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Abstract:- In this paper we have discussed an interesting type of sequence called “Connell Sequence”. The main part of the paper lies in deriving 

the generating function for the Connell Sequence and its limiting behavior is discussed. We have extended the definition of Connell Sequence 

and have studied the “General Connell Sequences” and have studied its generating function and its limiting behavior. The connection between 

Connell Sequences and the Polygonal Numbers are also explored in the process of finding the Generating Functions of these Sequences. 
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1. Introduction: 

In 1959 Ian Connell [1] defined a curious sequence which now bears his name. The sequence is given by  

  1, 2, 4, 5, 7, 9, 10, 12, 14, 16, 17, 19, 21, 23, 25,  ... 

(A001614 in the On-Line Encyclopedia of Integer Sequences). 

It is created by the following way: The first odd number is followed by the next two even numbers, which in turn are 

followed by the next three odd numbers, and so on. 

Lakhtakia and Pickover [2] have studied the interesting generating function for n given by  

C(n) = 2n- [(1+ Sqrt(8n-7))/2] ,  where [x] is the greatest integer less than or equal to x and Sqrt (x) is the Square root of x.  From 

the above formula they have also asserted that C(n)/n is 2 for large n.  

As a first step we will now demonstrate a new proof of  generating function for C(n) and subsequently the behavior of 

C(n)/n as n approaches infinity. 

For establishing the generating function for C(n) we first observe that the above sequence can be concatenated in to finite 

subsequences,   

Subsequence Number:                                           Subsequence 

1 1 

2 2,4 

3 5,7,9 

4 10,12,14,16 

...                                               ... 

where the nth subsequence contains n elements, the last of which is n
2
. So if we let C(n) denote the nth element of the Connell 

Sequence then  

C(Tn) = n
2
...(1), where Tn is the nth Triangular Number given by n(n+1)/2. 

Now |S1| + |S2| + ... +|S n| = 1+2+3+...+n = Tn and so the last element of Sn is C(Tn). Thus Sn+1 begins with the element C(Tn) +1 

and since | Sn+1| = n+1,  it ends with the element C(Tn) + 1+ 2n. But this last element is also expressible as C(Tn+1). Therefore, 

assuming the induction hypothesis C(Tn) = n
2
, we obtain  
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C(Tn+1) = C(Tn) + 1+ 2n = n
2 

+1+2n = (n+1)
2
. Hence by induction hypothesis we have for all positive  integers n, C(Tn) = n

2
. Here 

Tn is the nth Triangular number and n
2
 is the nth Square number. Thus C expresses relationship between Triangular and Square 

numbers. Using this we will now derive the generating function for C(n). 

Define the sequence H by H(n) = 2n- C(n) ...(2) 

Let n be a positive integer. There is a positive j, and fixed i such that 1≤i≤1+j, for which n = T(j)+i.  

Thus C(n) belong to the Subsequence Sj+1. As C(T(j)) is the last element of Sj , we have  

C(n) = C(T(j)+i) = C(T(j))+1+2(i-1)...(3) 

Now, H(n) = 2n-C(n) = 2n - {C(T(j))+1+2(i-1)}  

= 2n-{j
2
+1+2i-2} = 2{j(j+1)/2+i}-{ j

2
+2i-1} = j+1.  

Hence H(n) = j+1...(4) 

Since n ≥ T(j)+1, n-1 ≥ T(j) = j(j+1)/2 and so we have  

j
2
+j-2(n-1) ≤ 0, which is a quadratic inequality in j, and so we have j≤ (-1+Sqrt(8n-7))/2 and  j+1 ≤ (1+ Sqrt(8n-7))/2, so from (4) 

we have  

H(n) = [(1+ Sqrt(8n-7))/2] and from (2) we get  

C(n) = 2n-[(1+ Sqrt(8n-7))/2] which is the Generating Function for the Connell Sequence C(n) defined above. Now, C(n)/n = 2-

[1/2n+0.5√(8/n)-(7/ n
2
)] and since (a/n) approaches zero as n approaches infinity, the ratio C(n)/n approaches 2 as n is very large.  

Thus lim C(n)/n = 2 as n → ∞. 

2. Generalized Connell Sequence with parameters 

For fixed integers m≥2 and r≥1 we construct a sequence as follows: Take the first integer which is congruent to 1 (mod 

m) (that being 1 itself), followed by next 1+r integers which are congruent to 2 (mod m), followed by 1+2r integers which are 

congruent to 3 (mod m), and so on. If m=2 and r=1 (the smallest possible cases) we have the Connell Sequence discussed above. 

Here is a formal definition. 

Definition 1: Let m≥2 and r≥1 be integers. We denote by Cm,r (n) the nth term of the generalized Connell Sequence with 

parameters m and r, or, simply the  

Connell (m,r)-Sequence. The sequence is defined as follows: 

 

1. The sequence is formed by concatenating subsequences S1,S2, ..., each of finite length. 

2. The subsequence S1 consists of element 1. 

3. If the nth subsequence Sn ends with the element e, then the (n+1)th subsequence Sn+1 begins with the element e+1. 

4. If Sn consists of t elements, then Sn+1 consists of t+r elements. 

5. Each subsequence is non-decreasing, and the difference between two consecutive elements in the same subsequence is m. 

From the above definition the Connell Sequence discussed in 1. is C2,1(n). As another example we can consider the 

general Connell Sequence C3,2(n) whose elements according to the above definition are given by 

1,2,5,8,9,12,15,18,21,22,25,28,31,34,37,40,... 
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If we follow the above definition we can arrange the above sequence in terms of subsequences as follows: 

n                       Sn 

1                        1 

2                        2,5,8 

3                        9,12,15,18,21 

4                        22,25,28,31,34,37,40 

             ...                         ...                                           

The final elements 1,8,21,40, ... in the subsequences appear to be the Octagonal numbers,  En = n(3n-2). The nth 

subsequence contains exactly 2n-1 elements, and from the identity 1+3+5+...+(2n-1) = n
2 
we obtain the relation  

C3,2 ( n
2
 ) = En.  Just as the Connell Sequence relates triangular numbers to squares, the sequence  C3,2(n) relates Squares to 

Octagonal numbers. Triangular numbers, Squares and Octagonal numbers are all examples of Polygonal numbers. So there exist a 

definite relation between Cm,r (n) and the polygonal numbers for each m and r. 

3. Relationships with Polygonal Numbers 

Definition 2: For integers k ≥3, the nth k-gonal number is defined as  

Pk(n) = n{(k-2)n-(k-4)}/2 . 

We shall demonstrate the relationship between generalized Connell Sequences and Polygonal Numbers [3]. 

S1 contains 1 element and S2  contains 1+r elements, S3 contains 1+2r elements and so on. Therefore Sn contains exactly 1+(n-1)r 

elements.(Refer Conditions 2 and 4 in the Definition given above). Therefore to reach the end of nth subsequence Sn , we must 

count exactly                 

|S1| + |S2| + ... +|S n| = 1+(1+r)+(1+2r)+...+1+(n-1)r = n{2+(n-1)r}/2 = Pr+2(n) (By definition 2) elements of the sequence Cm,r (n). 

Hence the last element of  Sn is Cm,r(Pr+2(n)). Thus Sn+1  begins (Refer Condition 3 of Definition 1) with the element 

Cm,r(Pr+2(n))+1, and since, 

 | Sn+1| = 1+nr, it ends with (Refer condition 5 of Definition 1) the element  Cm,r(Pr+2(n))+1+mnr. But this last element is also 

expressible as  Cm,r(Pr+2(n+1)). Therefore assuming the Induction Hypothesis Cm,r(Pr+2(n)) = Pmr+2 (n), we obtain    

Cm,r(Pr+2(n+1)) = Cm,r(Pr+2(n))+1+mnr = Pmr+2 (n)+1+mnr = Pmr+2 (n+1). (By definition 2)  

Thus Cm,r(Pr+2(n+1)) = Pmr+2 (n+1), and hence by induction we have for all positive integers n, Cm,r(Pr+2(n)) = Pmr+2 (n), which is the 

relation between generalized Connell Sequences and Polygonal numbers.                                    

As an illustration we find that C2,1(P3(n)) = P4(n)    

i.e. C2,1(Tn) = n
2
, since P3(n) is Tn a Triangular number and P4(n) is a Square number. Similarly C3,2(P4(n)) = P8(n) i.e. C3,2 ( n

2
 ) = 

En , where P8(n) =  En is a Octagonal number, which were established before. 

4. Limiting Behavior                                                    

We will determine the behavior of  Cm,r (n)/n as n approaches infinity, using the relation  

Cm,r(Pr+2(n)) = Pmr+2 (n) derived above.                    

Let n be a positive integer. There is a positive j, and a fixed i such that 1≤i≤1+rj, for which n = P r+2(j) +i. Thus Cm,r (n) = Cm,r (P 

r+2(j) +i) = Cm,r (P r+2(j))+1+m(i-1),  is the ith element of the subsequence Sj+1. As Cm,r(P r+2(j)) is the last element of Sj, from 

Definition 1, we have 

Cm,r (n) = Cm,r (P r+2(j))+1+m(i-1) = P mr+2 (j)+1+m(i-1). 

Now since n = P r+2(j) +i and 1≤i≤1+rj we have                 

P mr+2 (j)+1≤ P mr+2 (j)+1+m(i-1) ≤ P mr+2 (j)+1+mrj  and 

P r+2(j)+1 ≤  P r+2(j) +i ≤  P r+2(j) +1+rj  and so we get   

(P mr+2 (j)+1)/( P r+2(j) +1+rj ) ≤ (P mr+2 (j)+1+m(i-1))/( P r+2(j) +i) ≤ (P mr+2 (j)+1+mrj )/ (P r+2(j)+1)           

i.e. A ≤  Cm,r (n)/n ≤ B...(5), where  

A = (P mr+2 (j)+1)/( P r+2(j) +1+rj ) and B = (P mr+2 (j)+1+mrj )/ (P r+2(j)+1). Now using definition 2. we see that both A and B 

approaches m as j→ ∞ and since n = P r+2(j) +i,  

n→ ∞ as  j→ ∞. Therefore from (5), by Squeeze Principle, we have    Cm,r (n)/n  also approaches m as n→ ∞. Thus  

lim Cm,r (n)/n = m as n→ ∞.                                     
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5. Generating Function for Cm,r (n) 

To find a generating function for Cm,r (n) we modify Korsak’s [4] proof which is used in 1. for deriving the generating function for 

C2,1(n). 

Define the sequence H by H(n) = mn - Cm,r (n)...(6)   

we assume n>1and n = P r+2(j) +i exactly as in 4. Now, from (6) we have H(n) = mn - Cm,r (n)       

H(n) = mn – {Cm,r (P r+2(j))+1+m(i-1)} 

H(n) = mn – { P mr+2 (j)+1+m(i-1)} 

        = mn-1-im+m-j{mrj-(mr-2)}/2      

        = mj{rj-(r-2)}/2+mi-1-im+m-j{mrj-(mr-2)}/2      

        = mj+m-j-1 = (m-1) (j+1) and so              

H(n) = (m-1) (j+1) from which j+1 = H(n)/(m-1)...(7) 

Since n≥ P r+2(j) +1, we have n-1≥j{rj-(r-2)}/2 and so  

r j
2
 – (r-2)j – 2 (n-1) ≤ 0, which is a quadratic inequality in j. So from the above inequality we get                 

j ≤ {(r-2) + Sqrt ((r-2)
2
 +8r(n-1))}/2r  where Sqrt(x) is the Square root of x. Therefore we have  

j+1 ≤ {(3r-2) + Sqrt ((r-2)
2
 +8r(n-1))}/2r  and since j+1 is always an integer we have                   

j+1 = [{(3r-2) + Sqrt ((r-2)
2
 +8r(n-1))}/2r ], where [x] is the greatest integer ≤ x. Thus from (6) and (7) we have     

Cm,r (n)   = mn – (m-1) [{(3r-2) + Sqrt ((r-2)
2
 +8r(n-1))}/2r], 

which is the generating function of Cm,r (n).   

As a special case if we put m = 2 and r = 1 we get the generating function of C2,1(n) which is given by 

C2,1(n) = 2n – [(1 + Sqrt (8n-7))/2] which is derived in 1. 
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