
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 11 78 - 83

__

78
IJRITCC | November 2016, Available @ http://www.ijritcc.org

Simulation of Parallel Pipeline Radix 2^2 Architecture

Ankita. S. Dubey
Student MTech Electronics Engineering(Communication)

Vidharbh Institute of Technology

Nagpur,india.

Prof. Nilesh P. Bodne
Assistant Professor

Vidharbh Institute of Technology

Nagpur,india.

Abstract - In popular orthogonal frequency division multiplexing (OFDM) communication system processing is one of the key procedures Fast

Fourier transform (FFT) and inversely for that Fast Fourier Transform (IFFT) is one of them. In this VLSI implementation Structured pipeline

architectures, low power consumption, high speed and reduced chip area are the important concerns. In this paper, presentation of the

worthy implementation of FFT/IFFT processor for OFDM applications is described. We obtain the single-path delay feedback architecture, to

get a ROM of smaller size and this proposed architecture applies a reconfigurable complex multiplier. To minimize the error of truncation we

apply a fixed width modified booth multiplier. As a result, the proposed radix-2k feed forward architectures even offer an attractive solution for

current applications, and also open up a new research line on feed forward structures.

___*****__

INTRODUCTION

In the literature there are numerous FFT/IFFT designs.

Highly among them are devoted to efficient realization of

core FFT architecture and butterfly design. The needed

twiddle factors in FFT are mostly assumed stored in

memories in higher advanced and retrieved for butterfly

multiplication whenever needed. This basically ends up with

a very large lookup table in comparison with the core FFT

processing elements and main data memory, basically for

large FFT lengths as 8192. Thus, a capable TF genera-tor

with lesser area and high speed performance is in

dispensable, assuming mainly for portable and more data

rate design. In earlier times, TF generation techniques were

not taken into consideration because of the fact that OFDM

systems were not as pervasive as they are now. It was

mainly applied to off-line, non-real-time applications. But,

there are many popular generation techniques for

trigonometric functions that can be applied to TF generation.

For the designs of direct digital frequency synthesizer

(DDFS) these computing techniques are mainly used.

Fast Fourier Transform (FFT):

 In view of the importance of the DFT in various

digital signal processing applications, such as linear

filtering, correlation analysis, and spectrum analysis, its

efficient computation is a topic that has received

considerable attention by many mathematicians, engineers,

and applied scientists. From this point, we change the

notation that X(k), instead of y(k) in previous sections,

represents the Fourier coefficients of x(n). Basically, the

computational problem for the DFT is to compute the

sequence {X(k)} of N complex-valued numbers given

another sequence of data {x(n)} of length N, according to

the formula

 X(k)= 𝑥 𝑛 𝑁−1
𝑛−=0 𝑊𝑁

𝑘𝑛 , 0 ≤ 𝐾 ≤ 𝑁 − 1------------1

WN = 𝑒−𝑗2𝜋/𝑁 -------2

 In general, the data sequence x(n) is also

assumed to be complex valued. Similarly, The IDFT

becomes,

 X(n)= 1/𝑁 𝑥 𝑘 𝑁−1
𝑛−=0 𝑊𝑁

−𝑛𝐾 , 0 ≤ 𝐾 ≤ 𝑁 − 1------3

Since DFT and IDFT involve basically the same

type of computations, our discussion of efficient

computational algorithms for the DFT applies as well to the

efficient computation of the IDFT. We observe that for each

value of k, direct computation of X(k) involves N complex

multiplications (4N real multiplications) and N-1 complex

additions (4N-2 real additions). Consequently, to compute

all N values of the DFT requires N
 2
 complex multiplications

and N
 2
-N complex additions..

Radix-2 FFT Algorithms:

Assuming the computation of the N = 2
v
 point DFT

by the approach of divide-and conquer. We divide the N-

point data sequence into two N/2-point data sequences f1(n)

and f2(n), relating to the even-numbered and odd-numbered

samples of x(n), in sequence and that is,

f1(n) = x(2n) --------4

 f2(n) = x(2n+1), n = 0,1,-----,(N/2)-1---------5

Thus f1(n) and f2(n) are obtained by decimating x(n) by a factor of 2, and thus resulting FFT algorithm is known as a decimation-in-time algorithm. The N-point DFT now can be expressed in terms of the DFT's of the decimated sequences as described under

X(k)= 𝑥 𝑛 𝑁−1
𝑛=0 𝑊𝑁

𝑛𝐾 , 𝐾 = 0,1,− −−𝑁 − 1 ------- 6

 = 𝑥 𝑛 𝑁−1
𝑛=𝑒𝑣𝑒𝑛 𝑊𝑁

𝑛𝐾 + 𝑥 𝑛 𝑁−1
𝑛=𝑜𝑑𝑑 𝑊𝑁

𝑛𝐾 -------7

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 11 78 - 83

__

79
IJRITCC | November 2016, Available @ http://www.ijritcc.org

 = 𝑥 2𝑚

𝑁

2
 −1

𝑚=0 𝑊𝑁
𝑚𝐾 + 𝑥 2𝑚 + 1

𝑁

2
 −1

𝑚=0 𝑊𝑁
𝐾(2𝑚+1)

----8

 But WN
2
 = WN/2. With this substitution, the equation can be

expressed

X(k) = 𝑓1 𝑚

𝑁

2
 −1

𝑚=0 𝑊𝑁/2
𝑚𝐾 + 𝑊𝑁

𝐾 𝑓2 𝑚

𝑁

2
 −1

𝑚=0 𝑊𝑁/2
𝐾𝑚 --9

= f1(k) +𝑊𝑁
𝐾𝑚𝐹2(𝑘), k = 0,1,-----,N-1 -----10

Here F1(k) and F2(k) are the N/2 - point DFTs of the

sequences f1(m) and f2(m), respectively . Since F1(k)

and F2(k) are not constant, with period N/2, we

have F1(k+N/2) = F1(k) and F2(k+N/2) = F2(k). even, the

factor WN
k+N/2

 = -WN
k
. thus the equation can be expressed as,

X(k) = F1 (k) + 𝑊𝑁

2

𝑚𝐾𝐹2 𝑘 ,k=0,1,-----,(N/2)-1 ---.11

X(k+(N/2)) = F1 (k) - 𝑊𝑁
𝐾𝐹2 𝑘 , k = 0,1,-----,(N/2)-1 --12

We can see that the direct computation of F1(k) need

(N/2)
2
 complex multiplications. The same is needed by the

computation of F2(k). Even further, there are N/2 even more

complex multiplications needed to calculate WN
k
F2(k). Thus

the computation of X(k) requires 2(N/2)
2
 + N/2 = N

2
/2

+ N/2 complex multiplications. With this first step there is a

reduction of the number of multiplications from N
 2

to N
2
/2

+ N/2, which is about a factor of 2 for N large.

fig a.Butterfly parallel pipelined architecture

By computing N/4-point DFTs, we would obtain the N/2-

point DFTs F1(k) and F2(k) from the relations.

F1(k) = F1{f1(k)} + 𝑊𝑁

2

𝐾𝐹{𝑓1(2𝑛 + 1)}, k = 0,1,-----,(N/2)-

1; n = 0,1,-----,(N/4)-1 --------13

 F1(k+(N/4)) = F1{f1(2n)}-𝑊𝑁

2

𝐾𝐹{𝑓1(2𝑛 + 1)}, n = 0,1,-----

,(N/4)-1; n = 0,1,-----, (N/4)-1------- 14

 F2(k) = F{f2(2n)}-𝑊𝑁

2

𝐾𝐹{𝑓2(2𝑛 + 1)}, k= 0,1,-----

,(N/4)-1; n = 0,1,-----, (N/4)-1--------- 15

 F1(k+(N/4)) = F{f2(2n)}-𝑊𝑁

2

𝐾𝐹{𝑓2(2𝑛 + 1)}, k = 0,1,-----

,(N/4)-1; n = 0,1,-----, (N/4)-1------- 1.16

F(*) Represents Fourier Transform

The decimation of the data sequence can be repeated again

and again until the resulting sequences are reduced to one-

point sequences. For N = 2
v
, this decimation can be

performed v = log2N times.

Thus the total number of complex multiplications is reduced

to (N/2)log2N. The number of complex additions is Nlog2N.

For illustrative purposes, depicts the computation of N = 8

point DFT. We observe that the computation is performed in

tree stages, beginning with the computations of four two-

point DFTs, then two four-point DFTs, and finally, one

eight-point DFT. The combination for the smaller DFTs to

form the larger DFT is illustrated for N = 8.

 Fig b.Three stages in the computation of an N = 8-point

DFT.

 fig c. Eight-point decimation-in-time FFT Algorithm.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 11 78 - 83

__

80
IJRITCC | November 2016, Available @ http://www.ijritcc.org

Fig d.Basic butterfly computation in the decimation-in-

time FFT Algorithm.

An important observation is concerned with the

order of the input data sequence after it is decimated (v-1)

times. For example, if we consider the case where N = 8, we

know that the first decimation yields the sequence x(0), x(2),

x(4), x(6), x(1), x(3), x(5), x(7), and the second decimation

results in the sequence x(0), x(4), x(2), x(6), x(1), x(5), x(3),

x(7). This shuffling of the input data sequence has a well-

defined order as can be ascertained from observing, which

illustrates the decimation of the eight-point sequence.

 PROPOSED METHODOLOGY

 Pipelined FFT Hardware Architectures:

In the design of pipelined FFT hardware

architectures the appearance of radix-2
2
 was a milestone.

Further, radix-2
2
 was expanded to radix-2k. But, radix-2k

was proposed only for single-path delay feedback (SDF)

architectures, and it was not for feed forward ones, and also

known as multi-path delay commutator (MDC). With the

help of reference of few papers they used radix-2k feed

forward (MDC) FFT architectures.

Here the use of low power techniques is employed

so that power consumption is done and is reconfigurable

complex multiplier. With the use of radix-4 algorithm

single-path delay feedback pipelined architecture increase

the computational speed, further decrease the chip area by

three different processing elements (PE’s) and these were

proposed in this radix-4 64-point FFT/IFFT processor.

Fig.e Block diagram of FFT processor

Our proposed architecture uses a low complexity

reconfigurable complex multiplier instead of ROM tables to

generate twiddle factors and fixed width modified booth

multiplier to reduce the truncation error. Figure Shows the

Block diagram of FFT processor. We implement the

processor in SDF architecture with radix-4 algorithm.

There are various algorithms to implement FFT,

such as radix-2, radix-4 and split-radix with arbitrary sizes

[1]. Radix-2 algorithm is the simplest one, but its calculation

of addition and multiplication is more than radix-4's.

Though being more efficient than radix-2, radix-4 only can

process 4n-point FFT. The radix-4 FFT equation essentially

combines two stages of a radix-2 FFT into one, so that half

as many stages are required.

SIMULATION RESULT

 Stage 1

1.Half Adder:

To combine two binary digits and produce a carry half adder

is designed. Figure 5.1 depict two ways of constructing a

half adder. To generate the carry an AND gate is added in

parallel to the quarter adder. Output of the quarter adder is

represented by the CARRY and the output of AND gate. As

we come to know the output of the quarter adder is HIGH

when either input, but not both, is HIGH. It is seen in the

situation when only when both inputs are HIGH that the

AND gate is activated and a carry is produced.

Input:

 A library is one in which all new all designs are

compiled. For starting a new simulation in MODELSIM is

done by creating a working library called "work". The

compiler uses ‘work’ as the default destination for

compiled design units. Once the working library is created,

our own design units can be compiled into it. Across all

supported platforms The MODELSIM library format is

compatible. Without having design recompiled we can

simulate our design on any platform. Let us assume that the

design loads successfully, zero is the time where

stimulation is set up, and to begin simulation run command

has been entered.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 11 78 - 83

__

81
IJRITCC | November 2016, Available @ http://www.ijritcc.org

Output:

The proposed design has been simulated using

MODELSIM , the output obtained after simulating is as

shown in simulation is divided in to three parts first is

simulation result of half adder ,in half adder there are two

input a and b ,put a=1 and b=0, we get the result sout=1 and

cout=0.If we put a=0 and b=0 ,we get the result sout=0 and

cout=0.

Stage 2

2.Full Adder:

To obtain the correct sum of two binary digits

the full adder becomes compulsory when a carry input

need to be added. From previous circuits a half adder has

no input for carrying.

To use two half adders and an OR gate to get one full adder

is one of the methods which is described in figure 3. The

inputs A and B are applied to gates 1 and 2. This creates one

half adder. As a proven input to the second this half adder

and the carry-from a previous circuit tends to be one. To

produce the carry-out for the circuit the carry from each half

adder is applied to gate 5.

1.Input:

The library name used by the compiler as the

default destination for compiled design units. After

creating the working library, compile your design units into

it. The MODELSIM library format is compatible across all

supported platforms. The simulation is divided in to three

parts second part is simulation result of full adder ,in full

adder there are input a , b and c , put a=1, b=1,and c=1 can

simulate your design on platform without having to

recompile design. Assuming the design loads successfully,

the simulation time is set to zero, and you enter a run

command to begin simulation.

2. Output:

With the help of MODELSIM this design has been

processed, in fig it is shown how the output is obtained after

simulating. The simulation is separated in to three parts

second part is simulation result of full adder, in full adder

there are input a , b and c , put a=1, b=1,and c=1 we get the

result sout=1 and cout=1.If we put a=0 ,b=1 and c=1 ,we get

the result sout=0 and cout=1.

Stage 3

3.Full FFT:

1. Output in three clock cycle: In binary form:

Here whole result of the full FFT converted in to the binary

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 11 78 - 83

__

82
IJRITCC | November 2016, Available @ http://www.ijritcc.org

form for futher calculations.

2. Output in three clock cycle: In decimal form:

Parallel multiplier will give output in one clock

cycle independent of the number of bits at the input in

normal cases for n bit multiplier it requires n clock cycle

which makes it slows so, for 16 bit clock cycle while in or

case output will come in three clock cycle, here we reduce

forty eight clockcycle in to only three clock cycle hence by

using parallel pipelling technique we reduce the delay

93.75%.

CONCLUSION

 For the FFT processor with low power

consumption and efficient radix-2
2
 parallel pipeline

architecture has been proposed here. In this proposed article

by us there is inclusion of architecture a reconfigurable

complex constant multiplier and bit-parallel complex

multipliers either using ROM’s to store twiddle factors,

which is suitable for the power-of-2
2
 radix style having FFT

processors.

The reason behind employing Low-power

techniques is to minimize the power consumption in various

FFT architectures. In the first technique there is use of a

parallel-pipelined architecture at a lesser frequency to go till

the assigned throughput. The complex multiplier is replaced

with a minimum number of adders and shifters by using

both two’s complement in the second technique. In

one clock cycle Parallel multiplier will provide the output

which is not depended on the number of bits at the input in

normal cases. For n bit multiplier it need n clock cycle that

makes it slows so, for 16 bit clock cycle while in or case

output will come in one clock cycle.

 A memory based recursive FFT design has been

proposed that has lesser gate counts, lower power

consumption and more speed. The proposed architecture has

three main advantages (1) fewer butterfly iteration to reduce

power consumption, (2) pipeline of radix-2*2butterfly to

speed up clock frequency, (3) even distribution of memory

access to make utilization efficiency, in this paper, a number

of high-performance FFT cores depended on combinations

of hybrid low-power techniques were allowed. These low-

power techniques are parallel-pipelined architectures, the

multiplier less architecture, and the low-power butterfly

architecture. Study had been carried out on the impact of

parameterization on power/area. Which has main base as the

combination of the proposed low-power techniques, up to

78% power saving is obtained.

REFERENCES

[1] Mario Galvez, J Grajal, M A. Sanchez and Oscar Gusta

fsson.“Pipelined Radix-2(k) Feed Forward FFT

Architectures”2013, IEEE Transaction on Very Large

Scale Integration (VLSI) Systems

[2] Manohar Ayinala, Keshab K. Parhi“Parallel-Pipelined

Radix-2^2 FFT Architecture for Real Valued

Signals”2013 Department of Electrical and Computer

Engineering ,University of Minnesota, Mimmeapolis,

Mn, Usa.

[3] Preeti. G. Biradar, Uma reddy.N.V “Implementation of

Area Efficient OFDM Transceiver on FPGA”

International Journal of Soft Computing and Engineering

(IJSCE) ISSN: 2231-2307, Volume-3, Issue-3, July

2013.

[4] Anbarasan A. Shankar.K “Design and implementation

of low power FFT/IFFT processor for wireless

communication” Proceedings of the International

Conference on Pattern Recognition, Informatics and

Medical Engineering (PRIME-2012), pp. 152-155,

March 2012.

 [5] Chu yu Mao-Hsu Yen “A Low power 64-point

FFT/IFFT Processor for OFDM Applications” IEEE

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 11 78 - 83

__

83
IJRITCC | November 2016, Available @ http://www.ijritcc.org

Transactions on Consumer Electronics, Vol. 57, Feb

2011.

 [6] N. Kirubanandasarathy, Dr. K.Karthikeyan,” VLSI

Design of Mixed Radix FFT Processor for MIMI-

OFDM in Wireless Communication”, 2011 IEEE

Proceedings

 [7] N.Kirubanandasarathy, Dr.K.Karthikeyan,” VLSI

Design of Mixed Radix FFT Processor for MIMI-

OFDM in Wireless Communication”, 2011 IEEE

Proceedings.

 [8] Fahad Qureshi and Oscar Gustafson, ”Twiddle Factor

Memory Switching Activity Analysis of Radix-22 and

Equivalent FFT Algorithms”, IEEE Proceedings, April

2010.

 [9] Jianing Su, Zhenghao Lu, “Low cost VLSI design of a

flexible FFT processor”, IEEE Proceedings, April

2010.

[10] He Jing, Ma Lanjaun, Xu Xinyu, “A Configurable FFT

Processor”, IEEE proceeding 2010.

[11] M.Merlyn, “FPGA Implementation of FFT Processor

with OFDM Transceiver”, 2010 IEEE proceeding.

[12] Nuo Li and N.P.van der Meijs, “A Radix based Parallel

pipelined FFT processor for MB- OFDM UWB

system,“ IEEE Proceedings, 2009.

[13] M. Garrido, K. K. Parhi, and J. Grajal, “A pipelined FFT

architecture for real-valued signals,” IEEE Trans.

Circuits Syst. I, vol. 56, no. 12,pp. 2634–2643, Dec.

2009.

[14] Minhyrok Shin and Hanho Lee, “ A High-Speed Four

Parallel Radix-24 FFT/IFFT Processor for UWB

Applications,” in Proc. IEEE Int. Symp. Circuits and

systems, 2008, pp. 960-963.

 [15] E. E. Swartzlander, W. K. W. Young, and S. J. Joseph,

“A radix 4 delay commutator for fast Fourier transform

processor implementation,” IEEEJ. Solid-State Circuits,

vol. 19, no. 5, pp. 702–709, Oct. 1984.

 [16] J. A. Johnston, “Parallel pipeline fast Fourier

transformer,” in IEE Proc.F Comm. Radar Signal

Process., vol. 130, no. 6, Oct. 1983, pp. 564–572.

[17] P. A. Milder, F. Franchetti, J. C. Hoe, and M. P¨uschel,

“Formal data path representation and manipulation for

implementing DSP transforms,” in Proc. IEEE Design

Automation Conf., Jul. 2008, pp. 385–390.

[18] Wei Han, Ahmet T. Erdogan, Tughrul Arslan, and Mohd.

Hasan “High-Performance Low-Power FFT Cores”

ETRI Journal, Volume 30, Number 3, June 2008

 [19] Jen-Chuan Chi and Sau-Gee Chen “An Efficient

Fft Twiddle Factor Generator” 2007 National Chiao

Tung University Department of Electronics Engineering

and Institute of Electronics 1001 Ta Hsueh Rd, Hsinchu,

Taiwan, ROC.

[20] Yuan Chen, Yu-Wei Lin, “A Slock scalin FFT/IFFT

processor for WiMAX Applications” IEEE proceedings

2006.

[21] J. Choi and V. Boriakoff, "A new linear systolic array

for FFT computation," IEEE Trans. Circuits Syst. II,

vol. 39, Apr. 1992, pp.236–239.

[22] L.-W Chang and M.-Y. Wu, "A new systolic array for

discrete Fourier transform," IEEE Trans. Acoust.,

Speech, Signal Processing, vol.36,Oct. 1988, pp.1165-

1167

 [23] V. Boriakoff, "FFT computation with systolic arrays, a

new architecture," IEEE Trans. Circuits Syst. II, vol. 41,

Apr. 1994, pp. 278–284.

 [24] B. Gold and T. Bially, “Parallelism in fast Fourier

transform hardware,”IEEE Trans. Audio Electroacoust.,

vol. 21, no. 1, pp. 5–16, Feb. 1973.

