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Abstract - In popular orthogonal frequency division multiplexing (OFDM) communication system processing is one of the key procedures Fast 

Fourier transform (FFT) and inversely for that Fast Fourier Transform (IFFT) is one of them.  In this  VLSI  implementation Structured  pipeline  

architectures,  low power  consumption,  high  speed  and  reduced  chip  area  are the important concerns.  In this paper, presentation of the 

worthy implementation of FFT/IFFT processor for OFDM applications is described. We obtain the single-path delay feedback architecture, to 

get a ROM of smaller size and this proposed architecture applies a reconfigurable complex multiplier. To minimize the error of truncation we 

apply a fixed width   modified booth multiplier. As a result, the proposed radix-2k feed forward architectures even offer an attractive solution for 

current applications, and also open up a new research line on feed forward structures. 

_________________________________________________*****__________________________________________________  

INTRODUCTION 

In the literature there are numerous FFT/IFFT designs. 

Highly among them are devoted to efficient realization of 

core FFT architecture and butterfly design. The needed 

twiddle factors in FFT are mostly assumed stored in 

memories in higher advanced and retrieved for butterfly 

multiplication whenever needed. This basically ends up with 

a very large lookup table in comparison with the core FFT 

processing elements and main data memory, basically for 

large FFT lengths as 8192. Thus, a capable TF genera-tor 

with lesser area and high speed performance is in 

dispensable, assuming mainly for portable and more data 

rate design. In earlier times, TF generation techniques were 

not taken into consideration because of the fact that OFDM 

systems were not as pervasive as they are now. It was 

mainly applied to off-line, non-real-time applications. But, 

there are many popular generation techniques for 

trigonometric functions that can be applied to TF generation. 

For the designs of direct digital frequency synthesizer 

(DDFS) these computing techniques are mainly used. 

Fast Fourier Transform (FFT): 

 In view of the importance of the DFT in various 

digital signal processing applications, such as linear 

filtering, correlation analysis, and spectrum analysis, its 

efficient computation is a topic that has received 

considerable attention by many mathematicians, engineers, 

and applied scientists. From this point, we change the 

notation that X(k), instead of y(k) in previous sections, 

represents the Fourier coefficients of x(n). Basically, the 

computational problem for the DFT is to compute the 

sequence {X(k)} of N complex-valued numbers given 

another sequence of data {x(n)} of length N, according to 

the formula 

       X(k)= 𝑥 𝑛 𝑁−1
𝑛−=0 𝑊𝑁

𝑘𝑛 ,         0 ≤ 𝐾 ≤ 𝑁 − 1------------1 

WN = 𝑒−𝑗2𝜋/𝑁                                                  -------2 

                  In general, the data sequence x(n) is also 

assumed to be complex valued. Similarly, The IDFT 

becomes, 

   X(n)= 1/𝑁 𝑥 𝑘 𝑁−1
𝑛−=0 𝑊𝑁

−𝑛𝐾 ,      0 ≤ 𝐾 ≤ 𝑁 − 1------3 

Since DFT and IDFT involve basically the same 

type of computations, our discussion of efficient 

computational algorithms for the DFT applies as well to the 

efficient computation of the IDFT. We observe that for each 

value of k, direct computation of X(k) involves N complex 

multiplications (4N real multiplications) and N-1 complex 

additions (4N-2 real additions). Consequently, to compute 

all N values of the DFT requires N
 2
 complex multiplications 

and N
 2
-N complex additions.. 

 

Radix-2 FFT Algorithms: 

Assuming the computation of the N = 2
v
 point DFT 

by the approach of divide-and conquer. We divide the N-

point data sequence into two N/2-point data sequences f1(n) 

and f2(n), relating to the even-numbered and odd-numbered 

samples of x(n), in sequence and that is, 

f1(n) = x(2n)                                --------4 

         f2(n) = x(2n+1),     n = 0,1,-----,(N/2)-1---------5 

Thus f1(n) and f2(n) are obtained by decimating x(n) by a factor of 2, and thus resulting FFT algorithm is known as a decimation-in-time algorithm. The N-point DFT now can be expressed in terms of the DFT's of the decimated sequences as described under 

X(k)=  𝑥 𝑛 𝑁−1
𝑛=0 𝑊𝑁

𝑛𝐾 ,         𝐾 = 0,1,− −−𝑁 − 1  -------   6 

  = 𝑥 𝑛 𝑁−1
𝑛=𝑒𝑣𝑒𝑛 𝑊𝑁

𝑛𝐾 +   𝑥 𝑛 𝑁−1
𝑛=𝑜𝑑𝑑 𝑊𝑁

𝑛𝐾                -------7 
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  = 𝑥 2𝑚 
 
𝑁

2
 −1

𝑚=0 𝑊𝑁
𝑚𝐾 +   𝑥 2𝑚 + 1 

 
𝑁

2
 −1

𝑚=0 𝑊𝑁
𝐾(2𝑚+1)

----8 

  But WN
2
 = WN/2. With this substitution, the equation can be 

expressed    

X(k)  = 𝑓1 𝑚 
 
𝑁

2
 −1

𝑚=0 𝑊𝑁/2
𝑚𝐾 +  𝑊𝑁

𝐾  𝑓2 𝑚 
 
𝑁

2
 −1

𝑚=0 𝑊𝑁/2 
𝐾𝑚   --9   

= f1(k) +𝑊𝑁
𝐾𝑚𝐹2(𝑘),     k = 0,1,-----,N-1              -----10  

Here F1(k) and F2(k) are the N/2 - point DFTs of the 

sequences f1(m) and f2(m), respectively . Since F1(k) 

and F2(k) are not constant, with period N/2, we 

have F1(k+N/2) = F1(k) and F2(k+N/2) = F2(k). even, the 

factor WN
k+N/2

 = -WN
k
. thus the equation can be expressed as, 

X(k) = F1 (k) + 𝑊𝑁

2

𝑚𝐾𝐹2 𝑘 ,k=0,1,-----,(N/2)-1 ---.11 

X(k+(N/2)) = F1 (k) - 𝑊𝑁
𝐾𝐹2 𝑘 ,    k = 0,1,-----,(N/2)-1  --12 

We can see that the direct computation of F1(k) need 

(N/2)
2
 complex multiplications. The same is needed by the 

computation of F2(k). Even further, there are N/2 even more 

complex multiplications needed to calculate WN
k
F2(k). Thus 

the computation of X(k) requires 2(N/2)
2
 + N/2 = N 

2
/2 

+ N/2 complex multiplications. With this first step there is a 

reduction of the number of multiplications from N
 2 

to N 
2
/2 

+ N/2, which is about a factor of 2 for N large. 

             
fig a.Butterfly parallel pipelined architecture 

By computing N/4-point DFTs, we would obtain the N/2-

point DFTs F1(k) and F2(k) from the relations. 

 

F1(k) = F1{f1(k)} + 𝑊𝑁

2

𝐾𝐹{𝑓1(2𝑛 + 1)},   k = 0,1,-----,(N/2)-

1;    n = 0,1,-----,(N/4)-1 --------13 

  F1(k+(N/4)) = F1{f1(2n)}-𝑊𝑁

2

𝐾𝐹{𝑓1(2𝑛 + 1)},  n = 0,1,-----

,(N/4)-1;   n = 0,1,-----, (N/4)-1-------  14 

  F2(k) = F{f2(2n)}-𝑊𝑁

2

𝐾𝐹{𝑓2(2𝑛 + 1)},              k= 0,1,-----

,(N/4)-1;   n = 0,1,-----, (N/4)-1--------- 15 

  F1(k+(N/4)) = F{f2(2n)}-𝑊𝑁

2

𝐾𝐹{𝑓2(2𝑛 + 1)},   k = 0,1,-----

,(N/4)-1;   n = 0,1,-----, (N/4)-1-------   1.16 

F(*) Represents Fourier Transform 

The decimation of the data sequence can be repeated again 

and again until the resulting sequences are reduced to one-

point sequences. For N = 2
v
, this decimation can be 

performed v = log2N times.  

Thus the total number of complex multiplications is reduced 

to (N/2)log2N. The number of complex additions is Nlog2N. 

For illustrative purposes, depicts the computation of N = 8 

point DFT. We observe that the computation is performed in 

tree stages, beginning with the computations of four two-

point DFTs, then two four-point DFTs, and finally, one 

eight-point DFT. The combination for the smaller DFTs to 

form the larger DFT is illustrated for N = 8. 

 
 Fig b.Three stages in the computation of an N = 8-point 

DFT. 

 

 fig c. Eight-point decimation-in-time FFT Algorithm. 



International Journal on Recent and Innovation Trends in Computing and Communication                                 ISSN: 2321-8169 

Volume: 4 Issue: 11                                                                                                                                                       78 - 83 

______________________________________________________________________________________ 

80 
IJRITCC | November 2016, Available @ http://www.ijritcc.org  

_______________________________________________________________________________________ 

 
Fig d.Basic butterfly computation in the decimation-in-

time FFT Algorithm. 

 

An important observation is concerned with the 

order of the input data sequence after it is decimated (v-1) 

times. For example, if we consider the case where N = 8, we 

know that the first decimation yields the sequence x(0), x(2), 

x(4), x(6), x(1), x(3), x(5), x(7), and the second decimation 

results in the sequence x(0), x(4), x(2), x(6), x(1), x(5), x(3), 

x(7). This shuffling of the input data sequence has a well-

defined order as can be ascertained from observing, which 

illustrates the decimation of the eight-point sequence.   

      PROPOSED METHODOLOGY 

 

 Pipelined FFT Hardware Architectures: 

In the design of pipelined FFT hardware 

architectures the appearance of radix-2
2
 was a milestone. 

Further, radix-2
2
 was expanded to radix-2k. But, radix-2k 

was proposed only for single-path delay feedback (SDF) 

architectures, and it was not for feed forward ones, and also 

known as multi-path delay commutator (MDC). With the 

help of reference of few papers they used radix-2k feed 

forward (MDC) FFT architectures.  

Here the use of low power techniques is employed 

so that power consumption is done and is reconfigurable 

complex multiplier. With the use of radix-4 algorithm 

single-path delay feedback pipelined architecture increase 

the computational speed, further decrease the chip area by 

three different processing elements (PE’s) and these were 

proposed in this radix-4 64-point FFT/IFFT processor.  

 
Fig.e Block diagram of FFT processor 

Our proposed architecture uses a low complexity 

reconfigurable complex multiplier instead of ROM tables to 

generate twiddle factors and fixed width modified booth 

multiplier to reduce the truncation error. Figure Shows the 

Block diagram of FFT processor. We implement the 

processor in SDF architecture with radix-4 algorithm.  

There are various algorithms to implement FFT, 

such as radix-2, radix-4 and split-radix with arbitrary sizes 

[1]. Radix-2 algorithm is the simplest one, but its calculation 

of addition and multiplication is more than radix-4's. 

Though being more efficient than radix-2, radix-4 only can 

process 4n-point FFT. The radix-4 FFT equation essentially 

combines two stages of a radix-2 FFT into one, so that half 

as many stages are required. 

SIMULATION RESULT 

 Stage 1 

1.Half Adder: 

To combine two binary digits and produce a carry half adder 

is designed. Figure 5.1 depict two ways of constructing a 

half adder. To generate the carry an AND gate is added in 

parallel to the quarter adder. Output of the quarter adder is 

represented by the CARRY and the output of AND gate. As 

we come to know the output of the quarter adder is HIGH 

when either input, but not both, is HIGH. It is seen in the 

situation when only when both inputs are HIGH that the 

AND gate is activated and a carry is produced.  

 

Input: 

 
 A library is one in which all new all designs are 

compiled. For starting a new simulation in MODELSIM is 

done by creating a working library called "work". The 

compiler uses ‘work’ as the default destination for 

compiled design units. Once the working library is created, 

our own design units can be compiled into it. Across all 

supported platforms The MODELSIM library format is 

compatible. Without having design recompiled we can 

simulate our design on any platform. Let us assume that the 

design loads successfully, zero is the time where 

stimulation is set up, and to begin simulation run command 

has been entered.  
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Output: 

 
The proposed design has been simulated using 

MODELSIM , the output obtained after simulating is as  

shown in simulation is divided in to three parts first is 

simulation result of half adder ,in half adder there are two 

input a and b ,put a=1 and b=0, we get the result sout=1 and 

cout=0.If we put a=0 and b=0 ,we get the result sout=0 and 

cout=0. 

Stage 2 

2.Full Adder: 

To obtain the correct sum of two binary digits 

the full adder becomes compulsory when a carry input 

need to be added. From previous circuits a half adder has 

no input for carrying. 

To use two half adders and an OR gate to get one full adder 

is one of the methods which is described in figure 3. The 

inputs A and B are applied to gates 1 and 2. This creates one 

half adder. As a proven input to the second this half adder 

and the carry-from a previous circuit tends to be one. To 

produce the carry-out for the circuit the carry from each half 

adder is applied to gate 5. 

1.Input: 

 
 

The library name used by the compiler as the 

default destination for compiled design units. After 

creating the working library, compile your design units into 

it. The MODELSIM library format is compatible across all 

supported platforms. The simulation is divided in to three 

parts second part is simulation result of full adder ,in full 

adder there are  input a , b and c , put a=1, b=1,and c=1 can 

simulate your design on  platform without having to 

recompile design. Assuming the design loads successfully, 

the simulation time is set to zero, and you enter a run 

command to begin simulation.  

2. Output: 

 
With the help of MODELSIM this design has been 

processed, in fig it is shown how the output is obtained after 

simulating. The simulation is separated in to three parts 

second part is simulation result of full adder, in full adder 

there are  input a , b and c , put a=1, b=1,and c=1 we get the 

result sout=1 and cout=1.If we put a=0 ,b=1 and c=1 ,we get 

the result sout=0 and cout=1. 

Stage 3 

3.Full FFT: 

1. Output in three clock cycle: In binary form: 

 
Here whole result of the full FFT converted in to the binary 
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form for futher calculations. 

2. Output in three clock cycle: In decimal form: 

 

 
Parallel multiplier will give output in one clock 

cycle independent of the number of bits at the input in 

normal cases for n bit multiplier it requires n clock cycle 

which makes it slows so, for 16 bit clock cycle while in or 

case output will come in three clock cycle, here we reduce 

forty eight clockcycle in to only three clock cycle hence by 

using parallel pipelling technique we reduce the delay 

93.75%. 

 

CONCLUSION  

 For the FFT processor with low power 

consumption and efficient radix-2
2
 parallel pipeline 

architecture has been proposed here. In this proposed article 

by us there is inclusion of architecture a reconfigurable 

complex constant multiplier and bit-parallel complex 

multipliers either using ROM’s to store twiddle factors, 

which is suitable for the power-of-2
2
 radix style having FFT 

processors. 

The reason behind employing Low-power 

techniques is to minimize the power consumption in various 

FFT architectures. In the first technique there is use of a 

parallel-pipelined architecture at a lesser frequency to go till 

the assigned throughput. The complex multiplier is replaced 

with a minimum number of adders and shifters by using 

both two’s complement in the second technique.               In 

one clock cycle Parallel multiplier will provide the output 

which is not depended on the number of bits at the input in 

normal cases. For n bit multiplier it need n clock cycle that 

makes it slows so, for 16 bit clock cycle while in or case 

output will come in one clock cycle. 

 
 

 A memory based recursive FFT design has been 

proposed that has lesser gate counts, lower power 

consumption and more speed. The proposed architecture has 

three main advantages (1) fewer butterfly iteration to reduce 

power consumption, (2) pipeline of radix-2*2butterfly to 

speed up clock frequency, (3) even distribution of memory 

access to make utilization efficiency, in this paper, a number 

of high-performance FFT cores depended on combinations 

of hybrid low-power techniques were allowed. These low-

power techniques are parallel-pipelined architectures, the 

multiplier less architecture, and the low-power butterfly 

architecture. Study had been carried out on the impact of 

parameterization on power/area. Which has main base as the 

combination of the proposed low-power techniques, up to 

78% power saving is obtained. 
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