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ABSTRACT: ECDSA stands for “Elliptic Curve Digital Signature Algorithm”, it’s used to create a digital signature of data (a file 

for example) in order to allow you to verify its authenticity without compromising its security. This paper presents the architecture 

of finite field multiplication. The proposed multiplier is hybrid Karatsuba multiplier used in this processor. For multiplicative 

inverse we choose the Itoh-Tsujii Algorithm (ITA). This work presents the design of high performance elliptic curve crypto 

processor (ECCP) for an elliptic curve over the finite field GF (2^233). The curve which we choose is the standard curve for the 

digital signature. The processor is synthesized for Xilinx FPGA. 
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1. INTRODUCTION 

In this era communications using world wide web has 

increased. The data which is transmitted by using wired or 

wireless network. Some of the transactions have critical 

data which need to be confidential and users 

authenticated. Hence it requires some security. 

Cryptography is used to provide secure communications. 

An authorized user is identified by a cryptographic key, a 

user having the correct key will be able to access the 

transmitted information while the fake users or the other 

people will not have rights to use the information. 
 

There are two types of crypto graphic algorithms, 

symmetric key and asymmetric key algorithms. 

Symmetric key cryptography contains both encryption 

and decryption. It is most widely used  method because 

this method is fast and simple. But it can be used only 

when the two parties are agreed for the secret keys. So it 

is difficult because exchanging the keys is not easy for the 

users. 

 

 

1.1PRINCIPLE OF ECDSA 

ECDSA stands for “Elliptic Curve Digital Signature 

Algorithm”, it‟s used to create a digital signature of data 

(a file for example) in order to allow you to verify its 
authenticity without compromising its security. The 

ECDSA algorithm is basically all about mathematics. You 

have a mathematical equation which draws a curve on a 

graph, and you choose a random point on that curve and 

consider that your point of origin. Then you generate a 

random number, this is your private key, you do some  

mathematical equation using that random number and that 

“point of origin” and you get a second point on the curve, 

that‟s your public key. When you want to sign a file, you 

will use this private key (the random number) with a hash 

of the file (a unique number to represent the file) into an 

equation and that will give you your signature. The 

signature itself is divided into two parts, called R and S. 

In order to verify that the signature is correct, you only 

need the public key (that point on the curve that was 

generated using the private key) and you put that into 

another  equation with one part of the signature (S), and if 

it was signed correctly using the private key, it will give 

you the other part of the signature (R). So to make it 
short, a signature consists of two numbers, R and S, and 

you use a private key to generate R and S, and if a 

mathematical equation using the public key and S gives 

you R, then the signature is valid. There is no way to 

know the private key or to create a signature using only 

the public key. 

ECDSA uses only integer mathematics, there are no 

floating points (this means possible values are 1, 2, 3, etc.. 

but not 1.5..),  also, the range of the numbers is bound by 

how many bits are used in the signature (more bits means 

higher numbers, means more security as it becomes 

harder to „guess‟ the critical numbers used in the 

equation), as you should know, computers use „bits‟ to 

represent data, a bit is a „digit‟ in binary notation (0 and 1) 

and 8 bits represent one byte. Every time you add one bit, 
the maximum number that can be represented doubles, 

with 4 bits you can represent values 0 to 15 (for a total of 

16 possible values), with 5 bits, you can represent 32 

values, with 6 bits, you can represent 64 values, etc.. one 

byte (8 bits) can represent 256 values, and 32 bits can 

represent 4294967296 values (4 Giga).. Usually ECDSA 

will use 160 bits total, so that makes well, a very huge 

number with 49 digits in it. 

mailto:yogesh_surya8@rediffmail.com
http://en.wikipedia.org/wiki/Digital_signature


International Journal on Recent and Innovation Trends in Computing and Communication                  ISSN 2321 – 8169   
 
Volume: 1 Issue: 3                                                                                                                                                         148 – 153 

___________________________________________________________________________ 

149 
IJRITCC | MAR 2013, Available @ http://www.ijritcc.org                                                                                                           
____________________________________________________________________________________________________ 

 

ECDSA is used with a SHA1 cryptographic hash of the 

message to sign (the file). A hash is simply another 

mathematical equation that you apply on every byte of 

data which will give you a number that is unique to your 

data. Like for example, the sum of the values of all bytes 

may be considered a very dumb hash function. So if 
anything changes in the message (the file) then the hash 

will be completely different. In the case of the SHA1 hash 

algorithm, it will always be 20 bytes (160 bits). It‟s very 

useful to validate that a file has not been modified or 

corrupted, you get the 20 bytes hash for a file of any size, 

and you can easily recalculate that hash to make sure it 

matches. What ECDSA signs is actually that hash, so if 

the data changes, the hash changes, and the signature isn‟t 

valid anymore. 

 Elliptic Curve cryptography is based on an equation of 

the form : 

y^2 = (x^3 + a * x + b) mod p 

First thing you notice is that there is a modulo and that the 

„y„ is a square. This means that for any x coordinate, you 

will have two values of y and that the curve is symmetric 

on the X axis. The modulo is a prime number and makes 

sure that all the values are within our range of 160 bits 

and it allows the use of “modular square root” and 

“modular multiplicative inverse” mathematics which 

make calculating stuff easier (I think). Since we have a 

modulo (p) , it means that the possible values of y^2 are 

between  0 and p-1, which gives us p total possible values. 

However, since we are dealing with integers, only a 
smaller subset of those values will be a “perfect square” 

(the square value of two integers), which gives us N 

possible points on the curve where N < p (N being the 

number of perfect squares between 0 and p). Since each x 

will yield two points (positive and negative values of the 

square-root of y^2), this means that there are N/2 possible 

„x„ coordinates that are valid and that give a point on the 

curve. So this elliptic curve has a finite number of points 

on it, and it‟s all because of the integer calculations and 

the modulus. Another thing you need to know about 

Elliptic curves, is the notion of “point addition“. It is 

defined as adding one point P to another point Q will lead 
to a point S such that if you draw a line from P to Q, it 

will intersect the curve on a third point R which is the 

negative value of S (remember that the curve is symmetric 

on the X axis). In this case, we define R = -S to represent 

the symmetrical point of R on the X axis.   

There is also point multiplication where k*P is the 

addition of the point P itself to k times. One particularity 

of the point multiplication is that if you have a point R = 

k*P, where you know R and you know P, there is no way 

to find out what the value of „k„ is. Since there is no point 

subtraction or point division, you cannot just resolve k = 

R/P. Also, since you could be doing millions of  point 

additions, you will just end up on another point on the 

curve, and you would have no way of knowing “how” you 

got there. You can‟t reverse this operation, and you can‟t 

find the value „k„ which was multiplied with your point P 

to give you the resulting point R. 

This thing where you can‟t find the multiplicand even 

when you know the original and destination points is the 

whole basis of the security behind the ECDSA algorithm, 

and the principle is called a “trap door function“. 

For ECDSA, you first need to know your curve 

parameters, those are a, b, p, N and G. You already know 

that „a„ and „b„ are the parameters of the curve function 

(y^2 = x^3 + ax + b), that „p„ is the prime modulus,  and 

that „N„ is the number of points of the curve, but there is 

also „G„ that is needed for ECDSA, and it represents a 
„reference point‟ or a point of origin if you prefer. Those 

curve parameters are important and without knowing 

them, you obviously can‟t sign or verify a signature. Yes, 

verifying a signature isn‟t just about knowing the public 

key, you also need to know the curve parameters for 

which this public key is derived from. 

So first of all, you will have a private and a public key.. 

the private key is a random number (of 20 bytes) that is 

generated, and the public key is a point on the curve 

generated from the point multiplication of G with the 

private key. We set „dA„ as the private key (random 

number) and „Qa„ as the public key (a point), so we have : 

Qa = dA * G (where G is the point of reference in the 

curve parameters). 

First, you need to know that the signature is 40 bytes and 

is represented by two values of 20 bytes each, the first one 

is called R and the second one is called S. so the pair (R, 

S) together is your ECDSA signature. First you must 

generate a random value „k„ (of 20 byes), and use point 
multiplication to calculate the point P=k*G. That point‟s 

x value will represent „R„. Since the point on the curve P 

is represented by its (x, y) coordinates (each being 20 

bytes long), you only need the „x„ value (20 bytes) for the 

signature, and that value will be called „R„. Now all you 

need is the „S„ value. 

To calculate S, you must make a SHA1 hash of the 

message, this gives you a 20 bytes value that you will 

consider as a very huge integer number and we‟ll call it 

„z„. Now you can calculate S using the equation : 

S = k^-1 (z + dA * R) mod p 

Note here the k^-1 which is the „modular multiplicative 

inverse„ of k, it‟s basically the inverse of k, but since we 

are dealing with integer numbers, then that‟s not possible, 

so it‟s a number such that (k^-1 * k ) mod p is equal to 1. 

And k is the random number used to generate R, z is the 

hash of the message to sign, dA is the private key and R is 
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the x coordinate of k*G (where G is the point of origin of 

the curve parameters). 

Now that you have your signature, you want to verify it, 

you only need the public key (and curve parameters of 

course) to do that. You use this equation to calculate a 

point P : 

P=  S^-1*z*G + S^-1 * R * Qa 

If the x coordinate of the point P is equal to R, that means 

that the signature is valid, otherwise it‟s not. 

 Now we are going to verify it and this require some 

mathematics to verify : 

We have : 

P = S^-1*z*G + S^-1 * R *Qa 

but Qa = dA*G, so: 

P = S^-1*z*G + S^-1 * R * dA*G = S^-1 (z + dA* R) * 

G 

But the x coordinate of P must match R and R is the x 

coordinate of k * G, which means that : 

k*G = S^-1 (z + dA * R) *G 

we can simplify by removing G which gives us : 

k = S^-1(z + dA * R) 

by inverting k and S, we get : 

S = k^-1 (z + dA *R) 

and that is the equation used to generate the signature.. so 

it matches, and that is the reason why you can verify the 

signature with it. 

You can note that you need both „k„ (random number) and 

„dA„ (the private key) in order to calculate S, but you only 

need R and Qa (public key) to validate the signature. And 

since R=k*G and Qa = dA*G and because of the trap 

door function in the ECDSA point multiplication 

(explained above), we cannot calculate dA or k from 

knowing Qa and R, this makes the ECDSA algorithm 
secure, there is no way of finding the private keys, and 

there is no way of faking a signature without knowing the 

private key. 

The ECDSA algorithm is used everywhere and has not 

been cracked and it is a vital part of most of today‟s 

security. 

2. IMPLEMENTATION OF ELLIPTIC CURVE CRYPTO 

PROCESSOR 

                            

 

 

Figure1. Block Diagram of Elliptic Curve Crypto 
Processor. 

 

3. DESCRIPTION OF THE BLOCKS USED IN ELLIPTIC 

CURVE CRYPTO PROCESSOR 

The quad based ITA architecture was shown to have best 

performance compared to other architectures, therefore 

we design our 2^n circuit based ITA as a generalization of 

this architecture. 

 

We now give the brief description of the 2^n based ITA 

architecture which is shown in block diagram. This design 

presents the high performance ECCP for the curve over 
finite field GF(2^233). The finite field multiplier used is 

of combinational type and follows the Karatsuba 

Algorithm. The Quad block is used to raise the power of 

its input to any power of 2. Buffers are used to latch the 

output of the multiplier and the quad block respectively. 

Control signal is used in each clock cycle to latch the 

output of either the multiplier or the power block but not 

both. Any intermediate result that is required in a later 

step is stored in a register bank. A control block is used to 

generate  all the control signals that drive a Finite State 

Machine(FSM). 
 

3.1 REGISTER BANK 

The register file contains eight registers each of size   233 

bits. The registers are used to store the results of the 

computations done at every clock cycle. 

 

Table 1. Utility of Registers in Register Bank 

 

Register Description 

RA1 1.During initialization it is loaded 

with Px. 
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2.Stores the x co ordinate of the 

result. 

3.Also used for temporary storage. 

RA2 Stores Px. 

RB1 1.During initialization it is loaded 

with Py. 

2.Stores the y co ordinate of the 

result. 

3.Also used for temporary storage. 

RB2 Stores Py 

RB3 Used for temporary storage. 

RB4 Stores the curve constant b. 

RC1 1.During initialization it is set to 1. 
2.Store z co ordinate of the projective 

result.  

RC2 Used for temporary storage. 

 

3.2 FINITE FIELD ARITHMETIC UNIT 

The arithmetic unit is build using finite field arithmetic 

circuit. The AU has five inputs (A0 to A3 and Qin) and 3 

outputs (C0,C1 and Qout). The main components of AU 

is quad block  and a multiplier. The multiplier is based on 

the hybrid karatsuba algorithm. The quad block consists 

of 14 cascaded quad circuits and is capable of generating 

the output. The quad block is used only for inversion 

operation. The AU has several adders and squarer circuits. 
 

233 Bit Hybrid Karatsuba Multiplier. 

 
Figure 2. Architecture of 233 Bit Hybrid Karatsuba 

Multiplier. 

 

3.3 CONTROL UNIT 

At every clock cycle the control unit produces a control 

word. The control word signals control the flow of data 

and also decide the operations performed on the data. 

There are 33 control signal generated by the control word. 

 

4.RESULT OF ALU BLOCK USED IN ELLIPTIC CURVE 

CRYPTO PROCESSOR. 

                             

     

Figure 3.RTL view of Arithmetic Unit. 

 

 
 

Figure 4. Output of ALU. 

 

 

Result of Complete Processor with Hybrid Karatsuba 

Multiplier. 

 

 
 

Figure 5. RTL View of ECCP Processor using Hybrid 

Karatsuba Multiplier 
 

. 
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Figure 6. RTL View Of ECCP Processor. 

 

 

 

 
 

Figure 7. Output of the ECCP Processor. 

 

 

CONCLUSION 

The arithmetic unit is used in a Elliptic Curve Crypto 

Processor to compute the scalar product kP. This design 
has more efficient FPGA utilization .High speed is 

obtained by implementation of quad and squarer circuits. 

The Quad ITA algorithm is used to reduce computation 

time. We use carry look ahead adder in ALU because it is 

faster than any other adder. It will generate and propagate 

the carry so that computation time requirement is less. 

Also the area and power requirements are less in this 

design. The most important factor contributing the 

performance is the finite field multiplication and finite 

field inversion. 

 

FUTURE WORK 

I design ALU and ECCP processor completely for the 

curve over the finite field GF(2^233) . In ALU hybrid 

karatsuba multiplier is used so I will design modified  

karatsuba multiplier and compare the results of both 

multipliers. Then I will decide which multiplier gives the 

best results. I will calculate the time requirement, area and 

power of the ECCP Processor by using both multipliers in 

ALU unit.  

 

 

RELATED WORK 

Revisiting the Itoh-Tsujii Inversion Algorithm for FPGA 
Platforms [1]paper generates components of several 

cryptographic implementations such as elliptic curve 

cryptography. For binary fields generated by irreducible 

trinomials, this paper process a modified ITA algorithm 

for efficient implementations on field programmable gate 

array(FPGA) platforms.  

Theoretical Modelling of the Itoh-Tsujii Inversion 

Algorithm for Enhanced Performance on k- LUT based 

FPGAs [5],this paper maximizing the performance of the 

ITA algorithm on FPGAs requires tunning of several 

design parameters. This is often time consuming and 
difficult. This paper presents a theoretical model for the 

ITA foe any Galois field and k-input LUT based FPGA. 

Such a model would aid a hardware designer to select the 

ideal design parameters quickly. 

A high performance elliptic curve cryptographic 

processor for general curves over GF(p) based on a 

systolic arithmetic unit  [4]this paper brief presents high 

performance elliptic curve cryptographic processor for 

general curves over GF(p), which features a systolic 

arithmetic unit. This paper propose a new unified systolic 

array that efficiently implements addition.substraction and 

multiplication. 

The Elliptic Curve digital signature algorithm [9]this 

paper shows that ECDSA algorithm is the elliptic curve 

analogue of the digital Signature Algorithm. It was 

accepted in 1999 as an ANSI standard, and was accepted 

in 2000 as IEEE and NIST standards. Unlike the ordinary 

discrete logarithm problem and the integer factorization 

problem, no sub exponential time algorithm is known for 

the elliptic curve discrete logarithm problem.  
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