2003. He is currently doing his Ph.D in

MEMS. He is working as an assistant professor in

Sri Venkateswara college of Engineering &

Technology, Chennai India. He visited foreign

countries and presented his research publications.

He is a Member in IEEE, ISSS, IACSIT, IETE,

ISTE.His research interests and publications have

been in the areas of Embedded systems, VLSI

design and MEMS.

