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Abstract:- Using Combinatorial Group Theory an area of mathematics arising from Abstract Algebra, the so called Word Problems can be 

effectively understood. With the objective of finding applications of the elements of fundamental groups, an attempt has been made in this paper 

to discuss the word problem in the form of finding the generators in the English Alphabets. These ideas can be widely used in Cryptography, the 

science of secret codes.   

__________________________________________________*****_________________________________________________ 

1. INTRODUCTION 

 

The concept of Group presentation forms an indispensable and integral part of the manyapplications of group theory. The basic 

idea embodied is to form a group by giving a set of generators for the groups and certain equation or relations satisfied by the 

generators. In the theory of group presentations, the role that is played in analytic geometry by a coordinate system, is played by 

free groups.  

 

The word problem in groups involves the case in which a group G is generated by a finite number of elements 1 2 3, , ,..., ra a a a

and these satisfy a finite number of relations. In the group G is it possible to decide whether or not two different words 1 2,w w

represent the same element of G or equivalently, whether or not 
1

1 2w w w    is the identity?  

 

One of the most interesting question about a group is deciding whether its word problems can be solvable? Lots of work has been 

done in the direction of answering this question and I will present some of the key ideas with my insights related to word 

problems in this paper.  

 

2. GENERATORS OF ENGLISH ALPHABETS 

 

Let  , , , , ,..., , ,G a b c d e x y z be any set. We may then think G as a set of English alphabets. We may also assume that any 

symbol of the form 
na with ,n N a A   is a syllable and a finite string of syllables written in juxtaposition shall be 

considered as a word.  

 

Let the elements of G satisfy the relations 
1 2 3 4 26, , , ,...,a a b a c a d a z a     and 

0 27a a   also be an 

element of G. Then
35 35 27 8a a a h   .  

Thus any element of G can be written as a


for 0 26  . So any word generated by G would also be some power of a. We 

now define a binary operation to combine any two words generated by G termed “Juxtaposition modulo 27” denoted by  as 

follows:  
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For 1 2

1 2,w a w a 
  we have:  

1 27 21 2 ( )

1 2 (1)w w a a a
   

     , where 27 denotes addition modulo 27 

operation. I now show that G is a group under the binary operation defined in (1).  

 

 

Theorem 1:  

 

The set  , , , , ,..., , ,G a b c d e x y z form a group under the operation  defined above.  

 

Proof:  We will verify the Group axioms in order to establish this theorem.  

 

(i)  Closure Property:  For any two words 
1 2

1 2,w a w a 
  generated by G, we have 

1 27 2 31 2 ( )

1 2w w a a a a
    

     , where 30 26  . Since we consider modulo 27 operation, we get the desired 

range for 3 . Now for 30 26  , 
3a G


 . Thus for any two words 

31 2

1 2 1 2, ,w a w a G w w a G
 

      .  

(ii) Associative Property: Since addition modulo 27 is associative, it follows that for any words 1 2 3, ,w w w generated by G, we 

have 1 2 3 1 2 3( ) ( )w w w w w w     .  

(iii) Identity Element: For any word ,w a G  we have 
27( 0)0w a a a a w

  
      . Similarly, 

27(0 )0w a a a a w
  

      . Thus w w w     and so 
0a  is the identity element of G.  

(iv)  Inverse Property:  For any word ,w a G  1 27w a G   is the inverse of G, since  

27( 27 )1 27 0w w a a a a
           and 27(27 )1 27 0w w a a a a

            

Thus all the four group axioms are satisfied and so G form a Group and the proof is complete.  

 

3. CONGRUENCE RELATION FOR THE SET OF WORDS 

We now try to define congruence relation modulo 27 for the set of words generated by G, and prove that such a relation is an 

“Equivalence Relation”.  

For any two words 
1 2

1 2,w a w a 
  generated through G, we define the “Congruence modulo 27” relation between them 

as 1 2(mod 27)w w if 1 2  is divisible by 27. We can now prove the following theorem.  

Theorem 2:  

The Congruence modulo 27 relation defined above between the words of G is an Equivalence relation with 27 equivalence 

classes.  

Proof: We will prove the theorem by verifying the following three conditions for being Equivalence Relation.  

(i)  Reflexive Property: Any word w a generated by G is related to itself because 0   and 0 is divisible by 27. Thus, 

(mod27)w w .  
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(ii) Symmetric Property: For any two words 
1 2

1 2,w a w a 
  , if we assume that 1 2(mod 27)w w then 1 2  is 

divisible by 27. But this means that 2 1  is also divisible by 27 and so we get 2 1(mod 27)w w .  

(iii) Transitive Property: For any three words 
31 2

1 2 3, ,w a w a w a
 

   , if we assume that  

1 2(mod 27)w w and 2 3(mod 27)w w  then 1 2  is divisible by 27 and 2 3  is divisible by 27. Therefore, 

their sum 1 2 2 3 1 3( ) ( )          is also divisible by 27. Thus 1 3  is divisible by 27. Hence 

1 3(mod 27)w w .  

Thus the “Congruence modulo 27” relation is an Equivalence relation for the words generated by G. So, if W is the set of all 

words generated by G, then the “Congruence modulo 27” relation induces a partition of W in to disjoint equivalence classes. Now 

we will try to find the equivalence classes generated by the above equivalence relation.  

If w a W  , then the equivalence class of w denoted by [w] is given by  

 [ ] [ ]w a w a W     such that   is divisible by 27.  

Thus if w a , then its equivalence class is given by  [ ]a w a W    such that 1  is divisible by 27. Since 

0 26  , it follows that 1  and so [ ] { }a a . Thus equivalence class of a contain only one element namely a.  

Similarly, if 
2w b a  ,  then its equivalence class is given by  [ ]b w a W   such that 2  is divisible by 27. But 

this happens only if 2  and so  [ ] { }b b . Continuing in the same fashion, we observe that the equivalence class of all 26 

English alphabets contain only one element namely themselves and the equivalence class of the identity element is itself. Thus, 

the “Congruence modulo 27” relation gives rise to 27 disjoint equivalence classes of W. This completes the proof.   

4. APPLICATION 

The 27 equivalence classes found above forms an abelian Group of order 27 with respect to the operation juxtaposition of the 

equivalence classes. It is also evident that all possible word of English Language can be reduced to a form of a single letter of the 

alphabet, as we get only one element in all equivalence classes. This conversion has many applications in encryption and 

decryption process of Cryptography the Science of secret codes. It is also possible to consider any well-known global Language. 

If such language possessesk alphabets, then we can construct an abelian group of order k + 1 as discussed above. This group 

provides wonderful way to identify the words generated by that particular language.  

5. GENESIS OF FREE GROUPS FOR ENGLISH ALPHABETS 

We will consider an example to show the existence of Free Groups (through an example) which generates all words of English 

Language.  

Let X be the generating set given by  , , ,..., , ,X a b c k l m . So, X contain the first 13 English alphabets and the remaining 

13 alphabets can be considered as inverse of these elements and they are given by 
1 1 1 1, , ,...,z a y b w c n m       .  

Then the set of all reduced words formed from Xwill be called as “Free Group” denoted by ( )f X  generated by X. By choosing 

different sets Xwe get different free groups and each has their own properties. These free groups have been widely used by 

engineers and scientists in identifying various categories for their investigations.  
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If we now consider { , }X a b and if these elements a, b satisfy the relations 
2 21, 1,a b ab ba   . We can now construct 

a new group 1G , using the set X and the three relations stated above. Now any element in 1G will be of the form  jia b


where 0 1,0 1i j     . Since we see that every element of is one of the four basic forms given by  1, , ,a b ab . Thus 

using the idea of free groups we can generate words of desired nature and property. Needless to say that this facility of allowing to 

generate particular set of words from a specific language has wide applications in Literature and our great ancient Indian 

Mathematician and Sanskrit scholar Panini did the same work two millennium ago.  
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