One opinion about the Riemannian Hypothesis

Tanya Kirilova Mincheva

Sofia-Bulgaria

Abstract. In the present work is an attempt for a new application of the trigonometric form of complex numbers and functions of complex variables.

Our interestsare multiples zerosin a complex plane.
Let's look at Euler's formula

Fig. 1
This figure is taken from the Internet ("Exponential function")
Hence if

$$
z=x+i y
$$

Is any complex variable, then we have

$$
|z|=\sqrt{x^{2}+y^{2}}, \cos \varphi=\frac{x}{x^{2}+y^{2}} ; \sin \varphi=\frac{y}{x^{2}+y^{2}}
$$

Where

$$
\begin{gathered}
z=|z|(\cos \varphi+i \sin \varphi) . \Leftrightarrow \\
\Leftrightarrow z=|z| e^{i \varphi}
\end{gathered}
$$

This is trigonometric recording of complex variable $z=x+i y$.
Geometrically using Euler's formula the equation $z=|z| e^{i \varphi} 0 \leq \varphi<2 \pi$ is an equation of a circle with center at the beginning of the coordinate system and radius $|z|$.

Theorem (Riemann hypothesis)

Let us now write the Riemann zeta function.

$$
\varsigma(s)=\sum_{1}^{\infty} \frac{1}{n^{s}}=1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}} \ldots+\frac{1}{n^{s}}+\ldots
$$

Where in honor of Riemann $s=\sigma+i \tau$
Then we say that the complex variable $s=\sigma+i \tau$ with a positive real part for which the Riemann zeta function $\varsigma(s)=0$ is the real part equal to $1 \not 12$.I.e. $\left(\sigma=\frac{1}{2}\right)$

Proof.

Let $s=\sigma+i \tau$ be a solution of equation $\varsigma(s)=0$.For greater convenience we will introduce:

$$
z_{1}=1, z_{2}=\frac{1}{2^{s}}, z_{3}=\frac{1}{3^{s}}, \ldots, z_{n}=\frac{1}{n^{s}}, \ldots
$$

In the beginning we will record in trigonometric form $z_{1}, z_{2}, z_{3}, \ldots, z_{n}, \ldots$ Namely

$$
\begin{gathered}
z_{n}=n^{-s}=e^{l_{n} n^{-s}}=e^{l_{n} n^{-\sigma-i \tau}}=e^{(-\sigma-i \tau) l_{n} n}=e^{-\sigma \pi_{n} n-i t_{n} n}=e^{l_{n} n^{-\sigma}} e^{-i l_{n} n}=n^{-\sigma} e^{i l_{n} n^{-\tau}} \quad \text { I.e. } \\
z_{n}=n^{\sigma} e^{i l_{n} n^{-\tau}} \text { Or } z_{n}=\left|n^{-\sigma}\right|\left(\cos \left(l_{n} n^{-\tau}\right)+i \sin \left(l_{n} n^{-\tau}\right)\right) \ldots \text { I.e. } \\
z_{1}=\left|1^{-\sigma}\right|\left(\cos \left(l_{n} 1^{-\tau}\right)+i \sin \left(l_{n} 1^{-\tau}\right)\right) \\
z_{2}=\left|2^{-\sigma}\right|\left(\cos \left(l_{n} 2^{-\tau}\right)+i \sin \left(l_{n} 2^{-\tau}\right)\right), \\
z_{3}=\left|3^{-\sigma}\right|\left(\cos \left(l_{n} 3^{-\tau}\right)+i \sin \left(l_{n} 3^{-\tau}\right)\right) \ldots, \\
\cdots \\
z_{n}=\left|n^{-\sigma}\right|\left(\cos \left(l_{n} n^{-\tau}\right)+i \sin \left(l_{n} n^{-\tau}\right)\right) \text { or } \\
\ldots \\
z_{1}=\left|1^{-\sigma}\right| e^{i l_{n} 1^{-\tau}} \\
z_{2}=\left|2^{-\sigma}\right| e^{i l_{n} 2^{-\tau}} \\
z_{3}=\left|3^{-\sigma}\right| e^{i l_{n} 3^{-\tau}} \\
z_{n}=\left|n^{-\sigma}\right| e^{i l_{n} n^{-\tau}}
\end{gathered}
$$

We complement all each equations to equations of circles as follows indications:

$$
\begin{gathered}
z_{1}=\left|1^{-\sigma}\right| e^{i \theta_{1} \ldots 0 \leq \theta_{1}<2 \pi} \\
z_{2}=\left|2^{-\sigma}\right| e^{i \theta_{2}} \ldots 0 \leq \theta_{2}<2 \pi \\
z_{3}=\left|3^{-\sigma}\right| e^{i \theta_{3}} \ldots 0 \leq \theta_{3}<2 \pi \\
\ldots \\
z_{n}=\left|n^{-\sigma}\right| e^{i \theta_{1} \ldots 0 \leq \theta_{n}<2 \pi}
\end{gathered}
$$

I.e. "We include our problem in a more general problem"

Fig. 2
This is a well-known method.For example in "Theory of extremely tasks", that is one of fundamental methods.Now all theselasts equations are equations of circleswithrespective radii: $\left|1^{-\sigma}\right|,\left|2^{-\sigma}\right|,\left|3^{-\sigma}\right|, \ldots,\left|n^{-\sigma}\right|, \ldots$ and with total center in the beginning of coordinate system (O,Re,Im).

$$
l_{n} n^{-\tau} \in \theta_{n} \quad n=1,2,3, \ldots 0 \leq \theta_{n}<2 \pi
$$

For every $n l_{n} n^{-\tau}$ is only one ofpossible values of θ_{n}. Obviously all decisions made by the task Inclusion are decisions and to the Riemann hypothesis.The Riemannian Hypothesisis one partial (special) possible case about this new problem.

A more detailed: $\rho_{n}=\left|n^{-\sigma}\right|=\sqrt{n^{-2 \sigma}}=\frac{1}{\sqrt{n^{2 \sigma}}}$

For every $\boldsymbol{n} \rho_{n}$ is radius of circle. Or for each particular value of \boldsymbol{n}, the radius is constant, but for different \boldsymbol{n} respective radii are different. σ is a constant as a real part of functional zero. This means that ρ_{n} is a function only of \boldsymbol{n}.Let be the function:

$$
\begin{gathered}
U(x)=\frac{1}{\sqrt{x^{2 \sigma}}} ; \quad x>0, x \in R \\
U^{\prime}(x)=-\frac{1}{x^{2 \sigma}} \frac{1}{2 \sqrt{x^{2 \sigma}}} 2 \sigma x^{2 \sigma-1} ; \quad x>0 \cap x \in R
\end{gathered}
$$

Hence U is a function only of x If $\sigma=\frac{1}{2}$. For $x=n \Rightarrow U(x)=U(n)=\rho_{n}$
That is possible for every $x>0 \cap x \in R$, hence and for every $n \in N$.
The same result is obtained if instead lookcurvature $\kappa_{n}=\frac{1}{\rho_{n}}$.
. I.e. if now our function is

$$
V(x)=\sqrt{x^{2 \sigma}} ; x \geq 0, x \in R .
$$

Then

$$
V^{\prime}(x)=\frac{1}{2 \sqrt{x^{2 \sigma}}} 2 \sigma x^{2 \sigma-1} x>0 \cap x \in R
$$

Hence \boldsymbol{V} is a function only of \boldsymbol{x} If $\sigma=\frac{1}{2}$. For $x=n \Rightarrow V(x)=V(n)=\kappa_{n}$. Again $\sigma=\frac{1}{2}$.
That is our opinion for Riemannian Hypothesis

References

1. M. Vigodskii"Differential geometry" in Russian Moscow 1949
2. Internet: "Exponential Function"
3. L.Chakalov-"Introduction to theory of analytic functions' in Bulgarian. 1960
4. Tanya Mincheva-"Lagrange's Method in Theory of Diophantine equations"(New Integer Differential Analysis)-Paper presentation of International Congress of Mathematicians-Hyderabad-2010-India
5. Tanya Mincheva-" Lagrange's Method in Theory of Diophantine equations" (Introduction to Integer Differential Analysis)-Sofia-Bulgaria-"Lambert-Academic Publishing"-2011
6. Tanya Mincheva-"Kinematics and Dynamics of Generalized-Symmetric Sets (Application in Number Theory: Theorem of Goldbach and Riemann's Hypothesis))-Sofia-Bulgaria-
"Lambert-Academic Publishing"-2014

E-mail:tmintcheva@yahoo.com

