
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 11 143 - 150

__

143

IJRITCC | November 2016, Available @ http://www.ijritcc.org

Conservative Multi-Generational Age-Based Garbage Collection with Fast

Allocation

Shailesh Arrawatia

Department of Computer Science & Engineering

APEX Institute of Engineering & Technology, Jaipur

 Shailesh24790@gmail.com

Abstract— In the era of today’s technology, Garbage Collectors have high mortality and high efficiency because they look and

remove garbage memory blocks among newly created objects. Many very newly created objects are included into these objects

which are still live and easily can be identified as live objects. Generational Garbage Collection is a technique which is based on

newer objects where the older objects are pointed by these newly created objects; because of this, these type of algorithms earn

more efficiency than other garbage collectors. The only one way called “Store Operation” is used to a formerly created objects for

pointing to a newly created objects and many languages have limitations for these operations. Recently allocated objects are

focused more by a Garbage Collector and these objects can give more support to the above mentioned issue. The efficiency of

such type of Garbage Collectors can be measured on the basis of allocation and expenditure type than the disposal of objects. In

this paper, we have studied various techniques based on Generational Garbage Collection to observe object structures for

producing better layout for finding live objects, in which objects with high temporal weakness are placed next to each other, so

that they are likely to locate in the same generation block. This paper presents a low-overhead version of a new Garbage

Collection technique, called Conservative multi-generational age-based algorithm which is simple and more efficient with fast

allocation, suitable to implement for many object oriented languages. Conservative multi-generational age-based algorithm is

compatible with high performance for the many managed object oriented languages.

Keywords—Garbage Collection, Dynamic Memory Allocation, Conservative.

__*****___

I. INTRODUCTION

Garbage collection (GC) involves pass through the data
objects which are live during the execution of a program and
this process is just like parallel even in subsequent programs.
Generational garbage collection [1] is an efficient technique for
finding and reclaiming of unreachable heap data objects that
are required by user for reusing the heap space. Reclaiming of
short-lived objects are done very quickly and efficiently while
another long-lived heap objects are adjusted in the regions of
the heap. These long-lived heap objects are subject to more
relatively uncommon collections. It can manage a wide range
of heap spaces with generally short pause times, these
predominantly affecting the time of collection to perform short
term collections. Eventually, however, the region(s) containing
old data objects will be adjusted by filling copied objects and
this behavior necessary for doing major collection. Typically,
this operation for collecting major data object are more
expensive because the earlier procreations are much larger than
the new one. Furthermore, the collection of old generation
needs accurate collection of all younger data objects
procreations so, regardless of the actual number of
procreations, the entire heap will eventually require collection.
The program execution activity [2] and garbage collector are
interleaved in the above way of collection. In implementing
this “barrier less” scheme, people can easily change the
complete behavior of copied data objects at the time of garbage
collection. The object land can be attempted to enter in the self-
scavenging code during this attempt. At the time compiling,
another new alternative approach is to be introduced for
specializing the entry code for each collected data objects.
These eradicate the need for the extra word as we can simply
turn from one data objects to the other copied data objects at

the time of garbage collection. This paper focuses on the
complete detail of the proposed garbage collection technique
and shows how this code specialization can be made to work in
practice and the effect of reclaiming the dynamic heap space
can be evaluated more efficiently upward for garbage collector.

A. Background

The Baker’s incremental collection algorithm [2] is usual
for readers at the current time while many people have
considered that the reader is usual easily with the fundamentals
of generational garbage collection [4]. In this paper, it is
assumed that complete collection of garbage data objects are
performed by copying live objects from one space to another
space. The copying of live data objects is synonymous in
Baker’s algorithm with fast allocation and evacuation. These
evacuated data objects are called scavenged. The old generation
and the young generation are two procreations to follow the
collection in the generational garbage collection although this
proposed method of garbage collection can be settled to adjust
the procreations number of procreations are arbitrary in nature.
The assumptions are taken in this paper as many data objects
are age-based in nature during the copy of data objects from
one generation to another generation.

B. Motivation

We have taken an objective for performing the garbage

collection in parallel with help of collector which perform

collection in shared-memory that is employing to achieve faster

and efficient reclaiming of data objects with compared to one

processor that could do alone. In this paper, a collector is

presented for better reclaiming of unreachable data objects and

this collector is based on different generations where copying is

done from one generation to another generation by copying

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 11 143 - 150

__

144

IJRITCC | November 2016, Available @ http://www.ijritcc.org

collector. Many procreations are created by dividing the heap

as some younger procreations and generation n is collected for

n-generational garbage collector. We have implemented this

algorithm for 3 generations and it can be improved for n

generations. In this proposed method, the complete set list of

all the heap data objects is pointed by younger generation while

many implementation lists the all the data objects.
This paper is arranged as Section 2 gives complete review

of the related literature survey on various garbage collector
algorithms, Section 3 of the paper gives the proposed approach
for conservative multi-generational age-based Garbage
Collection to enhance allocation. Section 4 presents our
proposed algorithm. Finally, Section 5 describes performance
matrices and Section 6 shows conclusion and future work for
the proposed algorithm.

II. LITERATURE SURVEY

The two fundamental approaches are implemented in the

decade of 1960 and these approaches provide complete storage

redemption. The name of these approaches are declared by

researchers as namely tracing [5] and reference counting [6].

So this was a great achievement of work done in the field of

garbage collection since that time and according to time,

numerous advancement has been developed in both the

approaches. Some of the major important advancements are

done constantly in copying collection [4] which is based on

generational collection. Many more approaches are

implemented for reclaiming the unreachable data objects and

named as soft real-time collection [2], hard real-time collection

[3], Mark and Copy [7], Space Tracing Collection[5], Assigned

Garbage Collection. Some of the major advances have been

proposed for incremental loosening [4] in the collection of

reference counting. Another garbage collection technique based

on deferred reference counting [2] and compile-time reclaiming

of heap objects is also more efficient for reclaiming the

younger data objects with multiprocessor parallel collection

[1].

Reference counting collectors identify unreachable objects

and reallocate them as soon as much fast counting and these

unreachable objects are no longer reachable referenced [8]. The

association of the reachable data objects with each object have

a reference count that can be incremented during the garbage

collection each time and a new pointers to the data objects are

created and decremented each time one is destroyed. If

reference count falls to zero, the reference counts for

immediate descendants are decremented and the object is

reallocated. Unfortunately, reference counting collectors are

expensive because the counts must be maintained and it is

difficult to reclaim circular data structures using only local

reach ability information.

The best reference counting collectors have very low and

uniform latency impact on an application as demonstrated by

the Ulterior Reference Counting [10] collector. However, they

have historically suffered from lower throughput compared to

tracing collectors. The work of Shahriyar et al. [56, 57] has

made reference counting collectors competitive, but does so by

incorporating background tasks and pauses. Unfortunately

Shahriyar doesn’t report the latency impact of these changes.

Mark sweep collectors [9] are able to reclaim circular

structures by determining information about global reach

ability. Periodically, when a memory threshold is exhausted the

collector marks all reachable objects and then reclaims the

space used by the unmarked ones. Mark sweep collectors are

also expensive because every dynamically allocated object

must be visited the live ones during the mark phase.

Copying collectors [10] provide a partial solution to this

problem. These algorithms mark objects by copying them to a

separate contiguous area of primary memory. Once all the

reachable objects have been copied the entire address space

consumed by the remaining unreachable objects is reclaimed at

once garbage objects need not be swept individually. Because

in most cases the ratio of live to dead objects tends to be small

by selecting an appropriate collection interval the cost of

copying live objects is more than o set by the drastically

reduced cost of reclaiming the dead ones. As an additional

benefit spatial locality is improved as the copying phase

compacts all the live objects. Finally, allocation of new objects

from the contiguous free space becomes extremely

inexpensive. A pointer to the beginning of the free space is

maintained allocation consists of returning the pointer and

incrementing it by the size of the allocated object. For best

performance a collector should minimize the number of times

each reachable object is traced during its lifetime Generational

collectors deed the experimental observation that old objects

are less likely to die than young ones by tracing old objects less

frequently. Since most of the dead objects will be young only a

small fraction of the reclaimable space will remain unreclaimed

after each collection and the cost of frequently retracing all the

old objects is saved.

Generational collectors [11] have been implemented

successfully in prototyping languages such as LISP, Modula,

Smalltalk, etc. These languages share the characteristic that

pointers to objects are readily identifiable or hardware tags are

used to identify pointers. When pointers cannot be identified,

copying collectors cannot be used for when an object is copied

all pointers referring to it must be changed to react its new

address. If a pointer cannot be distinguished from other data

then its value cannot be up dated because doing so may alter

the value of a variable.
Conservative collectors [1] may be used in language

systems where pointers cannot be reliably identified. This class
of collectors makes use of the surprising fact that values that
look like pointers ambiguous pointers usually are pointers.
Misidentified pointers result in some objects being treated as
live when in fact they are garbage. Although some applications
can exhibit severe leakage.

III. PROBLEM STATEMENT

A. Gap analysis among Garbage Collectors

Most of the garbage collectors have a performance gap due
to large heap size and slow speed of copying phase. This is
because of the combination of the factors like slow allocation
of heap sequence and the periodic copying operation when the
new empty object block is required for the free block sequence
of particular size according to the locality of the resulting new
heap blocks. We have removed above discussed problem in this
proposed model of garbage collector by using child-parent
counting model. In this child-parent counting, we have applied
type of mark bit of the heap blocks of different size classes like
small, medium and large. So these different sized blocks are
used to copy live blocks according to their size.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 11 143 - 150

__

145

IJRITCC | November 2016, Available @ http://www.ijritcc.org

Another fundamental issue of the garbage collectors is that
in small heaps, there is an internal and external fragmentation
problem of memory heap blocks. This issue is resolved in this
proposed developed model of garbage collector by providing
different class size of memory heap blocks. The dynamic
compression of live object blocks are highly used to reduce the
heap memory requirements of the running application. Mostly,
people are used two strategies: first, the heap space is
exhausted and another one is to perform the operation of
compression on objects what are infrequently accessed objects.
Also, people avoid the allocating space of used data objects.

So above discussed issues has been resolved in this
proposed model of conservative multi-generational garbage
collector and the detailed model of proposed work is discussed
in subsequent sections.

Figure 1. Generational Collector after collection

B. Background of Proposed Work

According to many researches, most of the object live for a
short period of time, some live for medium amount of time and
very lower number of objects live for a longer period of time
[6]. So in this the heap is divided according to the age of data
objects and garbage is collected according to age of data
objects. So this way the useless copying of short life objects
has not been taken place.

Promotion Policies [4]: In this, it is decided that when one
object will promoted to next generation .In this it is seen that
we have to take into consideration early betterment and late
betterments. For long lived object early promotion is better
than late promotion. For short lived object early promotion is
better than live object.

Intergeneration Reference [4]: In this we must be aware that
any pointer variable from older generation refers to younger
generation. As doing garbage collector in younger generation
we must trace the pointers reference from older to younger
generation. As some objects are unreachable from other

references except this one. So we have to trace these references
and for this we have number of techniques to implement.

For the advancement policy [6] we have taken gc_count
variable whose value will decide In which generation the data
objects should be place .We have divided our heap into two
generation and in one generation we have taken two buckets so
gc_count will decide that weather we have to transfer data
object from one bucket to another or from one generation to
another. Now it is necessary to trace inter-generational link as it
is possibly that garbage collector will collect the data object
from younger generation in spite of the fact that it has been
pointed by the data object in older generation. So for this we
have taken remember set so that we trace at each store
operation the link of data objects and if it being a pointer from
older generation to younger generation than make that entry in
remember set (hash table) and during each copying phase
remember set is scan so that if it is entry in remember set than
that memory location or data object being transfer from one
younger generation to old one.

C. Proposed Approach

As in garbage collector we have to keep trace of different
information regarding the data objects being allocated by
dynamic memory allocation functions. So for this we have built
our own memory allocation function which is use to keep the
record the information about the objects which is being
allocated and reallocated. Now for doing garbage collection we
must maintain the information of the data objects so that we
can operate on them and get the appropriate information’s to
mark and the objects. So we make the structure of the data
objects as following:

struct block_structure
{
void * object_pointer;
char mark_copy_flag;
struct block_structure* next_block;
};
//object_pointer: poniter to allocated block
//mark_copy_flag: used for storing the information
//which is used during mark and copy phase.
//next_block: next pointer of this list.

Bit Position of Mark Copy Flag

BP7

BP6

BP5

BP4

BP3

BP2

BP1

BP0

Details of individual bits:
B0: Check Bit- During mark phase it is used for

interleaving objects. If this bit is 0 than corresponding object
has to be processed for interleaving. If it is 1 than object has
already been processed. And during copy phase it denotes
whether object has been copied or not. After marking it will be
1 if object is live and after copying it will be 0.

B1: mark bit- It denotes whether object is live from stack or
not. After marking it will be 1 if object is live from stack and
after copying it will be 0

B2: child bit- It is used to denote whether the corresponding
object has a child or not. If it is 1 than object points to some
other objects.

B3: parent bit- It denotes whether object is live from any
other live objects or not. After marking it will be 1 if object is
live and after copying it will be 0

B4 and B7: unused.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 11 143 - 150

__

146

IJRITCC | November 2016, Available @ http://www.ijritcc.org

B5 and B6: count bit- It is used to check in which
generation the object will be copied. Initially it will be 0 after
allocating new objects. If object is copied to another generation
it will be incremented. “00” stands for object is in bucket 1 of
generation one, “01” stands for object is in bucket 2 of
generation one, and “10” stands for object is in generation two.

above shown the structure of data object in which we have
pointer to next block , size of data object and in 8 bit we have
all the variables which is used to mark the data objects and
copying the data object and one bit is for maintaining the
remember set value to trace inter-generational link.

D. Design Goal of a Proposed Approach

Our main goal is to improve the efficiency of reclaiming the
unused memory which is unreachable from live objects. Many
people believed that a complete garbage collection would be
made it possible to find live objects easily in generational
garbage collection. Our final design goal is to make a design
architecture that can support to find optimum live objects to
provide a better garbage collection.

IV. PROPOSED ALGORITHM

We have design the algorithm for memory allocation
function and free function as shown below:

A. Algorithm for GGC_malloc ()

i. Select a block and repeat until whole free list is scanned

ii. If(block>=size) than

{

(a) If (block>size)

{

Break the block as a tail part is equal to size +

sizeof (Header)

Set the size of block at the starting of newly block

Update the (size) field in the remaining block

}

(b) If (block==size) Remove the block from free list.

(c) Set the entry of this newly allocated block in object

maintaining list by using GGC_maintain_object_list

(pointer to allocated block)

(d) Return the pointer of this newly block to user

}

iii. If (block is not found) than Add extra free space to free list

using allocate_extra_memory_to_gen () and repeat above

process once again.

iv. If(constraints true) call GGC_garbage_collector()

B. Algorithm for GC_free ()

i. Find the entry of this block into object maintaining

list.

ii. Remove this entry from the object maintaining list.

iii. Add this block into the particular free list.

C. Algorithm for GGC_garbage_collector()

In this phase we have to mark the data object which is being

lived from the stack as well as the object resides in the heap.

This is one of the important phase in any garbage collector

technique because this give the way to which distinguish

between live and dead objects. When the garbage collector is

called the three operations will be performed and these are:-

i. Mark()

ii. Copy()

iii. write barrier()

Algorithm for mark()

i. find stack high pointer and current pointer

ii. lower_address =current pointer, upper_ address =high

pointer.

iii. While(lower_address < upper_address)

a) Get address which is stored in stack at current pointer.

b) If this address points to any block in heap than set

mark bit 1 for this block in object maintaining list.

c) Increment lower_address.

iv. Select object while(mark=1 and check=0)

a) Set check=1 for this object.

b) Set lower_address =start address of block, upper_

address = end address of block.

c) Repeat step 3.

d) If any object referenced from this block than set child

bit=1 for this block and set parent bit for referenced

block.

Now for copying we have taken the concept of cheney’s

algorithm [9] in which we have two pointers variables in which

one is used to trace the copying of data object and other used to

trace the pointer adjustment.

Copy phase: In this, the copy the reachable data objects

from one heap location to another heap location. Copy of the

data objects is done and we update the stack address of the

corresponding objects. In this we also perform copying of

interleave data objects ad update their entry in the

corresponding objects.

Algorithm for copy ()

1) start=end=initial address of To Space

2) select a root block until all roots are traversed.

3) set mark=0

4) copy this block to next generation according to

GC_count().

5) Update new address of this block in stack and set

check=0.

6) end=end+size of this block

7) while (start<end)

 a) If (child==1) find all referenced block from this block

and copy them to To_Space. And set child=0.

b) Update all parent addresses of referenced block. Set

check =0 for referenced block.

c) end=end+size of referenced block.

 d) start=start + size of this current parent block.

8) goto step 2.

Write barrier: This is important phase as in this we trace the

data objects which have the link from older generation to

younger procreations and then scavenged that particular

objects, as this intergeneration link can cause a problem of

write barrier so that it is needed to keep trace this link and

scavenged them.

Now for write barrier we have to trace at every store

operation the pointer from older generation to younger

generation and put its entry into the remember set .When the

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 11 143 - 150

__

147

IJRITCC | November 2016, Available @ http://www.ijritcc.org

copying is done than data object been trace for the link and if it

is available u can scavenged it into the older generation.

Algorithm for Write_barrier ()

i. Trace object for each store operation.

ii. If object pointed from older generation to younger

generation than put the object address in remember set.

iii. During copy trace the remember set if object found in

remember set than scavenged the object into older

generation.

V. PERFORMANCE MATRICS

In testing, we have taken number of various matrices to
calculate the efficiency of proposed Garbage Collector and
shows the relationship with in themselves so that that we can
analyze our proposed solution.

We have tested these performance matrices by using the
various test benches which are shown in the subsequent sub-
section.

A. Testbenches

a)

#include"ggc.h"

//test bench

void main()

{

int x,i;

stack_high_ptr=&x;

block rtemp;

void print_list(struct link *c);

struct link *head,*tempxyz,*a ,*b,*c,*d,*e;

size_t size_total=0;

a=(struct link *)GGC_malloc(sizeof(struct link));

a->num=10;

b=(struct link *)GGC_malloc(sizeof(struct link));

b->num=20;

c=(struct link *)GGC_malloc(sizeof(struct link));

c->num=30;

d=(struct link *)GGC_malloc(sizeof(struct link));

d->num=40;

e=(struct link *)GGC_malloc(sizeof(struct link));

e->num=50;

GGC_garbage_collector();

}

void print_list(struct link *c)

{

while(c!=NULL)

{

printf("\t%0x",c);

printf("\t%d",c->num);

c=c->next;

}

}

b)

#include"ggc.h"

//test bench

void main()

{

int x,i;

stack_high_ptr=&x;

block rtemp;

void print_list(struct link *c);

struct link *head,*tempxyz,*a ,*b,*c;

size_t size_total=0;

a=(struct link *)GGC_malloc(sizeof(struct link));

a->num=0;

c=a;

for(i=1;i<50;i++)

{

c->next=(struct link *)GGC_malloc(sizeof(struct link));

c->next->num=10*i;

c=c->next;

}

c=NULL;

printf("\n&a=%0x",&a);

print_list(a);

GGC_garbage_collector();

printf("\nafter collection\n");

print_list(a);

}

void print_list(struct link *c)

{

while(c!=NULL)

{

printf("\t%0x",c);

printf("\t%d",c->num);

c=c->next;

}

}

c)

#include"ggc.h"

//test bench

void main()

{

int x,i;

stack_high_ptr=&x;

block rtemp;

void print_list(struct link *c);

struct link *head,*tempxyz,*a ,*b,*c;

size_t size_total=0;

a=(struct link *)GGC_malloc(sizeof(struct link));

a->num=0;

b=(struct link *)GGC_malloc(sizeof(struct link));

b->num=0;

c=a;

for(i=1;i<10;i++)

{

c->next=(struct link *)GGC_malloc(sizeof(struct link));

c->next->num=10*i;

c=c->next;

}

c=NULL;

c=b;

for(i=1;i<10;i++)

{

c->next=(struct link *)GGC_malloc(sizeof(struct link));

c->next->num=10*i;

c=c->next;

}

c=NULL;

GGC_garbage_collector();

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 11 143 - 150

__

148

IJRITCC | November 2016, Available @ http://www.ijritcc.org

}

void print_list(struct link *c)

{

while(c!=NULL)

{

printf("\t%0x",c);

printf("\t%d",c->num);

c=c->next;

}

}

d)

#include"ggc.h"

//test bench

void main()

{

int x,i;

stack_high_ptr=&x;

block rtemp;

void print_list(struct link *c);

struct link *head,*tempxyz,*a ,*b,*c;

size_t size_total=0;

a=(struct link *)GGC_malloc(sizeof(struct link));

a->num=0;

c=a;

for(i=1;i<10;i++)

{

c->next=(struct link *)GGC_malloc(sizeof(struct link));

c->next->num=10*i;

c=c->next;

}

c=NULL;

printf("\n&a=%0x",&a);

print_list(a);

c=a;

while(c!=NULL)

{

if(c->num==50)break;

c=c->next;

}

c->next=NULL;

GGC_garbage_collector();

printf("\nAfter collection\n");

print_list(a);

GGC_garbage_collector();

printf("\nAgain after collection\n");

print_list(a);

GGC_garbage_collector();

printf("\nAgain after collection\n");

print_list(a);

GGC_garbage_collector();

printf("\nAgain after collection\n");

print_list(a);

}

void print_list(struct link *c)

{

while(c!=NULL)

{

printf("\t%0x",c);

printf("\t%d",c->num);

c=c->next;

}

}

e)

#include"ggc.h"

//test bench

void main()

{

int x,i;

stack_high_ptr=&x;

block rtemp;

void print_list(struct link *c);

struct link *head,*tempxyz,*a ,*b,*c;

size_t size_total=0;

a=(struct link *)GGC_malloc(sizeof(struct link));

a->num=0;

c=a;

for(i=1;i<10;i++)

{

c->next=(struct link *)GGC_malloc(sizeof(struct link));

c->next->num=10*i;

c=c->next;

}

c=NULL;

printf("\n&a=%0x",&a);

print_list(a);

c=a;

while(c!=NULL)

{

if(c->num==50)break;

c=c->next;

}

c->next=NULL;

GGC_garbage_collector();

printf("\nAfter collection\n");

print_list(a);

GGC_garbage_collector();

printf("\nAgain after collection\n");

print_list(a);

GGC_garbage_collector();

printf("\nAgain after collection\n");

print_list(a);

GGC_garbage_collector();

printf("\nAgain after collection\n");

print_list(a);

for(i=1;i<10;i++)

{

c=(struct link *)GGC_malloc(sizeof(struct link));

c->num=1000*i;

c->next=a;

a=c;

}

printf("\nafter adding some another node\n");

print_list(a);

}

void print_list(struct link *c)

{

while(c!=NULL)

{

printf("\t%0x",c);

printf("\t%d",c->num);

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 11 143 - 150

__

149

IJRITCC | November 2016, Available @ http://www.ijritcc.org

c=c->next;

}

}

B. Metrics

We have used following metrics for result analysis:

i. Allocation time (in 0-30ms)

Figure 2. Allocation Time (in ms)

ii. Marking time

Figure 3. Mark Time (in ms)

iii. Total size of reachable objects

Figure 4. Mark Time (in ms) and reachable objects

iv. Allocation time for Boehm GC

Figure 5. Allocation time for Boehm GC (in ms)

C. Expected Outcomes

i. Allocation time increases if size of block increases.

ii. Mark time depends on number of reachable blocks

and size of each block.

iii. Copy time increases with size of block and

complexity of Data structures.

iv. Compaction will be done in memory.

VI. CONCLUSION AND FUTURE WORK

A new efficient algorithm is introduced for performing the

garbage collection for dynamically allocated data objects and it

is based on a conservative multi-generational age-based

approach which is real time in nature. In this paper, we have

given a small review of various garbage collection techniques

and also presented a new garbage collection technique called

conservative multi-generational age-based algorithm with fast

allocation, suitable to implement for many object oriented

languages. The proposed algorithm considers the third level

multigenerational garbage collection of unreachable objects

from live objects.

In future work, we can plan to improve the evaluation of

this proposed conservative multi-generational age-based

approach to compare with the other implementation of Garbage

Collection techniques what are introduced earlier. The future

work to reclaim the dynamically inserted data objects during

the program execution can be extended if these data objects are

found unreachable.

REFERENCES

[1] Rifat Shahriyar, Stephen M. Blackburn and Kathryn S. McKinley, “Fast
Conservative Garbage Collection”, OOPSLA ’14, October 20–24, 2014,
Portland, OR, USA.

[2] A. Baldassin, E. Borin and G. Araujo, “Performance implications of
dynamic memory allocators on transactional memory systems”, In
Proceedings of the 20th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP 2015, pages 87– 96, New
York, NY, USA, 2015.

[3] S. M. Blackburn, P. Cheng and K. S. McKinley, “Oil and water? High
performance garbage collection in Java with MMTk”, In 26th
International Conference on Software Engineering, pages 137–146,
Edinburgh, May 2004.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 11 143 - 150

__

150

IJRITCC | November 2016, Available @ http://www.ijritcc.org

[4] E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Sholten, and E. F. M.
Steffens, “On-the-fly garbage collection: an exercise in cooperation”, In
Communications of the ACM, pages 966–975, 1978.

[5] M. Herlihy and J. E. B. Moss, “Transactional memory: Architectural
support for lock-free data structures. SIGARCH Comput. Archit.”,
News, 21(2):289–300, May 1993.

[6] R. L. Hudson and J. E. B. Moss, “Sapphire: Copying gc without stopping
the world”, In Proceedings of the 2001 Joint ACMISCOPE Conference
on Java Grande, JGI ’01, pages 48–57, New York, NY, USA, 2001.

[7] B. Iyengar, G. Tene, M. Wolf, and E. Gehringer, “The collie: A waitfree
compacting collector” In Proceedings of the 2012 International
Symposium on Memory Management, ISMM ’12, pages 85–96, New
York, NY, USA, 2012.

[8] P. McGachey, A.-R. Adl-Tabatabai, R. L. Hudson, V. Menon, B. Saha,
and T. Shpeisman, “Concurrent gc leveraging transactional memory”, In
Proceedings of the 13th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’08, pages 217–226, New
York, NY, USA, 2008.

[9] F. Pizlo, E. Petrank, and B. Steensgaard, “A study of concurrent real-
time garbage collectors”, In Proceedings of the 2008 ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’08, pages 33–44, New York, NY, USA, 2008.

[10] C. G. Ritson, T. Ugawa, and R. E. Jones, “Exploring garbage collection
with haswell hardware transactional memory”, In Proceedings of the
2014 International Symposium on Memory Management, ISMM ’14,
pages 105–115, New York, NY, USA, 2014.

[11] P. R. Wilson, “Uniprocessor garbage collection techniques”, In Y.
Bekkers and J. Cohen, editors, Proceedings of the International
Workshop on Memory Management, volume 637 of Lecture Notes in
Computer Science, pages 1–42, St Malo, France, 16–18 Sept. 1992.

