
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 10 68 - 73

68

IJRITCC | October 2016, Available @ http://www.ijritcc.org

An Approach for Design Search Engine Architecture for Document

Summarization

Bijoy Kumar Mandal

1
, Rajesh Mukherjee

1
, Payel

Majumder
1
, Supravat Mondal

1
, Arindam Biswas

1

Computer Science & Engineering, ECE

NSHM Knowledge Campus Durgapur

Durgapur, India

 writetobijoy@gmail.com

Dr. A K Bandyopadhyay
2

Electronics & Communication Engineering

NIT Durgapur

Durgapur, India

akbece12@yahoo.com

Abstract— Query focused multi document summarization is an emerging area of research. A lot of work has already been done on the subject

and a lot more is going on. The following document outlines the effort done by us in this particular field. This work proposes an approach to

address automatic Multi Document text summarization in response to a query given by a user. For the explosion of information in the World

Wide Web, this work proposed a new method of query-focused multi-documents summarization using genetic algorithm, search engine are used

to extract relevant documents and genetic algorithm is used to extract the sentences to form a summary, and it is based on a fitness function

formed by three factors: query-focused feature, importance feature, and non-redundancy feature. Experimental result shows that the proposed

summarization method can improve the performance of summary, genetic algorithm is efficient. We have developed a very powerful search

engine one. On the same note, it also has a great potential for growth. It can be easily applied for systems with not only a few documents but for

very large systems with a large number of documents

.

Keywords-component; DUC, Multi Document Summarization, GA, Semantic, Query, Score, Term Frequency

__*****___

I. INTRODUCTION

Normally, when users need some information on a particular

query, they fire up a search engine and search for the required

thing [1]. But, this approach has one big problem. Opening

and analyzing each and every web page to get the required

information becomes very tedious and time consuming [2].

Different documents deal with different aspects of the given

query. Thus, it becomes very difficult for the user to analyze

and decide which data and up to what extent is usable for

them. There are different types of queries but more

importantly when a user enters a search string, he/she wants

the relevant information [3, 4]. The search engine looks up all

the documents from the database and generates long results.

That is the query result in its simplified form. Search engines

like Google, Bing etc. generate the query result in this way.

In our context, a query can be thought of as a word or a set of

words entered by the user. In our system, the intention of the

user is to view a paragraph level summary about the search

term. In stricter, i.e. technical terms that we have used here, a

query is the string entered by the user from which stop-words

(like forms of be, articles, prepositions, etc.) have been

removed. The terms thus, obtained give us the perspective in

which the user wishes to search. The main aim of query

focused multi-document summarization is to extract a

meaningful summary of a given search query from the

documents available in its database [4]. A more plausible

solution to the above problem would be to provide the users

with a single document in response to their queries. The

system would generate a simplified document that would

contain more or less of all the aspects of the given query from

its pool of pre-loaded documents [5, 6]. This system will not

only allow the users to view all the information that they need

in a single place, but would also allow them to easily analyzes

and digest the information. This also enables the users to

decide whether they need to see a particular perspective of

their query in greater detail. But here we need to emphasize

that aspects of a single query is very important. Often we see

that we look for a certain aspect in a given query, however the

result which we get is not relevant. So it is the most important

part that each & every aspect, disregarding of its importance in

the context of the given query should be there in multi-

document summarization. This will not only enhance the

usefulness of multi-document summarization, but it can serve

a large variety of users performing query with the same exact

string, however they are looking for different topical aspect.
Let us take the example of a query and assume that the user

is simply searching for “Java”. A search engine will normally
return results which direct the users to various documents
dealing with the different aspects of “Java”. Some will point to
basics like class, data structures, etc. The others might point to
documents with advanced topics. Still others might point to
free and paid tutorials. The users might get overwhelmed by
these results. They might even lose their perspective because of
so many aspects which again lead to other aspects. So a
plausible solution is to collect the documents and generate a
summary [7]. Now, the user does not have to scrounge for
information as it is readily available. If required, they can even
zoom in some particular aspect of the query like “Advanced
Java” which will lead them to even finer results. Thus in simple
terms, what is being done here is to generate an index like
outcome which can further lead to the narrowing down of
search results. Now take this example in a bit different way, a
java programmer as well as an experienced java architect can
search for the string „Advanced Java‟. However the needs of
both the persons are different, so we need to highlight the
necessary topical aspects so that both the persons can get what
they were looking for. The expert might be looking for a
particular example, say, how to use the java plug-in for
different browser, while the naïve programmer might be
searching for the topics & the free tutorial which falls in the
category of „Advanced Java‟. So the document contains all the

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 10 68 - 73

69

IJRITCC | October 2016, Available @ http://www.ijritcc.org

aspects which satiate the need of different user. This will
enhance the productivity of the multi-document summarization.

II. TECHNOLOGICAL CHALLENGES

The multi-document summarization task has turned out to be

much more complex than summarizing a single document [8],

even a very large one. This difficulty arises from inevitable

thematic diversity within a large set of documents. A good

summarization technology aims to combine the main themes

with completeness, readability, and conciseness. Document

Understanding Conferences (DUC), conducted annually by

NIST, have developed sophisticated evaluation criteria for

techniques accepting the multi-document summarization

challenge [9, 10]. An ideal multi-document summarization

system does not simply shorten the source texts but presents

information organized around the key aspects to represent a

wider diversity of views on the topic. When such quality is

achieved, an automatic multi-document summary is perceived

more like an overview of a given topic [11]. The latter implies

that such text compilations should also meet other basic

requirements for an overview text compiled by a human.

 Text within sections is divided into meaningful

paragraphs

 Gradual transition from more general to more specific

thematic aspects

 Good readability

The latter point deserves additional note - special care is taken

in order to ensure that the automatic overview shows:

 No paper-unrelated "information noise" from the

respective documents (e.g. web pages)

 No dangling references to what is not mentioned or

explained in the overview

 No text breaks across a sentence

 No semantic redundancy.

III. COMMERCIAL USES OF MDS

The multi-document summarization technology is now coming

of age a view supported by a choice of advanced web-based

systems that are currently available.

A. Ultimate Research Assistant

 The Ultimate Research Assistant performs text mining on

Internet search results to help summarize and organize them

and make it easier for the user to perform online research.

Specific text mining techniques used by the tool include

concept extraction, text summarization, hierarchical concept

clustering (e.g., automated taxonomy generation), and various

visualization techniques, including tag clouds and mind maps.

To use this tool, the user types in the name of a topic and the

tool will search the web for highly relevant resources, and

organize the search results into a rich, easy-to-understand

research report.

B. iResearch Reporter

 Commercial Text Extraction and Text Summarization

system, free demo site accepts user-entered query, passes it on

to Google search engine, retrieves multiple relevant

documents, produces categorized, easily-readable natural

language summary reports covering multiple documents in

retrieved set, all extracts linked to original documents on the

Web, post-processing, entity extraction, event and relationship

extraction, text extraction, extract clustering, linguistic

analysis, multi-document, full text, natural language

processing, categorization rules, clustering, linguistic analysis,

text summary construction tool set.

C. News Blaster

 It is a system that helps users find the news that is of the

most interest to them. The system automatically collects,

clusters, categorizes, and summarizes news from several sites

on the web (CNN, Reuters, Fox News, etc.) on a daily basis,

and it provides users a user-friendly interface to browse the

results.

D. News-In-Essence

 It may be used to retrieve and summarize a cluster of

articles from the web. It can start from a URL and retrieve

documents that are similar, or it can retrieve documents that

match a given set of keywords. News-In-Essence also

downloads hundreds of news articles daily and produces news

clusters from them.

E. News Feed Researcher

 It is a news portal performing continuous automatic

summarization of documents initially clustered by the news

aggregators (e.g., Google News). News Feed Researcher is

backed by the free online engine covering major events related

to business, technology, U.S. and international news. This tool

is also available in the on-demand mode allowing a user to

build a summary on any selected topic.

F. Scrape

 This is like a search engine, but instead of providing links to

the most relevant websites based on a query, it scrapes the

pertinent information off of the relevant websites and provides

the user with a consolidated multi-document summary, along

with dictionary definitions, images, and videos.

G. Jist Web

 Jist Web is an Efficient Query Specific Multiple Document

Summarizer that was developed by Jasta.
.

IV. MATHEMATICAL EXPRESSIONS

The main reason behind every perfect completion of a project

is to realize the problem properly. As this topic of query

focused multi-document summarization is new and one of the

rising research topic in India, we have to go through several

international conference proceedings and several international

journals from many recognized organizations. Obviously, it

takes much time to study the problem. After studying the

problem, we have generated the mathematical expression of

the problem.

 Degree of importance of i-th sentence of d-th

document:

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 10 68 - 73

70

IJRITCC | October 2016, Available @ http://www.ijritcc.org

Id,D (Si) =

……………………(i)

Here, Wd,D (t) : the weight of the term, t of d-th

document

wi : no.of words present in i-th sentence.

 Degree of importance of j-th attribute of d-th

document:

Id,D (Aj) =

………………..(ii)

Here, Wd,D (t) : the weight of the term, t of d-th

document

m: no. of sentences present in the j-th attribute of d-th

document.

Our main goal is to maximize the value of In,D (Aj)as

there are 4 attribute (except doc_no) in the doc_info table, j

ranges from 1 to 4. n represents no. of documents go with the

given query after searching operation performed. This is our

fitness function.

The fitness function is In,D (Aj) and it is a maximizing

function. Now, in case of finding the maximum value of this

function, we have to develop a (nX4) 2- dimensional integer

array where n is no. of documents go with the given query

after searching operation performed and 4 is the no. of

attribute that describe a document in the doc_info table in the

database. The array structure is given below:

Doc no. = 1 [II,D (A1) II,D (A2)

 II,D (A3) II,D (A4)]

Doc no. = 2 [I2,D (A1) I2,D (A2)

 I2,D (A3) I2,D (A4)]

…………………………………………………………………

Doc no. = n [In,D (A1) In,D (A2)

 In,D (A3) In,D (A4)]

Now, the parameters used in GA are population size, cross-

over operator and no. of iterations. We are representing a

solution in a form of a document. So, at the beginning, the

populations are also the no. of documents that match with the

given term. We are using cross over operator for generating

new off-springs that has better fitness value compare to its

parents. Here, we are using 2-point cross-over operator for

generating new off-springs, so there are 3 possible ways that

cross-over can happen between two parents. The cross-over

rate is 0.6

Offspring 1 II,D (A1) II,D (A2) II,D (A3) II,D (A4)

Offspring 2 I2,D (A1) I2,D (A2) I2,D (A3) I2,D (A4)

In the above, cross-over between two parents (one is having

best fitness value & other is having worst fitness value) is

shown using 2 crossing over point. Position of crossing over

point is also generated randomly. r1 and r2 are random

numbers between 1 and 3 (as there are 4 attributes, so no. of

points where crossing over can take place is 3),

simultaneously, they must satisfy 1<r1<r2< 3.

As we are choosing parents with one have best fitness and

other have worst fitness, so after crossing over, we are always

getting two off-springs which have better fitness than the

parent with worst fitness. As a result the parent with worst

fitness is replaced with his next generation (a new offspring

with better fitness). Thus, after iteration by iteration, new

populations are generated and also we are going towards our

goal.

V. ALGORITHM

The first thing after a user gives the query, we have to find the

proper term by removing all the stop words using stops_word

table and keeping just the words that are important. After that

we have to search for the documents in the database where we

can find the term. For that searching purpose, we have

designed search_doc table where we can check the term with

the keyword attribute of that table and we can easily find

which doc_no holds the description of that given term. Then

we can store the doc_no in a 1-dimentional (1-D) integer

array. That array is holding the multiple documents for that

given query. After all the iterations are completed, we are

sorting the populations according to their fitness values and

finally we get the optimum document as a solution. Now, for

extracting summary from that optimized document, we are

taking 2-3 sentences from each attribute of that document

using degree of importance of a sentence and club them. That

is our ultimate optimized query-focused multi-document

summary. The algorithm for multiple text summarizations is

follow as

Step 1 : Search query is given.

Step 2 : Remove stop[words (if any) and take the main

word(term).

Step 3: Go to the database and check with the keyboard

attribute of search_doc table with the term. Whenever a

keyword matches with the term, store its doc_no to a 1-

Dimentional integer array.

Step 4: The 1-D array holds the document number related to

the term. After that go to the doc_info table in the database

and search the full documents of those doc_no. In file table

there are multiple rows (multiple documents) and multiple

columns (for describing different parts of that term like

introduction, description, features, conclusion).

Step 5: Now, find term frequency (tf) for each document (for

each row) and inverse document frequency (idf) for

calculating weight of the term in that documents.

Step 6: After that find degree of importance of each sentence,

Id (S) and find the degree of importance of each attribute in the

document (row), Id (A).

Step 7: Continue step 5 and 6 for all the documents of doc_no

that stored previously in a 1-d array.

Step 8: In case of summarization and to develop the coding,

we store all the Id (A) in 2-D array (m X n) where m is

document number (values that are already store the 1-D array)

and n is the attribute number.

Step 9: We perform Genetic Algorithm (GA) with its cross-

over operation with that 2-D array and fitness function is the

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 10 68 - 73

71

IJRITCC | October 2016, Available @ http://www.ijritcc.org

summation of all the Id (A) of a single row of that array. We

use GA to find the maximum fitness.

Step 10: After finding the maximum possible fitness, we could

easily find the optimized document (solution) from those

multiple documents and from that optimized document, we

take one or two sentences from each attribute using Id (S).

Step 11: Ultimately we club those sentences of each attribute

to produce the best summarization.

VI. IMPLEMENTATION & EXPERIMENTAL RESULTS

 We have developed a web based enterprise application for

multi-document summarization problem. There are only two

types of user. One is common people and other is the admin

himself.

 Admin: They can also use the system to find a

summary but the main difference between common

users and the admin is they can insert documents into

the database by logging in to the website.

 Common Users: They use the system to find a
suitable summary by giving a search query.

A. Search Space

In solving problems, some solution will be the best

among others. The space of all feasible solutions

(among which the desired solution resides) is called

search space (also called state space).

 Each point in the search space represents

one possible solution.

 Each possible solution can be "marked" by

its value (or fitness) for the problem.

 The GA looks for the best solution among a

number of possible solutions represented by

one point in the search space.

 Looking for a solution is then equal to

looking for some extreme value (minimum

or maximum) in the search space.

 At times the search space may be well

defined, but usually only a few points in the

search space are known.

Using GA, the process of finding solutions generates

other points (possible solutions) as evolution

proceeds.

B. Hardware Requirements

 Server side

 Processor : Intel(R) CORE i3-

2310M CPU @ 2.10 GHz

 RAM : 1 GB

 Disk Space : 20 GB

 Client side

 Processor: Pentium IV

 RAM: 128 MB

 Disk Space: 500 MB

C. Software Requirements

 Server side

 Operating System : Windows 7

Server Edition

 Java Development Kit (JDK)

version 6u27

 Eclipse IDE for JEE development

(Front End)

 Database : MySQL (Back End)

 Apache tomcat application server

version 6.0.16

 Client side

 Operating System : Windows XP

 Java Development Kit (JDK)

 Web Browser

D. Database Design

The next step is to design the database for the MDS

problem. Designing the database for multi document

summarization problem is the most important task,

because the documents, from which summary is to be

extracted, are reside in the database. There are three

tables in the database as Search Document

(search_doc) table, Document Information (doc_info)

table and Stops Word (stops_word) table as shown in

Table I, Table II & Table II respectively.

Table I Document Information

Attribute

Name

Data Type Size Constraint Reference

doc_no INT 10 Primary
Key

Title VARCHAR 100 Not Null

Part 1 VARCHAR 2000 Not Null

Part 2 VARCHAR 2000 Not Null

Part 3 VARCHAR 2000 Not Null

Part 4 VARCHAR 2000 Not Null

Table II Search Document

Attribute
Name

Data Type Size Constraint Reference

doc_no INT 10 Foreign

Key

doc_info

keyword VARCHAR 30 Not Null

Table III Stop Word

Attribute

Name

Data Type Size Constraint Reference

words VARCHAR 30 Not Null

The main intention of creating the database is to insert

documents. Here, we are entering a single document in 4 parts.

There are reasons behind it. First of all it helps to create

modularity, secondly we can easily extract sentences from

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 10 68 - 73

72

IJRITCC | October 2016, Available @ http://www.ijritcc.org

each part to generate summary. When we insert a document,

there should be high cohesion and low coupling between

sentences as well as between four parts. There is a separate

text space for document keywords (user has the option of

entering multiple keywords for a single document) in the GUI

where user can add a document into the database. Document

no. is generated automatically by the system. The stops_word

table helps us to remove stop words like a, an, and, or, the, of

i.e. mainly articles and prepositions from the user given search

query.

E. Flow Diagram

Figure 1. Flow Diagram

F. Screen Shots

G.

Figure 2. Loing Page

Figure 3. Documents Insertation Page

Figure 4. Searching Page

Figure 5. Final Summary Page

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 10 68 - 73

73

IJRITCC | October 2016, Available @ http://www.ijritcc.org

VII. CONCLUSION

 In this report, we have discussed query focused multi-

document summarization problem and it is solving procedure

using a soft-computing technique – Genetic Algorithm (GA).

We are actually not familiar with informative summaries

(output is a summary of given input query) rather than we are

much more comfortable with indicative summaries (output is

information of document which helps the user to decide

whether the document should be read or not). But informative

summaries are much more significant than indicative

summaries. Here comes the importance of our project. It

successfully generates indicative summaries that can be used

by people to pin-point what they want when they search for a

particular term on the web. The modern web is a very complex

structure of all kinds of data. Summaries generated by our

application program will help the users to fan-out all the

unnecessary things while putting forward the details.

REFERENCES

[1] R.Kowsalya , R.Priya and P.Nithiya – “Multi Document
Extractive Summarization Based On Word Sequences” , IJCSI
International Journal of Computer Science Issues, Vol. 8, Issue
2, March 2011 ISSN (Online): 1694-0814.

[2] Toshihiko Sakurai ; Akira Utsumi – “Query-based
Multidocument Summarization for Information Retrieval” ,
Proceedings of NTCIR-4, Tokyo, April 2003 - June 2004.

[3] Lacatusu, A. Hickl, K. Roberts, Y. Shi, J. Bensley, B. Rink, P.
Wang, and L. Taylor. 2006. Lcc‟s gistexter at duc 2006: “Multi-
strategy multi-document summarization”, In Proceedings of
DUC‟06, 2006.

[4] Surabhi Gupta and Ani Nenkova and Dan Jurafsky –
“Measuring Importance and Query Relevance in Topic-focused
Multi-document Summarization” , Stanford University Stanford,
CA 94305.

[5] Aliguliyev, R. M. “Automatic Document Summarization by
Sentence Extraction” in Journal of Computational Technologies,
pp.5–15, 2007.

[6] Chao Shen, Tao Li – “Learning to Rank for Query-focused
Multi-Document Summarization” , 11th IEEE International
Conference on Data Mining 2011 IEEE DOI
10.1109/ICDM.2011.91 1550-4786/11

[7] Tingting He ; Fang Li ; Zhuomin Gui ; Jinguang Chen – “Query-
Focused Multi-document Summarization Using Keyword
Extraction” , IEEE International Conference on Computer
Science and Software Engineering, pp 20-23, 2008.

[8] “Genetic Algorithms in Search, Optimization & Machine
Learning” by David E. Goldberg – Addition-Wiley Press,
Pearson Education Publication ISBN 978-81-7758-829-3

[9] L. Vanderwende, H. Suzuki, and C. Brockett. Microsoft research
at duc 2006: Task-focused summarization with sentence
simplification and lexical expansion, In Proceedings of
DUC‟06, 2006.

[10] Ramiz M. Aliguliyev , “A New Sentence Similarity Measure
And Sentence Based Extractive Technique For Automatic Text
Summarization”, Expert Systems with Applications36 pp.7764–
7772, 2009.

[11] C. Long, M. Huang, X. Zhu, and M. Li, “Multi-document
summarization by information distance,” in Proceedings of the
9th IEEE International Conference on Data Mining. IEEE, pp.
866–871, 2009.

[12] C. Shen and T. Li, “Multi-document summarization via the
minimum dominating set,” in Proceedings of the 23rd
International Conference on Computational Linguistics.
Association for Computational Linguistics, pp. 984–992, 2010.

