
International Journal on Recent and Innovation Trends in Computing and Communication ISSN 2321 – 8169

Volume: 1 Issue: 3 148 – 153

148
IJRITCC | MAR 2013, Available @ http://www.ijritcc.org
__

Implementation of Elliptic Curve Crypto Processor and Its Performance Analysis

Asst. Prof.Y.A.Suryawanshi, Neha Trimbak Khadgi M.tech(VLSI)

Department of Electronics Engineering

Yeshwantrao Chavan College of Engineering

Nagpur (M.S.), India

yogesh_surya8@rediffmail.com, nehakhadgi@gmail.com

ABSTRACT: ECDSA stands for “Elliptic Curve Digital Signature Algorithm”, it’s used to create a digital signature of data (a file

for example) in order to allow you to verify its authenticity without compromising its security. This paper presents the architecture

of finite field multiplication. The proposed multiplier is hybrid Karatsuba multiplier used in this processor. For multiplicative

inverse we choose the Itoh-Tsujii Algorithm (ITA). This work presents the design of high performance elliptic curve crypto

processor (ECCP) for an elliptic curve over the finite field GF (2^233). The curve which we choose is the standard curve for the

digital signature. The processor is synthesized for Xilinx FPGA.

Keywords: Elliptic Curve Cryptography (ECC), Field programmable gate ARRAY (FPGA), ITA,Elliptic Curve Crypto

Processor(ECCP).

__*****_______________________________________

1. INTRODUCTION

In this era communications using world wide web has

increased. The data which is transmitted by using wired or

wireless network. Some of the transactions have critical

data which need to be confidential and users

authenticated. Hence it requires some security.

Cryptography is used to provide secure communications.

An authorized user is identified by a cryptographic key, a

user having the correct key will be able to access the

transmitted information while the fake users or the other

people will not have rights to use the information.

There are two types of crypto graphic algorithms,

symmetric key and asymmetric key algorithms.

Symmetric key cryptography contains both encryption

and decryption. It is most widely used method because

this method is fast and simple. But it can be used only

when the two parties are agreed for the secret keys. So it

is difficult because exchanging the keys is not easy for the

users.

1.1PRINCIPLE OF ECDSA

ECDSA stands for “Elliptic Curve Digital Signature

Algorithm”, it‟s used to create a digital signature of data

(a file for example) in order to allow you to verify its
authenticity without compromising its security. The

ECDSA algorithm is basically all about mathematics. You

have a mathematical equation which draws a curve on a

graph, and you choose a random point on that curve and

consider that your point of origin. Then you generate a

random number, this is your private key, you do some

mathematical equation using that random number and that

“point of origin” and you get a second point on the curve,

that‟s your public key. When you want to sign a file, you

will use this private key (the random number) with a hash

of the file (a unique number to represent the file) into an

equation and that will give you your signature. The

signature itself is divided into two parts, called R and S.

In order to verify that the signature is correct, you only

need the public key (that point on the curve that was

generated using the private key) and you put that into

another equation with one part of the signature (S), and if

it was signed correctly using the private key, it will give

you the other part of the signature (R). So to make it
short, a signature consists of two numbers, R and S, and

you use a private key to generate R and S, and if a

mathematical equation using the public key and S gives

you R, then the signature is valid. There is no way to

know the private key or to create a signature using only

the public key.

ECDSA uses only integer mathematics, there are no

floating points (this means possible values are 1, 2, 3, etc..

but not 1.5..), also, the range of the numbers is bound by

how many bits are used in the signature (more bits means

higher numbers, means more security as it becomes

harder to „guess‟ the critical numbers used in the

equation), as you should know, computers use „bits‟ to

represent data, a bit is a „digit‟ in binary notation (0 and 1)

and 8 bits represent one byte. Every time you add one bit,
the maximum number that can be represented doubles,

with 4 bits you can represent values 0 to 15 (for a total of

16 possible values), with 5 bits, you can represent 32

values, with 6 bits, you can represent 64 values, etc.. one

byte (8 bits) can represent 256 values, and 32 bits can

represent 4294967296 values (4 Giga).. Usually ECDSA

will use 160 bits total, so that makes well, a very huge

number with 49 digits in it.

mailto:yogesh_surya8@rediffmail.com
http://en.wikipedia.org/wiki/Digital_signature

International Journal on Recent and Innovation Trends in Computing and Communication ISSN 2321 – 8169

Volume: 1 Issue: 3 148 – 153

149
IJRITCC | MAR 2013, Available @ http://www.ijritcc.org
__

ECDSA is used with a SHA1 cryptographic hash of the

message to sign (the file). A hash is simply another

mathematical equation that you apply on every byte of

data which will give you a number that is unique to your

data. Like for example, the sum of the values of all bytes

may be considered a very dumb hash function. So if
anything changes in the message (the file) then the hash

will be completely different. In the case of the SHA1 hash

algorithm, it will always be 20 bytes (160 bits). It‟s very

useful to validate that a file has not been modified or

corrupted, you get the 20 bytes hash for a file of any size,

and you can easily recalculate that hash to make sure it

matches. What ECDSA signs is actually that hash, so if

the data changes, the hash changes, and the signature isn‟t

valid anymore.

 Elliptic Curve cryptography is based on an equation of

the form :

y^2 = (x^3 + a * x + b) mod p

First thing you notice is that there is a modulo and that the

„y„ is a square. This means that for any x coordinate, you

will have two values of y and that the curve is symmetric

on the X axis. The modulo is a prime number and makes

sure that all the values are within our range of 160 bits

and it allows the use of “modular square root” and

“modular multiplicative inverse” mathematics which

make calculating stuff easier (I think). Since we have a

modulo (p) , it means that the possible values of y^2 are

between 0 and p-1, which gives us p total possible values.

However, since we are dealing with integers, only a
smaller subset of those values will be a “perfect square”

(the square value of two integers), which gives us N

possible points on the curve where N < p (N being the

number of perfect squares between 0 and p). Since each x

will yield two points (positive and negative values of the

square-root of y^2), this means that there are N/2 possible

„x„ coordinates that are valid and that give a point on the

curve. So this elliptic curve has a finite number of points

on it, and it‟s all because of the integer calculations and

the modulus. Another thing you need to know about

Elliptic curves, is the notion of “point addition“. It is

defined as adding one point P to another point Q will lead
to a point S such that if you draw a line from P to Q, it

will intersect the curve on a third point R which is the

negative value of S (remember that the curve is symmetric

on the X axis). In this case, we define R = -S to represent

the symmetrical point of R on the X axis.

There is also point multiplication where k*P is the

addition of the point P itself to k times. One particularity

of the point multiplication is that if you have a point R =

k*P, where you know R and you know P, there is no way

to find out what the value of „k„ is. Since there is no point

subtraction or point division, you cannot just resolve k =

R/P. Also, since you could be doing millions of point

additions, you will just end up on another point on the

curve, and you would have no way of knowing “how” you

got there. You can‟t reverse this operation, and you can‟t

find the value „k„ which was multiplied with your point P

to give you the resulting point R.

This thing where you can‟t find the multiplicand even

when you know the original and destination points is the

whole basis of the security behind the ECDSA algorithm,

and the principle is called a “trap door function“.

For ECDSA, you first need to know your curve

parameters, those are a, b, p, N and G. You already know

that „a„ and „b„ are the parameters of the curve function

(y^2 = x^3 + ax + b), that „p„ is the prime modulus, and

that „N„ is the number of points of the curve, but there is

also „G„ that is needed for ECDSA, and it represents a
„reference point‟ or a point of origin if you prefer. Those

curve parameters are important and without knowing

them, you obviously can‟t sign or verify a signature. Yes,

verifying a signature isn‟t just about knowing the public

key, you also need to know the curve parameters for

which this public key is derived from.

So first of all, you will have a private and a public key..

the private key is a random number (of 20 bytes) that is

generated, and the public key is a point on the curve

generated from the point multiplication of G with the

private key. We set „dA„ as the private key (random

number) and „Qa„ as the public key (a point), so we have :

Qa = dA * G (where G is the point of reference in the

curve parameters).

First, you need to know that the signature is 40 bytes and

is represented by two values of 20 bytes each, the first one

is called R and the second one is called S. so the pair (R,

S) together is your ECDSA signature. First you must

generate a random value „k„ (of 20 byes), and use point
multiplication to calculate the point P=k*G. That point‟s

x value will represent „R„. Since the point on the curve P

is represented by its (x, y) coordinates (each being 20

bytes long), you only need the „x„ value (20 bytes) for the

signature, and that value will be called „R„. Now all you

need is the „S„ value.

To calculate S, you must make a SHA1 hash of the

message, this gives you a 20 bytes value that you will

consider as a very huge integer number and we‟ll call it

„z„. Now you can calculate S using the equation :

S = k^-1 (z + dA * R) mod p

Note here the k^-1 which is the „modular multiplicative

inverse„ of k, it‟s basically the inverse of k, but since we

are dealing with integer numbers, then that‟s not possible,

so it‟s a number such that (k^-1 * k) mod p is equal to 1.

And k is the random number used to generate R, z is the

hash of the message to sign, dA is the private key and R is

http://en.wikipedia.org/wiki/ECDSA
http://en.wikipedia.org/wiki/Sha1
http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/Hash_function
http://en.wikipedia.org/wiki/Elliptic_curve_cryptography
http://en.wikipedia.org/wiki/Modular_square_root
http://en.wikipedia.org/wiki/Modular_multiplicative_inverse
http://en.wikipedia.org/wiki/Square_number
http://en.wikipedia.org/wiki/Elliptic_curve
http://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication
http://en.wikipedia.org/wiki/Trap_door_function
http://en.wikipedia.org/wiki/Modular_multiplicative_inverse
http://en.wikipedia.org/wiki/Modular_multiplicative_inverse
http://en.wikipedia.org/wiki/Modular_multiplicative_inverse

International Journal on Recent and Innovation Trends in Computing and Communication ISSN 2321 – 8169

Volume: 1 Issue: 3 148 – 153

150
IJRITCC | MAR 2013, Available @ http://www.ijritcc.org
__

the x coordinate of k*G (where G is the point of origin of

the curve parameters).

Now that you have your signature, you want to verify it,

you only need the public key (and curve parameters of

course) to do that. You use this equation to calculate a

point P :

P= S^-1*z*G + S^-1 * R * Qa

If the x coordinate of the point P is equal to R, that means

that the signature is valid, otherwise it‟s not.

 Now we are going to verify it and this require some

mathematics to verify :

We have :

P = S^-1*z*G + S^-1 * R *Qa

but Qa = dA*G, so:

P = S^-1*z*G + S^-1 * R * dA*G = S^-1 (z + dA* R) *

G

But the x coordinate of P must match R and R is the x

coordinate of k * G, which means that :

k*G = S^-1 (z + dA * R) *G

we can simplify by removing G which gives us :

k = S^-1(z + dA * R)

by inverting k and S, we get :

S = k^-1 (z + dA *R)

and that is the equation used to generate the signature.. so

it matches, and that is the reason why you can verify the

signature with it.

You can note that you need both „k„ (random number) and

„dA„ (the private key) in order to calculate S, but you only

need R and Qa (public key) to validate the signature. And

since R=k*G and Qa = dA*G and because of the trap

door function in the ECDSA point multiplication

(explained above), we cannot calculate dA or k from

knowing Qa and R, this makes the ECDSA algorithm
secure, there is no way of finding the private keys, and

there is no way of faking a signature without knowing the

private key.

The ECDSA algorithm is used everywhere and has not

been cracked and it is a vital part of most of today‟s

security.

2. IMPLEMENTATION OF ELLIPTIC CURVE CRYPTO

PROCESSOR

Figure1. Block Diagram of Elliptic Curve Crypto
Processor.

3. DESCRIPTION OF THE BLOCKS USED IN ELLIPTIC

CURVE CRYPTO PROCESSOR

The quad based ITA architecture was shown to have best

performance compared to other architectures, therefore

we design our 2^n circuit based ITA as a generalization of

this architecture.

We now give the brief description of the 2^n based ITA

architecture which is shown in block diagram. This design

presents the high performance ECCP for the curve over
finite field GF(2^233). The finite field multiplier used is

of combinational type and follows the Karatsuba

Algorithm. The Quad block is used to raise the power of

its input to any power of 2. Buffers are used to latch the

output of the multiplier and the quad block respectively.

Control signal is used in each clock cycle to latch the

output of either the multiplier or the power block but not

both. Any intermediate result that is required in a later

step is stored in a register bank. A control block is used to

generate all the control signals that drive a Finite State

Machine(FSM).

3.1 REGISTER BANK

The register file contains eight registers each of size 233

bits. The registers are used to store the results of the

computations done at every clock cycle.

Table 1. Utility of Registers in Register Bank

Register Description

RA1 1.During initialization it is loaded

with Px.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN 2321 – 8169

Volume: 1 Issue: 3 148 – 153

151
IJRITCC | MAR 2013, Available @ http://www.ijritcc.org
__

2.Stores the x co ordinate of the

result.

3.Also used for temporary storage.

RA2 Stores Px.

RB1 1.During initialization it is loaded

with Py.

2.Stores the y co ordinate of the

result.

3.Also used for temporary storage.

RB2 Stores Py

RB3 Used for temporary storage.

RB4 Stores the curve constant b.

RC1 1.During initialization it is set to 1.
2.Store z co ordinate of the projective

result.

RC2 Used for temporary storage.

3.2 FINITE FIELD ARITHMETIC UNIT

The arithmetic unit is build using finite field arithmetic

circuit. The AU has five inputs (A0 to A3 and Qin) and 3

outputs (C0,C1 and Qout). The main components of AU

is quad block and a multiplier. The multiplier is based on

the hybrid karatsuba algorithm. The quad block consists

of 14 cascaded quad circuits and is capable of generating

the output. The quad block is used only for inversion

operation. The AU has several adders and squarer circuits.

233 Bit Hybrid Karatsuba Multiplier.

Figure 2. Architecture of 233 Bit Hybrid Karatsuba

Multiplier.

3.3 CONTROL UNIT

At every clock cycle the control unit produces a control

word. The control word signals control the flow of data

and also decide the operations performed on the data.

There are 33 control signal generated by the control word.

4.RESULT OF ALU BLOCK USED IN ELLIPTIC CURVE

CRYPTO PROCESSOR.

Figure 3.RTL view of Arithmetic Unit.

Figure 4. Output of ALU.

Result of Complete Processor with Hybrid Karatsuba

Multiplier.

Figure 5. RTL View of ECCP Processor using Hybrid

Karatsuba Multiplier

.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN 2321 – 8169

Volume: 1 Issue: 3 148 – 153

152
IJRITCC | MAR 2013, Available @ http://www.ijritcc.org
__

Figure 6. RTL View Of ECCP Processor.

Figure 7. Output of the ECCP Processor.

CONCLUSION

The arithmetic unit is used in a Elliptic Curve Crypto

Processor to compute the scalar product kP. This design
has more efficient FPGA utilization .High speed is

obtained by implementation of quad and squarer circuits.

The Quad ITA algorithm is used to reduce computation

time. We use carry look ahead adder in ALU because it is

faster than any other adder. It will generate and propagate

the carry so that computation time requirement is less.

Also the area and power requirements are less in this

design. The most important factor contributing the

performance is the finite field multiplication and finite

field inversion.

FUTURE WORK

I design ALU and ECCP processor completely for the

curve over the finite field GF(2^233) . In ALU hybrid

karatsuba multiplier is used so I will design modified

karatsuba multiplier and compare the results of both

multipliers. Then I will decide which multiplier gives the

best results. I will calculate the time requirement, area and

power of the ECCP Processor by using both multipliers in

ALU unit.

RELATED WORK

Revisiting the Itoh-Tsujii Inversion Algorithm for FPGA
Platforms [1]paper generates components of several

cryptographic implementations such as elliptic curve

cryptography. For binary fields generated by irreducible

trinomials, this paper process a modified ITA algorithm

for efficient implementations on field programmable gate

array(FPGA) platforms.

Theoretical Modelling of the Itoh-Tsujii Inversion

Algorithm for Enhanced Performance on k- LUT based

FPGAs [5],this paper maximizing the performance of the

ITA algorithm on FPGAs requires tunning of several

design parameters. This is often time consuming and
difficult. This paper presents a theoretical model for the

ITA foe any Galois field and k-input LUT based FPGA.

Such a model would aid a hardware designer to select the

ideal design parameters quickly.

A high performance elliptic curve cryptographic

processor for general curves over GF(p) based on a

systolic arithmetic unit [4]this paper brief presents high

performance elliptic curve cryptographic processor for

general curves over GF(p), which features a systolic

arithmetic unit. This paper propose a new unified systolic

array that efficiently implements addition.substraction and

multiplication.

The Elliptic Curve digital signature algorithm [9]this

paper shows that ECDSA algorithm is the elliptic curve

analogue of the digital Signature Algorithm. It was

accepted in 1999 as an ANSI standard, and was accepted

in 2000 as IEEE and NIST standards. Unlike the ordinary

discrete logarithm problem and the integer factorization

problem, no sub exponential time algorithm is known for

the elliptic curve discrete logarithm problem.

REFERENCES

[1] Chester Rebeiro, Sujoy Sinha “Revisiting The

Itoh-Tsujii Inversion Algorithm for FPGA Platforms”

IEEE transactions on VLSI Systems, VOL. 19, NO. 8,

August 2011.

[2] Surabhi Mahajan“Security and Privacy in

VANET” International Journal of Computer Applications

volume1,February 2010.

[3] Kuldeep Singh “Implementation of Elliptic Curve

Digital Signature Algorithm” International Journal of

Computer Applications, volume2 No.2, May 2010.

[4] Gang Chen and Guoqiang Bai “A High

Performance Elliptic Curve Cryptographic Processor for

General Curves over GF (p) Based On a Systolic

Arithmetic Unit.” IEEE transactions on circuit and

systems-II: Express Briefs, VOL 54, No.5, May 2007.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN 2321 – 8169

Volume: 1 Issue: 3 148 – 153

153
IJRITCC | MAR 2013, Available @ http://www.ijritcc.org
__

[5] Sujoy Sinha Roy and Chester Rebeiro

“Theoretical Modelling of the Itoh-Tsujii Inversion

Algorithm for Enhanced Performance on k- LUT based

FPGAs.”

[6] Debdeep mukhopadhay “ High Performance

Elliptic Curve Crypto Processor for FPGA

 Platforms” NTT Labs, Japan, June 2010.

[7] Qiucheng Deng, Xuefei Bai, Li Guo and Yao

wang “ Hardware Implementation of

 Multiplicative Inversion in

GF(2^m)”,Department of Electronics Science and

Technology

 Of China.

[8] Mohen Machhout, Zied Guitouni, Kholdoun

Torki and Rached “Coupled FPGA/ASIC

 Implementation Of Elliptic Curve Crypto

Processor”, International Journal Of Network

 Security and its Applications (IJNSA), Volume

2, Number 2, April 2010.

[9] Don Johnson, Alfred Menezes and Scott

Vanstone “ The Elliptic Curve Digital Signature

 Algorithm (ECDSA)”, Certicom Research,

Canada.

[10] Felipe Tellez and Jorge Ortiz “ Behaviour of

Elliptic Curve Cryptosystems for the Wormhole

 Intrusion in Manet : A Survey and Analysis”,

IJCSNS International Journal of Computer

 Science and Network Security, VOL.11 No.9,

September 2011.

