
International Journal on Recent and Innovation Trends in Computing and Communication ISSN 2321 – 8169

Volume: 1 Issue: 3 144 – 147

__

144
IJRITCC | MAR 2013, Available @ http://www.ijritcc.org
__

IMPERFECTION DETECTION MANAGEMENT IN SOFTWARE

METRICS

1
N. Vijayaraj (M.Sc., M.Phil),

2
S. Henry Leo Kanickam (M.Sc., M.Phil)

1Assistant Professor (Department of Computer Science)
2Assistant Professor (Department of Information Technology)

1,2St Joseph’s College (Autonomous), Trichy – 2.
1vijay_sjctni@yahoo.com, 2Henryleo.msc@gmail.com

ABSTRACT: This paper involved in the software and various software projects. Imperfection Management basically includes

identification and taking actions for fault prevention for improving the software quality. Earlier Imperfection identification in

software projects will make Imperfection removal and prevention much easier. Software engineers generally take experiences from

the past and prevent the Imperfection s from re-occurring. In this research paper our first section is the introduction of software

Imperfection s, second section is the introduction of Imperfection Management life cycle models, third section is use of Cost

Constructive COQUALMO model for Imperfection Management, fourth section is conclusions and last section is future scope.

Keywords: Imperfection Analysis, Imperfection Prevention, Imperfection Prediction, Root Cause Analysis

___*****__

I. INTRODUCTION

Software Imperfection is termed as "imperfections in the

software development process that would cause that

software to fail to meet the desired requirements". An

Imperfection generally represents the undesirable aspects

of the software quality. Generally we are concerned with

three types of Imperfection s artifacts in this research

paper and they are: Requirement Imperfection s, design

Imperfections and coding Imperfections. Imperfections

occur during all the phases of the Software development
life cycle. Hence Imperfection prevention is very essential

part of Software development Life cycle for improving

the Software Quality. Imperfection prevention firstly

involves identification of Imperfection, and then

modification and changing the relevant processes,

preventing the re-occurring of the Imperfection s in the

development process. As early as Imperfections are

identified in the development process, the more smoothly

the development process progresses. For improving the

quality of the Software process it is necessary to identify

the Imperfection s from the given set of projects at the
first step, then it involves classification and analysis of the

pattern and after that it involves elimination for

prevention of Imperfections.

II. WORK FLOW STAGES IMPERFECTION

MANAGEMENT

2.1 Imperfection Identification OR Imperfection

Detection in Software Process

Imperfection Identification is the first activity involved

for improving the quality of the Software Process. It is

widely used in many of the Software projects, for

discovery of the Software Imperfections, then

documenting them for improving the quality of the

Software product.

Variety of testing techniques used to identify the various

types of the Software Imperfection s involved in the

Software development process, will may involve either

functional or non-functional domains. Hence in software

development process firstly Imperfections are discovered

and then are documented. Output of Imperfection

PROCESS IMPROVEMENT

IMPERFECTION

PREDICTION

IMPERFECTION

IDENTIFICATION

IMPERFECTION

IMPERFECTION

CLASSIFICATION

IMPERFECTION ANALYSIS

PREVENTIVE ACTIONS

International Journal on Recent and Innovation Trends in Computing and Communication ISSN 2321 – 8169

Volume: 1 Issue: 3 144 – 147

__

145
IJRITCC | MAR 2013, Available @ http://www.ijritcc.org
__

document information will be the input for Imperfection

analysis technique.

2.2 Imperfection Classification [2]

ODC classifies Imperfection at two different points in

time: One is Opener Section, where the Imperfection was

firstly investigated and second one is Closer Section,

where the Imperfections are fixed. For Small Sized and

Medium Sized Projects Imperfection s are classified to

first level of ODC to save efforts and time.
For larger projects Imperfection s are deeply understood

and analyzed. Firstly for all types of projects

Imperfections are firstly investigated and then they are

fixed. Action planning and tracing helps in achieving the

degree of Imperfection reduction and cross learning.

2.3 Imperfection Analysis [1]

By the term analysis we meant the identification of the

root cause of the Imperfection and then further devising

the solution to overcome the Imperfection in further

development process which will be further useful in

improving the software quality and productivity of the

software project. Some of the Imperfection analysis
techniques such as Fish Bone Analysis, Imperfection

Classification and using Imperfection taxonomies and the

Root Cause Analysis (RCA). RCA goal is to first identify

the root cause of the Imperfection s and then initiating

actions for the Imperfection elimination.

2.4 Imperfection Prediction Technique

By the term Imperfection prediction technique we mean

to identify and prevent the Imperfection causing failures

before occurring. This is done by first gaining the

experiences from the earlier Software Projects by

Software Engineers and then identifying the root cause for
the Imperfection s and then eliminating the causes. Some

Imperfection predictions models are COQUALMO model

which we have taken and expanded further in this

research paper and the second one is mining Imperfection

s using ODC. Identification of Imperfection s at the early

stages so that wastage in process and product

development can be eliminated. And Cost efficiency

which involves meeting the deadlines and leading to

process improvement for many organizations.

2.5 Imperfection Prevention

By the term Imperfection prevention we mean that
gaining the experience from the past projects by the

software engineers and identifying the cause of

Imperfection s and further taking the corrective measure

to prevent the Imperfection re-occurrence. Imperfection

Prevention is one very important activity in the Software

project thereby further improving the quality of the

software project.

2.6 Process Improvement

By the term Process improvement we mean the

continuously working for improvement for the quality of

the software process. Process Improvement meant that

following preventive actions for software improvement

and then further taking actions for further improvement of

quality.

III. CASE STUDIES

COQUALMO-Imperfection Prediction Model

COQUALMO is a Constructive quality model for the

Imperfection prediction density of the Software

development. COQUALMO which basically predicts the

Imperfection density where Imperfection s conceptually

flows from one phase to another thereby making larger
Imperfection and leading to project chaos [2].

Imperfection flow from one tank to another tank, thus

making larger Imperfection introduction pipes and then

Imperfection s are removed with various Imperfection

removal pipes.

COQUALMO which is an Imperfection prediction model

is basically a two-step process which involves in

Imperfection identification (DI) at the first step and the

Imperfection Removal (DR) model in the second step

thereby leading to the Imperfection improvement of the

software quality. Hence two steps of COQUALMO are as

follows:

3.1 Imperfection Identification OR Imperfection

Introduction Model (DI) [3]

This model typically results in the development of various

phases of software development life cycle models. There

are basically three types of Imperfections which mainly

occurs during the development of various phase of

software development life cycle which are as:

Requirement Imperfections, Design Imperfections, and

coding Imperfections. For Imperfection identification we

can use Imperfection. Introduction Range which is

particularly the ratio between the highest and the lowest
Imperfection identification range. If the Imperfections are

identified in the earlier phases of the software

development, the better will be the Software

Development.

 Input Output

(Various (Types of

Software Parameter

Parameters) Occurring)

3.2 Imperfection Removal (IR)

By the term Imperfection removal we mean removing the

Imperfection s such as requirement Imperfections, design

Imperfections and coding Imperfections which would

typically results in the software failures. Imperfection

removal basically results in the estimation of Imperfection

removal by the Imperfection removal activity.

There are basically six orthogonal profiles for the

Imperfection removal which are very low, low, nominal,

high, and very high and very very high. Very low, low

Imperfection

Identification

Model

International Journal on Recent and Innovation Trends in Computing and Communication ISSN 2321 – 8169

Volume: 1 Issue: 3 144 – 147

__

146
IJRITCC | MAR 2013, Available @ http://www.ijritcc.org
__

profiles basically requires no peer reviews, no testing and

simple compilers, nominal profile requires well-defined

sequences, unit and integration and system testing and

some more extensive compilers, High,very high and very-

very high typically requires formal reviews and

procedures, highly advanced testing tools and more

formalized compilers.

For Very Low Profiles:

 Input Output

(No testing;

Simple compilers;

No Peer Reviews)

 Fig. 3A

For Nominal Profiles:

 Input Output

(Well Defined

Sequences;

Basic unit;

Integration and

System test;

More extensive

Compilers)

 Fig. 3B

For High, Very High, and Very Very High Profiles:

 Input Output

(Formal

Review Roles

And Procedures; Highly

Advanced Testing tools and more

Formalized compilers)

 Fig. 3C

 Input Output

(Various

Software

Parameters)

 Fig. 3D

Basically three types of profiles occurs in the

Imperfection prediction in software modules

Prop Minor = minor Imperfection s/total Imperfection s

delivered;

Prop Major = major Imperfection s/total Imperfection s

delivered;

Prop Extreme = extreme Imperfection s/total

Imperfection s delivered.

Minor: It usually means small, a minor Imperfection
occurring in software projects does not affect the software

much and doesn’t make software unusable.

Major: It means large or more major Imperfection

occurring in software projects and making the application

become unusable.

Extreme: It causes software totally unstable. A failure in

any part of the application totally results in unstable

software.

IV. CONCLUSION

In this research paper we have first studied about

the various types of Imperfection techniques and then we

have undergone through the survey of COQUALMO cost
constructive model which is a two-step software

Imperfection prediction model for improving the software

quality. Earlier we identify the Imperfection introduced in

the software, the better software will results. Hence,

identifying Imperfection s at the earliest software

development is very useful and leading to the prevention

of software Imperfection s which will lead to failure.

The life cycle of Imperfection identification consists of

Imperfection identification, Imperfection classification,

Imperfection analysis, Imperfection prediction, preventive

actions and process improvement. We have studied three
techniques of Imperfection Management i.e. Imperfection

Detection Technique, Second Imperfection Analysis

Technique, and Imperfection Prediction Technique. We

have work flow stages which consist of Imperfection

Identification, Second action is Imperfection

Classification, and Third action is Imperfection Analysis

and Imperfection Prevention. But in this research paper

we have used a Process Improvement model which

includes Imperfection Identification, Second Action is

Imperfection Classification, Third Action is Imperfection

Analysis, Fourth Action is Imperfection Prediction and
fifth action is Imperfection Prevention, and final Action

is Process Improvement. Using these six work flow stages

of Imperfection Management provided us the added

advantage for improving the quality of software projects,

and follows a systematic approach, as in first phase we

are able to identify the Imperfection involved in the

software, second action classifies Imperfection s into

opener section and closer section, third action that is

Imperfection Analysis which identifies the root cause of

the Imperfection and then further devise the solution to

overcome the Imperfection in further development

process, fourth action is Imperfection Prediction

Very Low

Profiles

Nominal

High;VeryHigh;

Very-Very

Profiles

Imperfection

Removal Model

International Journal on Recent and Innovation Trends in Computing and Communication ISSN 2321 – 8169

Volume: 1 Issue: 3 144 – 147

__

147
IJRITCC | MAR 2013, Available @ http://www.ijritcc.org
__

technique we mean to identify and prevent the

Imperfection causing failures before occurring, and is

Imperfection Prevention Technique which means that

gaining the experience from the past projects by the

software engineers and identifying the cause of

Imperfections and further taking the corrective measure to

prevent the Imperfection re-occurrence and finally action

is for process improvement. After that we have used

COQUALMO i.e. cost constructive model as the case
studies for demonstrating the fact of Imperfection

prediction technique.

But our Work Flow stages that we used in this paper are

more complex, further increasing the number of stages of

Imperfection Management.

5. Future Scope

Since Imperfection can cause malfunctioning in the

software projects leading to software failures, so

Imperfection prediction is mainly necessary ,which is one

of the important phase in the development of software

development life cycle(SDLC).In this research paper we

have used COQUALMO which is a two-step software
prediction model, thereby improving the software quality.

In future scope we can add various aspects for

Imperfection Management in various software projects.

We can compare Imperfection s with various other

techniques such as Genetic algorithm, neural network,

fuzzy logic, decision tree for adding feature for handling

Imperfection s in software projects.

REFERENCES

1. A Imperfection Prediction and Analysis Using ODC
Approach in a Web Application: Pranayanath Reddy

Anantula and Raghuram Chamarthi (Tejoraghuram),

ISSN: 0975-9646.

2. Imperfection Analysis and Prevention for Software

Process Quality Improvement-Sakti Kumaresh and R

Baskaran, VLOUME 8-NO.7, OCTOBER 2010.

3. Constructive Quality Modeling for Imperfection

Density Prediction: COQUALMO-Sunita Chulani, FAST

ABSTRACT ISSRECOPYRIGHT 1999.

4. A Prediction Model for Functional Imperfection s in

System Testing using Six Sigma: Muhammad Dhiauddin
Mohamed Suffian and SuhaimiIbrahim, VOLUME 1 NO.

6 SEPTEMBER 2011.

5. Predicting Imperfection Types in Software Projects: dr

Lukasz Radlinski, Institute of Information in Management,

Faculty of Economics and Management, University of

Szczecin.

6. A Machine Learning Based Model for Software

Imperfection Prediction: Onur Kutlubay, Mehmet Balman

and Dogu Gul, Ayse B.Bener, BogaziciUniversity,

Computer Engineering Department.

7. A Critique of Software Imperfection Prediction

Models, IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING, VOL.25, NO. 3, MAY/JUNE 1999.

8. Butcher (2002), “Improving software testing via ODC:

Three Case Studies”, M.Butcher, H. Munro,

T.Kratschmer, IBM Systems Journal, Vol.41, No.1

9. Brad (2001),” How good is the software: A Review of

Imperfection prediction Techniques”, Brad Clark, Dave

Zubrow, Carrnegie Mellon University.
10. Mullen (2002) “Orthogonal Imperfection

Classification at CISCO”, T.Mullen,D.Hsiao, Proceedings

ASM conference.

11. Ram, “Orthogonal Imperfection Classification”.

www.Chillaregte.com/odc.

12. Ram (1992), “Adapting ODC to improve software

quality: A case Study”, Yang Gu, Software Engineer,

IBM http://www.ibm.com.

13. Yang (1992), “Orthogonal Imperfection Classification

A Concept for In- Process Measurements”, Ram

Chillarege, IEEE Transactions on software Engineering,

Vol 18, No.11, November.
14. Paulk (1993), “Capability Maturity Model for

Software”, Version 1.1, Mark C.Paulk, Bill Curtis, Mary

Beth Chrissis, Charles V.Weber,Software Engineering

Institute.

15. Chillarege (2002),”Test and development process

retrospective 0a case study using ODC triggers”,

Chillarege, R.; Ram Prasad, K.'.

16. Ajit Ashok Shenvi, 2009,”Imperfection Prevention

with Orthogonal Imperfection Classification”, In Proc-

ISEC ’09, February 23-26, 2009.

