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Abstract: - Graph cuts proved to be a useful multidimensional optimization tool which can enforce 

piecewise smoothness while preserving relevant sharp discontinuities. This paper is mainly intended as an 

application of isoperimetric algorithm of graph theory for image segmentation and analysis of different 

parameters used in the algorithm like generating weights, regulates the execution, Connectivity Parameter, 

cutoff, number of recursions,. We present some basic background information on graph cuts and discuss 

major theoretical results, which helped to reveal both strengths and limitations of this surprisingly 

versatile combinatorial algorithm. 
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1 Graph Theory for image partitioning 

Graph processing algorithms have become 

increasingly popular in the context of computer 
vision. Typically, pixels are associated with the 

nodes of a graph and edges are derived from a 4- or 

8-connected lattice topology. Some authors have 

also chosen to associate higher level features with 
nodes. For purposes of importing images to 

spacevariant architectures, we adopt the 

conventional view that each node corresponds to a 
pixel. Graph theoretic algorithms often translate 

naturally to the proposed space-variant architecture. 

Unfortunately, algorithms that employ convolution 

(or correlation) implicitly assume a shift invariant 
topology. Although shift-invariance may be the 

natural topology for a lattice, a locally connected 

space-variant sensor array (e.g., obtained by 
connecting to K-nearest-neighbors) will typically 

result in a shift-variant topology. Therefore, a 

reconstruction of computer vision algorithms for 
space-variant architectures requires the use of 

additional theory to generalize these algorithms. 

 

2: Iso-Perimetric Algorithm  

2.1 Iso-perimetric Problem 

Graph partitioning has been strongly influenced by 

properties of a combinatorial formulation of the 
classic isoperimetric problem: For a fixed area, find 

the region with minimum perimeter. 

Defining the isoperimetric constant I of a 
manifold as: 

inf(| |)S
I

V


 ---------(1) 

Where S is a region in the manifold, V denotes the 

volume of region S, |¶S| is the area of the boundary of 
region S, and I is the infimum of the ratio over all 

possible S. For a compact manifold volume of region 

S is less than or equal to 50 % of total volume and for 
a non-compact manifold, volume of the region < ∞ 

We show in this paper that the set (and its 

complement) for which I takes a minimum value 
defines a good heuristic for data clustering and image 

segmentation. In other words, finding a region of an 

image that is simultaneously both large (i.e., high 

volume) and that shares a small perimeter with its  
surroundings (i.e., small boundary) is intuitively 

appealing as a good image segment. Therefore, we 

will proceed by defining the isoperimetric constant 
on a graph, proposing a new algorithm for 

approaching the sets that minimize I, and demonstrate 

application to data clustering and image processing. 

 

2.2 The Isoperimetric Partitioning Algorithm 

A Graph is a pair G=(V,E) with nodes v є V and 

edges e є EV x V. An edge,e, spanning two 

vertices, Vi and vj, is denoted by eij. A weighted 

graph has a non negative and real value assigned to 

each edge called a weight, wij, since weighted graphs 
are more general than unweighted graphs; we have 

developed our results for weighted graphs. The 

degree di of vertex vi is 

( )
ij

i ij

e

d w e -----------------(2) 

for eij є E 

For a graph, G, the isoperimetric constant is defined 

as given in equation (1). In graphs with a finite node 
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set, the infimum in (1) becomes a minimum. Since 

we will be computing only with finite graphs, we 

will 

henceforth use a minimum in place of an infimum. 
The boundary of a set S is defined as 

{ | |; },ijS e i S j S    

where S denotes the set complement, and 

| | ( )
ij

ij

e s

S W e


   -------------- (3) 

For a given set, S, we term the ratio of its boundary 

to its volume the isoperimetric ratio, denoted by 
I(S). The isoperimetric sets for a graph, G, are any 

sets S and S for which h(S) = I (note that the 

isoperimetric sets may not be unique for a given 
graph). The specification of a set satisfying 

equation (3), together with its complement may be 

considered as a partition and therefore we will use 
the term interchangeably with the specification of a 

set satisfying equation (1). Throughout this paper, 

we consider a good partition as one with a low 

isoperimetric ratio (i.e., the optimal partition is 
represented by the isoperimetric sets themselves). 

Therefore, our goal is to maximize volume of 

surface while minimizing Sj. The algorithm 
considers a heuristic for finding a set with a low 

isoperimetric ratio that runs in low-order 

polynomial time. 

 

2.3 Derivation of Isoperimetric Algorithm 

Define an indicator vector, X, that takes a binary 

value at each node  
                Xi = 1 if vi є S, 

                    = 0 otherwise 

Note that a specification of X may be considered a 
partition. Define the n × n matrix, L, of a graph as 

di  if i = j 

           Lvivj = - W(eij) if eij є E, 

                  = 0 otherwise 
The notation Lvivj is used to indicate that the matrix 

L is being indexed by vertices vi and vj. This matrix 

is also known as the admittance matrix in the 
context of circuit theory or the Laplacian matrix 

in the context of finite difference methods By 

definition of admittance matrix, 

| | TS X LX  -------------- (3) 

and V = X
T
d, where d is the vector of node degrees. 

If r indicates the vector of all ones, minimizing (3) 

subject to the constraint that the set, S, has fixed 

volume may be accomplished by asserting 
V=X

T
d=k----------- (4)  

where 0 < k < 1/2r
T
 and d is an arbitrary constant 

and r represents the vector of all ones. We shall see 
that the choice of k becomes irrelevant to the final 

formulation. Thus, the isoperimetric constant of a 

Graph, G, may be rewritten in terms of the indicator 

vector as 

min
T

Tx

x Lx
IG

x d
 ----------------(5) 

Subject to (4). Given an indicator vector, X, then I(x) 

is used to denote the isoperimetric ratio associated 

with the partition specified by X. The constrained 
optimization of the isoperimetric ratio is made into a 

free variation via the introduction of a Lagrange 

multiplier and relaxation of the binary definition of X 

to take nonnegative real values by minimizing the 
cost function. 

Q(X)=X
T
LX-A(X

T
d-K)------------(6) 

Since L is positive semi-definite and X
T
d is 

nonnegative, Q(x) will be at a minimum for any 

critical point. Differentiating Q(X) with respect to X 

yields 

               
( )

2
dQ X

LX Ad
dX

   

Thus, the problem of finding the X that minimizes 
Q(x) (minimal partition) reduces to solving the linear 

system  

                2LX = Ad----------- (7) 
Henceforth, we ignore the scalar multiplier 2 and the 

scalar A. As the matrix L is singular: all rows and 

columns sum to zero which means that the vector r 

spans its null space. So finding a unique solution to 
equation (6) requires an additional constraint. 

We assume that the graph is connected, since the 

optimal partitions are clearly each connected 
component if the graph is disconnected (i.e., I(x) = I 

= 0). Note that in general, a graph with c connected 

components will correspond to a matrix L with rank 

(n - c). If we arbitrarily designate a node, vg, to 
include in S (i.e., fix xg = 0), this is reflected in (6) 

by removing the gth row and column of L, denoted 

by L0, and the gth row of X and d, denoted by X0 
and d0, such that  

L0X0 = d0;  

which is a non-singular system of equations. Solving 
equation (6) for X0 yields a real-valued solution that 

may be converted into a partition by setting a 

threshold. In order to generate a clustering or 

segmentation with more than two parts, the algorithm 
may be recursively applied to each partition 

separately, generating sub partitions and stopping the 

recursion if the isoperimetric ratio of the cut fails to 
meet a predetermined threshold. We term this 

predetermined threshold the stop parameter and note 

that since 0 ≤ I(x) ≤1, the stop parameter should be in 

the interval (0; 1). Since lower values of I(x) 
correspond to more desirable partitions, a stringent 

value for the stop parameter is small; while a large 

value permits lower quality partitions (as measured 
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by the isoperimetric ratio). The partition containing 

the node corresponding to the removed row and 

column of L must be connected, for any chosen 

threshold i.e., the nodes corresponding to X0 values 
less than the chosen threshold form a connected 

component. 

3 Experimental Results 
The above algorithm, (flow chart is given in 

Appendix A) was applied to different images to 

analyze the input parameters are valScale, stop, 
connectivity parameter, cutoff, RecursionCap. 

4.1 ValScale 

This parameter is used for generating weights and 

forms the similarity matrix of the pixels. It depends 
upon the type of image and changes the 

segmentation efficiency. The figure below shows 

the segmentation of peppers.png for values of 
valScale at 200 and 300. 

 
Fig (1) Segmentation for ValScale=300 

 
Fig (2) Segmentation for ValScale=200 

For this image 200 is a better ValScale Value. 

4.2 Stop 

This parameter regulates the execution of the 

isoperimetric Algorithm. This parameter is the 
maximum iso perimetric ratio allowable above 

which the algorithm execution stops. The below 

figures give the results of the isoperimetric 

algorithm for two values of Stop. 

 
Fig (3) Segmentation for Stop=1e-5 

 
Fig (4) Segmentation for Stop=1e-4 

These results show that 1e-5 is a better option for 
Stop parameter. 

4.3 Connectivity Parameter 

The pixels are compared with the neighboring pixels 

on the connectivity basis. We used two connectivity 
schemes which are 8-connectivity and 4-connectivity. 

 
Fig(5) Segementation using 4-connectivity 

 
Fig(6) Segementation using 8-connectivity 
8 is a better option 
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4.4 Cutoff 

This parameter gives the minimum number of 

nodes that a segment can contain above which the 

segment is considered valid segment and next 
partition is considered for partitioning if any. 

 
Fig (7) Segmentation for Cutoff =5 

 
Fig (8) Segmentation for Cutoff =1000 

4.5 RecursionCap 
This parameter specifies the number of recursions 

that can take place for the partitioning algorithm on 

a particular segment and if exceeds considers the 

next partition for partitioning. It should be chosen 
such that over segmentation can be avoided. 

Practically in order to reduce the segmentation time 

it should be as less as possible. 

 
Fig (9) Segmentation for RecursionCap=9 

 
Fig (10) Segmentation for RecursionCap=90 

5. Conclusion 
In the due course of study, it was founded that all the 

above parameters should be controlled in order 

to get the optimum segmentation. The vlaue of these 
parameter depends on the level of segmentation to be 

performed. For better segmentation with less time it 

can be suggested that Valscale and cutoff value can 

be high and stop and recursioncap vlaue can be low 
with 8 connectivity. 
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