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Abstract—Different Ants Colony Optimization (ACO) algorithms use pheromone information differently in an attempt to improve 

their relative performance. In this paper, we describe a new systematic reinforcement strategy as a means to improve the 

pheromone update rules of existing ACO algorithms. We examine the proposed strategy and compare it with other improvement 

strategies using the well-known Traveling Salesman Problem (TSP). The results indicate that the performance of both the Ant 

System (AS) and the Ant Colony System (ACS) algorithms is improved by applying the proposed strategy. We postulate that the 

proposed strategy allows the ants, in some sense, to both refine the search in promising regions, and escape explored areas of the 
search space more consistently and effectively than other reinforcement strategies. 

Index Terms— Ant Colony Optimization, combinatorial optimization problems, Meta-Heuristics, Traveling Salesman Problem. 
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I. INTRODUCTION 

Various models of natural swarm intelligence that have 
been transformed into useful artificial swarm intelligence 
algorithms have been appeared in the literature [2]. A 
number of these algorithms are designed to mimic the 
foraging behavior of ant colonies and are classified as Ant 
Colony Optimization (ACO) algorithms. ACO algorithms 
have been applied to many hard combinatorial optimization 
problems [1]. Dorigo et al. in [4] originated the concept of 
applying the underlying properties of the ant colony behavior 
to create a new computational approach, called Ant System 
(AS) algorithm, to solve combinatorial optimization 
problems. Performance on the Traveling Salesman Problem 
(TSP) indicated that the AS algorithm did not scale well to 
larger instances. Subsequently, several modifications were 
introduced to improve its performance. The first 
improvement was in the structure of the AS pheromone 
update rule. An elitist reinforcement strategy, inspired from 
genetic algorithms (GA), was introduced in the AS 
pheromone update rule [4]. The purpose of this strategy was 
to give a strong additional reinforcement to the edges 
belonging to the current best tour since these edges were 
assumed to be part of the optimal solution. In [3] a different 
reinforcement strategy, called the ranking strategy, was 
introduced into the AS pheromone update rule.  In this 
strategy, the pheromone trails of the best tour are updated in 
a manner similar to the elitist strategy. In addition, the ants 
(i.e. agents) are ranked based on their solution quality and a 
predetermined number of highest ranked ants are allowed to 
update the pheromone trails of their tours. In [10] Stutzle et 

al. introduced the MAX-MIN Ant System (MMAS). The 
MMAS is different from the AS in three ways. Firstly, only 
the ant that generates the best tour is allowed to deposit 
pheromone on its trail. Secondly, the pheromone level on 
any edge is limited to a given range. Finally, the pheromone 
levels on each edge are initialized to their maximum 
allowable value. A smoothing mechanism for the pheromone 
trail and a modified 3-opt local search was also introduced in 
MMAS in order to improve performance. Dorigo and 
Gambardella in [5] introduced an Ant Colony System (ACS) 
to improve the performance of the AS for solving the TSP. 
This ACS approach is based on their earlier Ant-Q algorithm 
[5]. ACS and Ant-Q differ in the local pheromone update 
rule. Ant-Q uses a specific type of reinforcement learning 
mechanism called Q-learning. ACS and Ant-Q both adopt a 
new transition rule in which a given parameter is identifying 
the relative importance of exploitation versus exploration in 
the search process.  

With the notable exception of the ranking strategy 
introduced in [3], the reinforcement strategies applied in 
pheromone update rules of ACO algorithms are most often 
designed to force the ants in future iterations to favor tours in 
the vicinity of the best tour found thus far or the best tour 
found in the current iteration. In this paper, we introduce and 
describe a new reinforcement strategy for the pheromone 
update rule of both the AS and the ACS algorithms designed 
to force the ants in future iterations to favor tours in the 
vicinity of the current high quality tours. We use an adaptive 
weighting scheme that weighs the contribution of the ants 
based on their quality and state of convergence. 

The paper is organized as follows. In section II we 
discuss ACO algorithms including the different 
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reinforcement strategies employed in the pheromone update 
rule. We then describe the methodology of the proposed 
reinforcement strategy in section III and introduce it to the 
pheromone update rule of both AS and ACS algorithms. 
Experimental results of the AS and the ACS algorithms 
employing this weighting strategy are presented in section IV 
along with a comparative performance analysis involving 
other AS-based approaches. Finally, section V provides 
some concluding remarks. 

II. ACO ALGORITHMS 

In general, the basic idea behind ACO algorithms is to 
simulate the foraging behavior of a large number of real ants 
using simple artificial ants working as co-operative agents to 
generate high quality solutions to a combinatorial 
optimization problem via interaction between the ants and 
their environment. Artificial pheromone is accumulated 
during the construction phase of ACO algorithms through a 
learning mechanism implied in the algorithm’s pheromone 
update rules. Artificial ants move from one node to another 
on a representation graph using a transition rule that favors 
shorter edges and edges with greater amounts of pheromone. 
They update the pheromone trail of their generated tours 
based on a pheromone update rule. This rule often deposits a 
quantity of pheromone proportional to the quality (or length) 
of the corresponding tour. Most ACO algorithms were 
initially designed to solve the TSP and then extended to other 
combinatorial optimization problems. The general 
framework of ACO algorithms for solving combinatorial 
optimization problems is outlined in Figure 1. 

 

 
Figure 1. General framework of ACO algorithms. 

A. Ant System (AS) algorithm 

An artificial ant in an AS algorithm moves from city to 
city on a TSP graph based on a probabilistic transition rule; 
each ant starts from a randomly chosen city, and moves to an 
unvisited city based on this rule until all the cities have been 
visited. 

The pheromone update rule used in the first AS algorithm 

(ant-cycle model) [4] is given by 

          
)()()1()1( tijtij tij                         (1) 

where , the evaporation rate or the persistent factor, is a 

parameter in the range 0  1 that regulates the reduction 

of pheromone on the edges. ij(t), the total amount of 

pheromone added by all ants on the edge joining cities i and 

j, is given by 
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where Q is a parameter that represents the quantity of the 

pheromone laid by each ant, and Lk is the length of tour Tk 

found by ant k. 

The evaporation rate  reduces the amount of pheromone 
on each edge of a tour based on the quality of that tour. After 
a few iterations, the pheromone update rule (Equation 1) 
increases the amount of pheromone on edges belonging to 
high quality solutions and decreases the amount of 
pheromone on edges belonging to low quality solutions. 
Consequently, edges belonging to the high quality solutions 
have a greater chance of being selected in the next iterations. 
Reinforcement strategies such as the elitist strategy and the 
ranking strategy are introduced later in order to improve the 
performance of the pheromone update rule. In what follows 
we provide a summary of these two strategies. 

1) Elitist strategy 

The aim of this strategy is to intensify the search in the 

next iteration (t+1) within the neighborhood of the best tour 

found so far by adding an extra amount of pheromone to the 

edges in this best tour using the following pheromone 

update rule 

 )(  )()()1()1( tett t ij
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where the amount added (the last term in Equation 

Error! Reference source not found.) is the product of e, a 

given number of elitist ants, and )(te

ij , the quantity of 

pheromone added to the edges in the best tour (Tb).  This 

quantity is a function of the best tour length (Lb) and is 

given by  
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2) Ranking strategy 

In this strategy, the pheromone on the edges of the best 

tour is updated in a manner similar to the elitist strategy as 

in Equation 4. In addition, the ants are ranked based on the 

quality of their solution and a number of the highest ranked 

ants are allowed to update the pheromone on the edges of 

their tours. Thus ij(t) term in Equation 4 is redefined to be 
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where the index  ranges ranked ants.  
ij(t), the amount 

of pheromone added to the tour (T) of ant , is given by 
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B. MAX-MIN Ant System (MMAS) 

The MMAS is based on the following three modifications 

of the original AS algorithm: 

1) The ant with the best tour in each iteration t is allowed 

to deposit amount of pheromone on its tour Tb using 

the modified pheromone update rule given by 

 bb

ijijij Tjiedgeift t  ),(    (t))()1(   (8) 

where the amount added by the ant having the best tour is 

given by  

 b
ij

b Lt /1)(   (9) 

2) To avoid stagnation, the range of pheromone levels on 

any edge is bounded by 
maxmin )(   tij

 

3) The pheromone levels are initialized to their maximum 

allowable value (max) to encourage a higher degree of 

path exploration at the start of the algorithm. 

For more details on MMAS algorithm the reader may 

refer to Stutzle et al. [10]. 

C. Ant Colony System (ACS) 

The ACS approach features two major changes to the 

original AS algorithm: 

1) A new transition rule is introduced that favors either 

exploitation or exploration.  

2) The pheromone is updated in two different ways:   

Local updating: As the ant moves between cities i and j, 

it updates the amount of pheromone on the traversed edge 

using the following formula: 

 0)1()1()(   t t ijij  (1) 

where  is a pheromone decay parameter for local 

updating 0 is the initial amount of pheromone on all edges 

and is calculated as 0=(n Lh)-1, n is the number of cities and 

Lh is the length of the tour produced by the nearest neighbor 

heuristic.  

Global updating: When all ants have completed their 

tours the ant that found the best tour updates the edges 

belonging to its tour using the following formula: 

 )1/L()1()1()( b

ijij tt    (2) 

where Lb is the length of the best tour found so far and  

is a global updating decay parameter.    

Local updating diminishes the amount of pheromone, 

indirectly favoring the exploration of unvisited edges, 

whereas global updating encourages the ants in future 

generations to search in the vicinity of the best tour. For 

more details on ACS the reader may refer to Bonabeau et al. 

[2] and Dorigo et al. [5]. 

III. A NEW REINFORCEMENT STRATEGY 

In the previous section we outlined examples of different 

representations of pheromone information involving 

reinforcement learning strategies that have been previously 

proposed in order to improve the performance of ACO 

algorithms. An efficient strategy should improve the 

performance in which the search for high quality solution is 

guided by a probable representation of the pheromone 

information. The underlying assumption in this paper is that 

in the neighborhood of high quality solutions there may be 

further high quality solutions. Thus, we propose to modify 

the pheromone update rule to reinforce the search for tours 

in the vicinity of high quality tours. 

To this end we introduce a new reinforcement strategy 

based on a weighting scheme. Virtual ants are weighted 

based on the quality of their solutions as well as on the 

current convergence state of the population. Accordingly, 

the pheromone trails of their tours are updated adaptively in 

response to their weights. An extra amount of pheromone is 

deposited on the edges of the high quality tours based on 

both the quality of generated tours and the current state of 

convergence.  In order for this to work, it is essential to 

identify whether the population is converging toward one 

solution or scattered in the search space. One possible way 

of detecting convergence is to calculate the difference 

between the current average length of tours and the length 

of the best tour found so far. The difference between the 

average length of the tours Lavg of a population and the best 

tour length Lb found so far is likely to be less for a 

population that has converged to a local optimum solution 

than that for a population scattered in the search space. We 

have observed this property in our experiments with the AS 

algorithm and Figure 2 illustrates this property for a typical 

case in the original AS algorithm. We therefore used the 

difference in average and best tour length (Lavg - Lb) as a 

yardstick for detecting convergence. Ants with tours that 

were shorter than the population average were assigned a 

weight, in the range (0,1], favoring ants with better tours.   

 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication                  ISSN 2321 – 8169 
 
Volume: 1 Issue: 2                                                                                       75 – 80 

___________________________________________________________________________ 

 

78 
IJRITCC | JAN 2013, Available @ http://www.ijritcc.org                                                                                                           

___________________________________________________________________________ 

 
Figure 2. Variation of the difference between population tour length 

average and best tour length with the progress of the best tour length found 

(Test problem: eil51). 

 

The ants with tours that were longer than the population 

average were assigned a weight of zero. These weights were 

calculated as follows: 
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This weighting value depends not only on the measure of 

convergence but also on the difference between the length 

of ant k’s tour, Lk, and the length of the best tour, Lb: the 

closer Lk is to Lb the closer wk is to 1. We aim at achieving a 

trade-off between exploration and exploitation by 

incorporating this weight in the pheromone update rule of 

both AS and ACS algorithms. The proposed approach will 

adjust the quantity of pheromone added to edges iteratively 

to account for solution quality and the current state of 

convergence. 

A. Ant System employing the weighting strategy (ASw) 

In the standard AS algorithm, Equation Error! 

Reference source not found. defines the amount of 

pheromone added by ant k in iteration t. We redefine this 

amount to incorporate the proposed weighting strategy:  
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where 
kk LQw  is the amount of pheromone added to the 

edges belonging to the high quality solutions. 

In order to study the effect of the proposed weighting 

strategy, we implemented the AS algorithm employing both 

the elitist (ASe) and the weighting strategy (ASw) and 

applied both approaches to test problem eil51. The 

experiments were conducted with the following parameters: 

=1, (=4 for ASw and =5 for ASe), Q=100, 0=0.000001, 

=0.5, m=n. In the first case, we set e to 5 as proposed by 

Bonabeau et al. [2]. In the second case, we set e to n as 

proposed by Stutzle et al. [10]. In each run, the progress of 

the best tour length over 10,000 iterations is reported. 

Figure 3 depicts the progress of the average best tour length 

over 10 independent runs of both the ASe and the ASw. The 

figure illustrates an improvement in the performance of AS 

employing the weighting strategy over that employing the 

elitist strategy. 

 
Figure 3. Evolution of the average best tour lengths of both ASe and 

ASw over 10 runs (Test problem:eil51). 

 

We tested the ability of ASw to explore more solutions 

and to direct the search away from local minima. We 

monitored the standard deviation of the population’s tour 

lengths for all experiments. Figure 4 depicts the evolution of 

the standard deviation over 10,000 iterations. In this graph, 

the evolution of the standard deviation suggests that 

different solutions are persistently discovered despite the 

extra amount of pheromone added to some edges. 

 
Figue 4. Evolution of the standard deviation of the population’s tour 

lengths of the ASw (Test problem:eil51). 

B. Ant Colony System employing the weighting 

strategy (ACSw) 

In the standard ACS algorithm, the global updating 

(defined in Equation 2) deposits an extra amount of 

pheromone to the edges belonging to the best solution. This 

equation can be modified so that edges belonging to high 

quality tours receive an additional quantity of pheromone, as 

a result of incorporating the proposed weighting strategy.  
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For the ACS employing the weighting strategy, we redefine 

global updating as follows:  

 
,
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In order to study the effect of the proposed weighting 

strategy, we implemented the ACS algorithm employing the 

weighting strategy (ACSw). The experiments were 

conducted with the following parameters: For the standard 

ACS algorithm, =2, =0.1, =0.1, q0=0.9, and m=10 ants 

as proposed by Bonabeau et al. [2]. For ACSw, =3, =0.1, 

=0.94, q0=0.93, and m=10 ants.  The progress of the best 

tour length over 51,000 iterations is reported in each run. 

Figure 5 depicts the progress of the average best tour length 

over 25 independent runs of both ACS and ACSw. The 

figure illustrates an improvement in the performance of 

ACS employing the weighting strategy over the standard 

ACS. 

 
Figure 5. Evolution of the average best tour lengths of both the ACS and 

the ACSw over 25 runs. (Test problem:eil51 problem). 

In the same manner, as with the AS algorithm, we tested 

the ability of ACSw to explore the solution space and to 

direct the search away from local minima. We monitored 

the standard deviation of the population’s tour lengths for all 

our experiments. Figure 6 depicts the evolution of the 

standard deviation over 51,000 iterations. In this graph, the 

evolution of the standard deviation suggests that different 

solutions are persistently discovered despite the extra 

amount of pheromone added to some edges. 

 

Figure 6. Evolution of the standard deviation of the population’s tour 
lengths of the ACSw. Typical run of eil51 problem. 

IV. COMPUTATIONAL EXPERIMENTS 

In this section, we present some computational results 

obtained by both AS and ACS algorithms employing the 

proposed weighting strategies. We compare our results 

with those obtained from other AS-based approaches. 

For the test problem sets, we consider different sizes of 

Symmetric Traveling Salesman Problem (STSP) and 

Asymmetric Traveling Salesman Problem (ATSP) instances 

found in the library TSPLIB: http://comopt.ifi.uni-

heidelberg.de/software/TSPLIB95/. The code was written in 

the C++ language. 

1) Comparison between AS-based approaches  

We present some computational results obtained by the 

AS algorithm employing weighting strategies (ASw). We 

compared, for different problem instances taken from 

TSPLIB, the performance of ASw against the following AS-

based approaches reported in [10]: Ant System (AS), Ant 

System employing ranking strategy (ASrank), Ant System 

employing elitist strategy (ASe). The computational results 

given in Table I demonstrate the competitive performance 

of the proposed improvements on AS when compared to 

other approaches. For the symmetric instances (problems 

ei151, kroA100 and d198), the proposed strategies prove to 

be effective, and better than any of the other approaches. 

For the asymmetric instances (problems ry48p, ft70, 

kro124p and ftv170), ASrank outperformed all other 

strategies on each of the instances except ft70. However, the 

computational results in [5] indicate that the optimal 

solutions for the ATSP instances were reached all the time 

by ACO algorithm employing a local search procedure 

except for the ft70 instance, a problem considered relatively 

hard [5]. The proposed approach outperformed other 

approaches in this problem. 
TABLE  I 

PERFORMANCE OF THE DIFFERENT AS BASED APPROACHES FOR DIFFERENT 

TSP INSTANCES. AVERAGE OF THE BEST TOUR LENGTHS OVER 25 

INDEPENDENT RUNS   

Instance Opt. AS ASe ASrank ASw 

eil51 426.0 437.3 428.3 434.5 427.6 

kroA100 21282.0 22471.4 21522.8 21746.0 21499.0 

d198 15780.0 16702.1 16205.0 16199.1 16063.4 

ry48p 14422.0 15296.4 14685.2 14511.4 14719.5 

ft70 38673.0 39596.3 39261.8 39410.1 39231.5 

kro124p 36230.0 38733.1 37510.2 36.973.5 37899.8 

ftv170 2755.0 3154.5 2952.4 2854.2 2931.3 
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2) Comparison between the most recent AS based 

approaches 

We present some computational results obtained by the 

ACS algorithm employing the weighting strategy (ACSw). 

We compare the performance of the proposed approach 

against the standard ACS algorithm as well as MMAS 

algorithm. 

Table I compares the performance, over 25 independent 

runs, of the standard ACS reported in [6], MMAS obtained 

from [9] and our implementation of ACSw. The 

computational results demonstrate that the proposed 

weighting strategy improves on the performance of the 

standard ACS algorithm and competes favorably with 

MMAS. 
TABLE  I 

PERFORMANCE OF ACS BASED APPROACHES AND MMAS FOR STSP AND 

ATSP INSTANCES 

Instance Opt. MMAS ACS ACSw 

eil51 426.0 427.6 428.1 427.0 

kroA100 21282.0 21230.3 21420.0 21334.5 

d198 15780.0 15972.5 16054.0 15939.9 

ry48p 14422.0 14553.2 14565.4 14485.3 

ft70 38673.0 39040.2 39099.0 39040.1 

kro124p 36230.0 36773.5 36857.0 36795.8 

ftv170 2755.0 2828.8 2826.5 2844.6 

 

In general, the test results indicate that the ACS algorithm 

employing the proposed weighting strategy is among the 

best AS-based approaches for finding high quality solutions 

for such problem instances. Moreover, the results indicate 

that the weighting strategy consistently finds high quality 

solutions. To obtain results competitive with the best 

performing algorithms, a local search procedure has to be 

embedded in the ACO algorithms as introduced by Dorigo 

et al. in [5] and Stutzle et al. in [10]. 

V. CONCLUSION AND FURTHER WORK 

In this paper we described a method of incorporating a 

new reinforcement strategy into the pheromone update rule 

of both the original (Ant System) and the most recent (Ant 

Colony System) ACO algorithms. We have chosen one 

particular strategy of adapting the amount of pheromone 

based on current solutions found by the population of ants. 

The strategy weighs all ants based on the quality of their 

tours and their state of convergence.  

Experimental results suggest that the proposed approach 

is successful in terms of balancing convergence goals with 

exploration goals. Using some TSP instances from TSPLIB 

as a test bed, the AS algorithm employing the proposed 

weighting strategy yields considerable improvement in 

performance compared to AS approaches attempting other 

reinforcement strategies. Moreover, the ACS algorithm 

employing the weighting strategy outperformed the standard 

ACS algorithm and the MMAS algorithm in some instances 

and remained competitive on all other instances. 

One feature of the proposed approach over the other AS-
based approaches is the fact that the high quality solutions 
found are evaluated in terms of quality and state of 
convergence to direct the search toward promising regions. 
Future work should be directed at developing such strategies 
and employing them in the ACO algorithms to solve other 
combinatorial optimization problems. 
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