
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 4 Issue: 11 160 – 166

160
IJRITCC | November 2016, Available @ http://www.ijritcc.org

Real Time Packet Classification and Analysis based on Bloom Filter for Longest

Prefix Matching

Ms. Namita N. Kothari
ME Information Technology2nd,

Amrutvahini College of Engineering,

Sangamner, India

namitakothari8@gmail.com

Mr. R. S. Bhosale

Associate professor, Department of IT

Amrutvahini College of Engineering,

Sangamner, India

bhos_raj@rediffmail.com

Abstract— Packet classification is an enabling function in network and security systems; hence, hardware-based solutions, such as TCAM

(Ternary Content Addressable Memory), have been extensively adopted for high-performance systems. With the expeditious improvement of

hardware architectures and burgeoning popularity of multi-core multi-threaded processors, decision-tree based packet classification algorithms

such as HiCuts and HyperCuts are grabbing considerable attention, outstanding to their flexibility in satisfying miscellaneous industrial

requirements for network and security systems. For high classification speed, these algorithms internally use decision trees, whose size increases

exponentially with the ruleset size; consequently, they cannot be used with a large rulesets. However, these decision tree algorithms involve

complicated heuristics for concluding the number of cuts and fields. Moreover, fixed interval-based cutting not depicting the actual space that

each rule covers is defeasible and terminates in a huge storage requirement. We propose a new packet classification that simultaneously supports

high scalability and fast classification performance by using Bloom Filter. Bloom uses hash table as a data structure which is an efficient data

structure for membership queries to avoid lookup in some subsets which contain no matching rules and to sustain high throughput by using

Longest Prefix Matching (LPM) algorithm. Hash table data structure which improves the performance by providing better boundaries on the

hash collisions and memory accesses per search. The proposed classification algorithm also shows good scalability, high classification speed,

irrespective of the number of rules. Performance analysis results show that the proposed algorithm enables network and security systems to

support heavy traffic in the most effective manner.

Keywords- packet classification; decision tree algorithms; bloom filter; hashing; Longest Prefix Matching

__*****___

I. INTRODUCTION

Packet classification is an enabling function in network and

security systems that enable routers to support access control,

virtual private networks, quality of service differentiation and

other value added services [1]. As shown in fig. 1, a rule

consists of a set of fields, in which the most common fields are

IP source prefix, IP destination prefix, source port number,

destination port number, and protocol type in the packet

header. The following points are derived from the study:

1) The bits in the source/destinations IP addresses in the rule-

set are distributed between bits 0-4 of the first octet and bits

16-32 of the third and forth octets.

 2) Specific source port numbers are identified more than

specific destination port numbers in the rule-set databases.

3) Source and destination port extend in the rule-set databases

are mostly of larger in size.

4) The rules with just a single destination port is more than

their counterpart source-ports in the rule-set databases [16].

Fig. 1. Fields that are used in packet classification

As shown in fig. 2, packet classification is accomplished using

a packet classifier, which is also known as a policy database,

flow classifier, or simply a classifier. A policy classifier is a

collection of rules or policies. Each rule determines a class that

a packet may belong to based on some principle on fields of

the packet header, and relates with each class an identifier.

This identifier uniquely specifies the action associated with the

rule that matches the packet header [2].

Fig. 2. Packet Classification

Many algorithms and architectures have been introduced over

the years in an effort to determine an effective packet

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 4 Issue: 11 160 – 166

161
IJRITCC | November 2016, Available @ http://www.ijritcc.org

classification solution. Hardware-based solutions such as

application-specific integrated circuits (ASICs) with off-chip

TCAM (Ternary Content Addressable Memory) have been

extensively adopted since they support wire-speed

classification performance but they have a difficulty to satisfy

various industrial requirements [3]. However, the high power

consumption and the cost of TCAM made to seek some other

algorithmic solutions. Therefore, we require a new solution to

acquire high classification performance and high flexibility

simultaneously. To overcome this problem, we need to

develop a packet classification algorithm that performs fast

classification on large ruleset size.

The algorithm should also support table sizes and high-speed

table updates. Generally, packet classification algorithms use

complex and large internal tables to magnify classification

performance, and the size of the tables grows exponentially

with the size of the rulesets [4], [5].When a table is created for

a ruleset with tens of thousands of rules, the size of the

classification tables is making it ineffective for most network

and security platforms. One of the best ways is to break the

entire ruleset into small rulesets by dividing and apply a

packet classification algorithm on each subset [6]. There is no

packet classification algorithm which supports a large ruleset

as well as fast classification. To solve this problem, we

propose a new packet classification system. The features of

proposed system are summarized below.

• It holds constant high performance of packet

classification disregarding of ruleset size.

• It supports larger rulesets that is almost infeasible for

existing fast packet classification algorithms.

• It exterminates the inter-partition search overhead, which

is a critical weakness of partitioning-based algorithms

such as HiCuts and HyperCuts.

• It adapts a new classification technique that reduces

redundant rules and supports fast classification using

Bloom Filter data structure and LPM algorithm.

The proposed algorithm includes a new approach in holding

large rulesets while maintaining packet classification

performance by combining partition search tables and packet

classification tables [3], [7]. Generally, the Bloom filter is used

to skip lookup in some subsets which include no matching

rules and to make a possibility to maintain high throughput by

using Longest Prefix Matching (LPM) and hash tables [8].

However, Bloom filters provide most efficient solution for

packet classification and filters large amount of packets in

required time without any packet drop or missing with

required optimal memory space.

II. RELATED WORK

Packet classification is a vast body of literature review. It

should cover the features like, support general rules which

includes prefixes, range, exact values, wildcards, better data

structures to rule bases, multiple matches and preprocessing

[9]. Packet classification algorithms are classified according to

their implementation or characteristic types. We divide

algorithms into non-partitioning and partitioning types

according to the accepted partitioning techniques.

Fig. 3 shows the performance comparison of non-partitioning

and partitioning algorithm [10]. Partitioning-based algorithms

simultaneously fulfill two requirements:

Moderate table size and fast packet classification. Therefore

partitioning-based algorithms are little slow in the maximum

packet classification speed they can achieve. Whereas, the

cross-producting algorithm achieve fast performance but

requires a very memory requirement and very long table

building time.

 Fig. 3. Performance comparison of packet classification

algorithms.

Some algorithms belonging to each category are as follows:

A. Non-partitioning-based techniques

This technique finds matching rules for the given keys by

searching the entire ruleset. To acquire a high classification

speed, it uses very large and complex tables; hence, it droops

from large table size as the size of the ruleset increases. Hence,

it is infeasible for large rulesets. Exhaustive search [11], cross-

producting [5] and caching-based algorithms [12] are well-

known algorithms fall into this category.

1) Exhaustive search:

A widely known exhaustive search algorithm is the linear

search algorithm similar to TCAM approach, which linearly

searches all the rules that are organized in the decreasing order

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 4 Issue: 11 160 – 166

162
IJRITCC | November 2016, Available @ http://www.ijritcc.org

of priority. Hence, it shows low classification speed, i.e., O(N),

where N is the total number of rules; whereas, the memory

requirement and rule update speed are O(N) and O(1), which

are moderate compared to other algorithms. Due to these

characteristics, this algorithm is adopted for small rulesets. For

large rulesets, it should be used together with partitioning-

based algorithms, such as hashing-based algorithms or,

decision tree for intra-partition search [6].

2) Cross-producting:

Cross-producting algorithm finds a matching rule by blending

all search results field by field using pre-built tables [4]. In

short, it gives the high performance in packet classification, at

the cost of large tables. For example, RFC (Recursive Flow

Classification), one of the widely known cross-producting

algorithms, exhibits fixed classification speed disregarding the

ruleset size [5].However, it needs large table size and a long

building time. The table size increases exponentially with the

size of ruleset; therefore, this algorithm cannot be suitable for

large rulesets. Moreover, it is not possible to support partial

table update; thus, it has a long table update time. To

overcome these shortcomings, tables can be built with

partitioning approaches such as FRFC (Fast table building for

Recursive Flow Classification) generates tables in a

partitioning manner but searches in a non-partitioning manner

[13]. It separates the ruleset into small partitions and builds

RFC tables for every partition and these tables are then

combined. As a result, FRFC increases the table building

speed while sustaining high classification speed. For each

partition, the time for table building decreases continuously,

and the total time also decreases consequently than RFC. But

FRFC is not a perfect solution because it cannot ameliorate the

low scalability because of large table size.

3) Caching-based:

Caching-based algorithms extract pre-searched results related

with keys into the cache [12]. While searching with a key, the

result is rapidly retrieved via an exact matching based on a

hash function. This approach is simple and productive only

when the identical key is repeatedly used for searches.

However, the locality of keys declines extensively in large-

scale networking applications. The cache hit ratio is small, the

cache update overhead is large, and the cache size increases

quickly. Therefore the overall packet classification

performance is declined drastically. The caching-based

approach is feasible for small networks only.

B. Partitioning-based techniques:

Partitioning-based techniques perform packet classification

effectively by decreasing the search space for the given keys

by partitioning ruleset. It is not so easy to develop an optimal

partitioning algorithm. Hence most of existing partitioning

algorithms are based on heuristic approaches, so they cannot

promise an optimal result. Most widely used partitioning-

based algorithms include decision-tree, tuple-space and hash-

based algorithms [14], [6].

1) Decision tree based:

Decision-tree-based packet classification algorithms such as

HiCuts and HyperCuts show search performance by exploiting

the geometrical representation of rules and searching for a

geometric subspace to which input packet belongs. Decision

trees decrease the size of ruleset to be searched by using tree-

based data structures. A large ruleset is divided into multiple

sub-rulesets. For intra-partition search, each uses a linear

search algorithm. Decision-tree algorithms have various types

such as basic radix trees, multi-field search trees, hierarchical

trees and modified trees having smaller table size [1]. Most

algorithms show adequate performance with regard to the

classification speed and table size. Particularly, HyperCuts

gives high search speed but the speed declines as the size of

ruleset increases. Moreover, the table size gets bigger

exponentially, thus, it is impossible to support large rulesets.

2) Tuple-space based:

Tuple-space-based algorithms like Conflict-Free Rectangle

search, divide rulesets according to tuples, which consist of bit

indices for different fields of a rule [14]. The algorithm is then

finds an equivalent tuples for the given keys, to find a

matching rule. Previous researches have shown that a tuple

space is smaller than size of a ruleset. Therefore tuples

searching is way faster than searching the ruleset. Each rule

associated with a tuple has the identical bitmask length for any

tuple’s field; therefore, adopting a hash algorithm achieves

faster classification for a ruleset in the tuple. Though this

algorithm has the low memory usage but needs a high

preprocessing and classification time which could vary based

on the nature of the rule set.

3) Hash-based algorithm:

Several memory accesses are needed to find a partition

including the matching rule using tuple-space-based or

decision-tree algorithms; therefore, these algorithms contribute

limited support for quick inter-partition search. This problem

is cleared by a hash-based algorithm, which creates a hash key

from all or some selected keys for the similar fields. A

partition is searched with one or two memory accesses [6].

Although this algorithm almost eliminates the inter-partition

search overhead, the total numbers of partitions are therefore

increased, generates a large table size. Thus hash-based

algorithms are preferable when high packet classification

performance must be achieved disregarding the memory size.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 4 Issue: 11 160 – 166

163
IJRITCC | November 2016, Available @ http://www.ijritcc.org

Shortcomings of algorithms come mostly from performance

evaluation of algorithms and it is based on the assumptions

and features where these algorithms are concentrating certain

classifier and perform effectively only on this classifier.

Additionally, algorithms require big memory access resulting

in low speed processing. Thus, these algorithms not expected

to work effectively in the case of increased requirement for

next generation routers.

III. EXISTING SYSTEM

An incoming packet associates to a certain flow when all the

packet fields are in the range of rule flow. In other words,

each rule has F components and the ith component of rule R,

referred to as R[i], which is a regular expression of the

packet header on the ith field. That means, a packet (P)

matches a particular rule (R) if, and only if, P is in the range of

R[i] for every ith field of the header [2]. Packet classification

by Decision tree algorithm is nothing but construction of

decision tree where the leaves of the tree have rules or subset

of rules. Decision tree algorithm can provide great speed

search performance, if internal nodes are stored in an off-chip

memory. Decision tree based algorithms such as HiCuts,

HyperCuts and EffiCuts gives the highest priority match.

HiCuts and HyperCuts algorithms select the field and total

number of cuts on a locally optimized decision, which consists

of the memory requirement and search speed. In HiCuts, each

rule defines a d-dimensional rectangle in space, where

d=number of fields in the rule. It recursively cuts the space

into subspace with fewer overlapped rule. To find a match for

the incoming packets, a linear search is performed using rules.

It uses two parameters that is threshold (binth) and space

factor (spfac). HiCuts algorithm considers only one field at a

time while selecting the dimensions of the cuts. While

HyperCuts considers multiple fields at a time by decreasing

the depth of decision tree and divide it into multiple fields.

EffiCuts was used to eliminate overlap among all the rules.

The researchers separated all the rules. In this algorithm, they

defined rules subset to be separable if all the rules in each

dimension. For each subset a separate tree is developed where

the rules are separated without incurring replication. In

Boundary Cutting based packet classification algorithm finds

out the space that each rule covers and performs the cutting

according to the rule boundary. Thus, the cutting in this

algorithm is deterministic and does not involve the

complicated heuristics, and it is more effective in offering

efficient memory requirement [1].

IV. PROPOSED SYSTEM

Bloom filter is a space-efficient probabilistic data structure

that concisely supports set membership queries. A Bloom filter

is an array of m bits for representing a set S = {x1, x2, . . . , xn}

of n elements. Initially all the bits in the filter are set to zero

and use k hash functions, hi(x), 1 ≤ i ≤ k to map items x ∈ S to

random numbers uniform ranging 1, . . .m. The hash functions

are assumed to be uniform. An element x ∈ S is inserted into

the filter by placing the bits hi(x) to one for 1 ≤ i ≤ k. Whereas,

y is assumed a member of set S if the bits hi(y) are set, and

assured not to be a member if any bit hi(y) is not set [2].

Algorithm 1 gives the pseudo code for the insertion operation.

Algorithm 2 presents the pseudo code for the membership test

of a given element x in the filter.

Data: x is the object key to insert into the Bloom filter.

Function: insert(x)

for j : 1 . . . k do

/* Loop all hash functions k */

i ← hj(x);

 if Bi == 0 then

/* Bloom filter had zero bit at position i */

Bi ← 1;

 end

end

Algorithm 1: Pseudo code for Bloom filter insertion

Data: x is the object key for which membership is tested.

Function: is member(x) returns true or false to the

membership test

m ← 1;

j ← 1;

while m == 1 and j ≤ k do

i ← hj(x);

if Bi == 0 then

m ← 0;

end

j ← j + 1;

end

return m;

Algorithm 2: Pseudo code for Bloom member test

Hash tables are widely used in many packet processing

applications such as per-flow state management, packet

classification, IP route lookup and network monitoring. Bloom

filter uses Hash table as a data structure. Basically, many

packet classification algorithms initially perform a lookup on a

single header field and avail the results to avoid the search to a

smaller subset of packet classifiers [5]. Since a lookup on the

each and every fields can also be performed using the hash

table algorithm improving the hash table performance and

benefits packet classification algorithms as well.

A software based LPM algorithm used for IP lookup. The

algorithm improves the performance of a regular hash table

using Bloom filters. Fig. 4 illustrates this design for high-speed

prefix matching [10]. The process of packet classification is

divided into some basic steps. The first step is the Longest

Prefix Match (LPM) operation. Then by using perfect hash

function mapping, the LPM results to the rule number in order

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 4 Issue: 11 160 – 166

164
IJRITCC | November 2016, Available @ http://www.ijritcc.org

to perform fast searching. If the packet does not match any

rule, the hash function will map the packet to some rule

number. Since such invalid mapping can occur, it is necessary

to include the further steps in which the packet is examined

against the resulting rule. Hence, the complete Rule Table has

to be stored in the last step.

Fig 4. Longest Prefix Matching using Bloom filters

Let P.fi denote the value of field i in packet P. The packet

classification process can be outlined in the following pseudo-

code.

ClassifyPacket(P)

1. for each field i

2. vi ← LPM(P.fi)

3. {match, {Id}} ← HashLookup((v1, . . . , vk))

Algorithm 3: Pseudo code for classification

As the algorithm depicts, we first execute LPM on each field

value. Then we search the key constructed by all the longest

matching prefixes in the hash table. The result of this lookup

indicates if the rule matched or not and also outputs a set of

matching rule IDs relating with a matching rule [15].

V. SYSTEM ARCHITECTURE

Proposed system uses Longest Prefix Matching to avoid

redundancy and optimize the tree. Hashing is used for routing

and searching next hop using key and value. Bloom data

structure suppresses large memory for sustaining high

throughput. System architecture mainly contains 5 stages:

• Packet Capturing

• Apply LPM and Hashing

• Build data structure(Bloom filter)

• Perform packet classification

• Packet analysis and comparison using Classbench

rulesets.

 Fig. 5. Architecture of proposed system

VI. PERFORMANCE ANALYSIS AND RESULT

A. Rulesets:

Analysis using C# has been extensively performed for rule sets

created by Classbench. Three different types of rule sets—

Access Control List (ACL), Firewall (FW), and Internet

Protocol Chain (IPC)—are formed with sizes of approximately

1000, 5000, 10,000 and 100,000 rules each. Rule sets are

named using the set type followed by the size such as with

ACL1K, that means an ACL type set contain about 1000 rules.

The ruleset databases range in size from 68 to 4557 entries and

make use of one of the following formats [16]:

1) Access Control List (ACL) – A standard format for VPN,

security and NAT rule-sets for firewalls and routers

(enterprise, edge, and backbone).

 2) Firewall (FW) – A proprietary format for specifying

security rulesets for firewalls.

3) IP Chain (IPC) – A decision tree format for VPN, security

and NAT rulesets for software based systems.

B. Memory Requirement:

The following graphs show the comparison between the

existing system and proposed system in terms of memory

requirement in Kb (kilobyte) per rule. The memory amount for

decision tree algorithms that is boundary cutting (existing)

depends on rule number and type. While, the memory amount

for proposed system using bloom filter and LPM depends on

hash key and value. The following graphs show that, the total

memory amount (bytes per rule) required for storing rules in

proposed system is less than that of existing system.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 4 Issue: 11 160 – 166

165
IJRITCC | November 2016, Available @ http://www.ijritcc.org

 For ACL ruleset:

 For IPC ruleset:

 For FW ruleset:

CONCLUSION

This proposed system is undertaken to design and evaluate real

time packet classification in network applications to provide

less memory requirement and quality of services. To construct

such classification, it uses LPM and Bloom filter. Throughout

the extensive analysis using Classbench databases performed

between previous decision-tree algorithms that uses boundary

cutting algorithm and bloom filter. Memory requirement for

the proposed system is less than that of existing system.

Proposed algorithm enables both the highest priority match

and the multimatch packet classification.

Limitation of this system is that if the size of database is large

then it might affect the performance in real-time packet

classification.

REFERENCES

[1] H. Lim, N. Lee, G. Jin, J. Lee, Y. Choi, and C. Yim, ―Boundary

Cutting for Packet Classification,‖ vol. 22, no. 2, pp. 443-456,

April 2014)

[2] N. Kothari and S. E. Pawar, ―Packet Classification based on

Boundary Cutting analysis by using Bloom Filters,‖ ISSN:

2321-8169, Volume 3, Issue 7, July 2015.

[3] Wooguil Pak and Young-June Choi, ―High Performance and

High Scalable Packet Classification Algorithm for Network

Security Systems,‖ IEEE Transactions on Dependable and

Secure Computing, 2015.

[4] D.E. Taylor and J.S. Turner, ‖Scalable Packet Classification

using Distributed Crossproducting of Field Labels,‖ Proc. IEEE

Conf. Computer and Communications Societies (INFOCOM

’05), pp 269-280, Mar. 2005,

doi:10.1109/INFCOM.2005.1497898.

[5] P. Gupta and N. McKeown, ‖Packet classification on Multiple

Fields,‖ Proc. ACM Conf. Applications, technologies,

architectures, and protocols for computer communication

(SIGCOMM’99), pp. 147-160, Aug. 1999,

doi:10.1145/316194.316217.

[6] L. Choi, H. Kim, S. Kim, and M.H. Kim, ‖Scalable Packet

Classification Through Rulebase Partitioning Using the

Maximum Entropy Hashing,‖ IEEE/ACM Trans. Networking,

vol 17, iss.6, Dec. 2009, doi:10.1109/TNET.2009.2018618.

[7] S. Dharmapurikar, H. Song, J. Turner, J. Lockwood, ―Fast

packet classification using Bloom filters,‖ in: Proc. of ANCS,

2006, pp. 61–70.

[8] A.G. Alagu Priya and H. Lim, ―Hierarchical packet classification

using a Bloom filter and rule-priority tries,‖ Comput. Commun.,

vol. 33, no. 10, pp. 1215–1226, Jun. 2010.

[9] H. A. J. Sistani, S. P. Amin, and H. Acharya, ―Packet

classification algorithm based on geometric tree by using

Recursive Dimensional Cutting (DimCut),‖ vol. 2, no. 8, pp.

31-39, August2013.

[10] D.E. Taylor, ‖Survey and taxonomy of packet classification

techniques,‖ ACM Computing Surveys, vol. 37, iss. 3, pp. 238-

275, Sep. 2005, doi:10.1145/1108956.1108958.

[11] S. Sahni, K.S. Kim, and H. Lu, ‖Data structures for one

dimensional packet classification using most specific-rule

matching,‖ Proc. Parallel Architectures, Algorithms and

Networks (I-SPAN ’02), pp. 1-12, May 2002,

doi:10.1109/ISPAN.2002.1004254.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 4 Issue: 11 160 – 166

166
IJRITCC | November 2016, Available @ http://www.ijritcc.org

[12] J. Xu, M. Singhal, and J. Degroat, ‖A novel cache architecture to

support layer-four packet classification at memory access

speeds,‖ Proc. IEEE Conf. Computer and Communications

Societies (INFOCOM ’00), pp. 1445-1454, Mar. 2000,

doi:10.1109/INFCOM.2000.832542.

[13] W. Pak and S. Bahk, ‖FRFC: Fast Table Building Algorithm for

Recursive Flow Classification,‖ IEEE Communications Letters,

vol. 14, pp. 1182-1184, Dec. 2010,

doi:10.1109/LCOMM.2010.100810.100572.

[14] V. Srinivasan, S. Suri, and G. Varghese, ‖Packet classification

using tuple space search,‖ Proc. ACM Conf. Applications,

technologies, architectures, and protocols for computer

communication (SIGCOMM ’99), pp. 135-146, Aug. 1999,

doi:10.1145/316188.316216.

[15] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor,

―Longest prefix matching using Bloom filters,‖ in SIGCOMM

’03: ACM, 2003, pp. 201–212.

[16] Mahmood Ahmadi, S. Arash Ostadzadeh, and Stephan Wong,

―An Analysis of Rule-set Databases in Packet classification ,‖

Computer Engineering Laboratory Faculty of Electrical

Engineering, Mathematics and Computer Science Delft

University of Technology.

