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Abstract:-Virtualization is a synonym for the server and cloud computing arena. Recently, it started to be also applied to real-time embedded 
systems with timing constraints. However, virtualization products for data centers and desktop computing cannot be readily applied to embedded 

systems because of differences in requirements, use cases, and computer architecture. 
Bridging the gap between virtualization and real-time requirements imposes the need of real-time virtualization products. Therefore, some 
embedded software manufacturers have built several real-time hypervisors specialized for embedded systems.  
Currently, there are several commercial ones such as Greenhills INTEGRITY MultiVisor, Real-Time Systems (RTS) GmbH Hypervisor, 
Tenasys eVM for Windows, National Instruments Real-Time Hyper Hypervisor, and some others. 
This paper provides the behavior and performance results of evaluating RTS hypervisor and gives advices of its use for soft or hard real-time 
embedded systems. 
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1. INTRODUCTION 

Virtualization is one of the hottest trends in information 
technology today. It is a mechanism that allows the physical 

machine resources to be shared among different virtual 

machines (VMs) via the usage of a software layer called 

hypervisor or Virtual Machine Monitor (VMM). It is a 

fundamental component in cloud computing because it 

provides numerous guest VM transparent services, such as live 

migration, high availability, rapid checkpoint, etc [1]. 

 

Virtualization in the server and desktop world has already 

matured, with both software and hardware solutions available 

for several years [8, 9, 10, 11, 12, 13]. In recent years, the 

introduction of multi-core to embedded systems has brought 
the availability of increased computing power to embedded 

systems. Virtualization on embedded systems has only been 

explored for the past years [14, 15, 16, 17], and is an area of 

ongoing research which is likely to become more widespread 

in the next few years.  

 

Unlike the server world, where VMs typically run 

multiple copies of the same (or similar) operating systems, 

VMs in the embedded space are more likely heterogeneous, 

running different classes of operating systems: a real-time 

operating system (RTOS) for traditional embedded real-time 
purposes, and a general-purpose (fully-featured) operating 

system to support complex applications such as user interfaces 

[3].  

 

Embedded virtualization is already deployed in several 

domains such as avionics systems and industrial automation 

where a strong emphasis on real-time performance is required 

[2]. Also, it is used for soft real-time applications such as 

media-based ones and even satellite communication systems. 

 

Virtualizing such systems means inserting a new layer 

between the hardware and Operating System (OS), and thus 
adding potentially extra overhead. Some of these systems’ 

applications do not demand hard real-time guarantees, but 

require that the underlying virtualization layer supports both 

low latency and provide adequate computational resources for 

completion within a reasonable timeframe [4]. Both these 

aspects are intimately intertwined with the logic of the 
hypervisor scheduler [4]. Thus, the performance overhead 

introduced by the virtualization layer should be limited or 

minimalistic, and very importantly the system should remain 

deterministic. Our contribution germinated from this point, and 

we want to benchmark the performance (latencies that can 

happen in a VM) of several embedded virtualization solutions 

. 

In order to accomplish our aim, we did contact several 

vendors to participate in this benchmark but unfortunately only 

Real-Time Systems GmbH accepted for now the evaluation of 

their hypervisor: ―Real-Time Systems GmbH Hypervisor‖. 

This hypervisor is intended to provide hard real-time support 
for virtualized RTOSs as published by the vendor. Our results 

should confirm or refute this. 

 

This paper is organized as follows: Section 2 describes 

RTS architecture; section 3 explains the experimental setup 

used for our evaluation; section 4 presents the evaluation test 

metrics together with their results when applied to a non-

virtualized system; section 5 explains the use cases used to test 

RTS hypervisor together with the results; section 6 provides a 

comparative summary of the RTS results compared to the non-

virtualized system; and finally a conclusion. 
 

2. RTS HYPERVISOR 

Real-Time Systems’ (RTS) Hypervisor is a software 

abstraction layer that partitions the hardware resources of a 

standard x86, multicore-processor execution platform in such a 

way that multiple operating systems (RTOS and/or General 

Purpose Operating System) can run concurrently and in 

complete independence of one another [5]. 

 

The number of operating systems that can run 

simultaneously is limited only by the number of available 

logical CPUs. As such, the RTS Hypervisor does not partition 
anything in the time domain on a certain processing resource, 

but makes the processing resource fully available for the 

virtualized operating system. Therefore, they run at full speed 

and full efficiency. They are enough isolated from one another 
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so that an OS can be booted or rebooted without slowing or 

compromising the ongoing activities of other operating 

systems [5]. 

 

Figure 1 below describes the RTS Hypervisor architecture. 

 
Figure 1: RTS hypervisor architecture [5] 

 

The RTS Hypervisor supports two modes of operating 

system execution: virtualized and non-virtualized (privileged). 

 

The virtualized mode is intended for General Purpose OSs 

(e.g., Microsoft Windows) that have no hard real-time 

requirements. Virtualization is required to guarantee that they 

cannot in any way influence operating systems that run in 
other hardware partitions [5]. 

 

The privileged (non-virtualized) mode is intended for OSs 

that offer hard real-time performance (i.e. RTOS). To 

guarantee deterministic behavior and latency times, such 

systems require direct access to the hardware. An operating 

system that runs in privileged mode does not run in a virtual 

machine; it runs instead in its own hardware partition. This 

fully protects it and its resources from all other unrelated 

system events from non-privileged partitions [5]. However the 

protection is asymmetric: a privileged mode operating system 
could still impact non-privileged operating systems running 

on the same system as it runs non-virtualized. This is a 

tradeoff taken to be able to guarantee real-time latencies. 

 

For the scheduling part of RTS, as mentioned before, it 

uses partitioning which allows a guest OS to run directly on 

the physical core and as such the latter is not shared between 

different guest OSes. As a result, there is no contention within 

the time domain on processing resources, which makes 

scheduling extremely simple as there are no scheduling 

decisions to be taken at all. 

 

3. EXPERIMENTAL SETUP 

RTS Hypervisor version 4.1 (latest version at the time of 

writing this paper) is evaluated here. Linux PREEMPT-RT 

3.8.13-rt11 is the OS used in the VM where our testing suite is 

performed. This VM is called throughout this paper as Under 

Test Virtual Machine (UTVM). The RT Linux version used is 

shipped together with the RTS hypervisor from Real-Time 

Systems GmbH. It has a small difference compared to the 

classical Vanilla Linux with RT extensions which is an extra 

network driver to have a virtual network with the GPOS, 

which in turn is the OS used to control the whole system. 

There are no fundamental changes in the kernel. 

The testing results presented in this pear are applicable 

only to these mentioned hypervisor and OS versions as other 

versions may have other significant performance results. 

 
Our testing software uses mlockall() in the Linux kernel to 

assure that all memory is locked into memory. Further, the 

application was statically linked and started from a RAM disk 

(tmpfs) to avoid swapping out read-only code pages. 

The hardware platform used for conducting the tests has the 

following characteristics: Intel® Desktop Board DH77KC, 

Intel® Xeon® Processor E3-1220 v2 with 4 cores each 

running at a frequency of 3.1 GHz, and no hyper-threading 

support. The cache memory size is as follows: each core has 

32 KB of L1 data cache, 32KB of L1 instruction cache and 

256 KB of L2 cache. L3 cache is 8MB accessible by all cores. 
The system memory is 8 GB. 

 

4. TESTING PROCEDURES AND RESULTS ON NON-

VIRTUALIZED SYSTEM 

This evaluation is performed using several tests.  These 

tests are divided into two categories: short-term and long-term 

tests. 

 

The short-term tests are mainly intended to show the 

behavior of the system. In these test, a limited number of 

samples (128000) are captured to simulate the case of 

embedded systems where a small RAM buffer is available.  
 

The long-term tests are done for hours and intended to 

provide the probabilistic worst case that could happen in the 

system. The aim is to verify the determinism and predictability 

of the system. 

 

 In the short-term test, a memory buffer is filled with a 

number of samples, while the long-term test uses the same 

measurement system as short-term one but counts the number 

of samples occurring during a certain interval. In such 

approach, the measured delay values are counted in binary 
based bins. 

Although the test metrics explained below are mostly used 

to examine the real-time performance and behavior of RTOSs 

on bare-machines [6] [7], they are useful to be used in other 

OS test cases. Moreover, virtualization together with real-time 

support emerges to be used in an increasing amount of use 

cases, varying from embedded systems to enterprise 

computing. Therefore, these tests are a good fit for this paper 

evaluation. 

 

A. Measuring process,results overhead and precision 

In order to do our measurements, a tool or instrument 
needs to be used. The cheapest solution is to use an on 

processor chip timer running on the constant frequency of the 

processor clock giving as a value the number of cycles 

occurred on the processor. Its value is set to zero every time 

the processor is reset. This timer is called Time Stamp Counter 

(TSC). It is a 64-bits register present on all x86 processors and 

has an excellent high-resolution. Recent Intel processors 

include a constant rate TSC. This can be verified by checking, 
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using a Unix-Like OS, the presence of the "constant_tsc" flag 

in Linux's /proc/cpuinfo. The processor used in our work has 

this flag. With these processors, the TSC reads at the 

processor's maximum rate regardless of the actual CPU 

running rate and thus the timer is not impacted by power 

saving mechanisms. 

 

In order to access the TSC, the programmer has to call the 
Read Time-Stamp Counter (RDTSC) instruction from 

assembly language. 

 

The used tracing system generates an overhead due to 

reading the TSC values and saving them in RAM buffers. In 

order to calculate this overhead, an initial test was done in 

which the tracing overhead was calculated. This overhead is on 

average 0.0084 µs, and is subtracted from the results of the 

following tests. 

 

Moreover, each individual measurement have of course its 
uncertainty coming from different factors such as counter 

resolution, caching (presence of our measurement instruction 

in the instruction cache), and frequency stability of the quartz 

clock of the processor. 

 

After conducting several tests, we can confirm that the 

results provided in this paper have an uncertainty of 0.05 µs. 

The details of how these values were obtained can be found in 

[18].  

 

B. Testing metrics 

Below is an explanation of the evaluation tests. Note that 
the tests are initially done on a non-virtualized machine 

(further called Bare-Machine) as a reference, using the same 

OS as the UTVM. 

 

1) Clock tick processing duration 

Like any time-sharing system, Linux allows the 

simultaneous execution of multiple threads by switching from 

one threads to another in a very short time frame. The Linux 

scheduler supports multiple scheduling classes, each using 

different scheduling algorithms. For instance, there are the two 

real-time (strict priority) scheduling classes SCHED_FIFO and 
SCHED_RR, a normal scheduling class (SCHED_OTHER) 

using dynamic and thus non strict priorities, and finally the 

SCHED_BATCH class for background threads. The 

prioritization between these scheduling classes is strict as well, 

where the SCHED_FIFO/SCHED_RR are using the same 

highest priority, followed by the SCHED_OTHER and finally, 

at the lowest priority by the SCHED_BATCH class. 

 

As in the tests we perform only measurements using 

threads of different priorities, we use the SCHED_FIFO 

scheduling class in all these tests. 

 
To be able to use timeouts, sleeps, round robin scheduling, 

time slicing and etc…, some notion of time is needed. On the 

hardware, there is always a timer responsible for this called the 

operating system clock timer. It is programmed by Linux 

PREEMPT-RT to generate an interrupt each tick. Depending 

on the kernel configuration used at build time the tick 

frequency can be selected. In the used RTOS, the OS clock is 

configured to run at 1000Hz, which means that the interrupts 

occurs every one millisecond. This tick period is considered 

the scheduling quantum. 

The aim of this test is to measure the time needed by the 

OS to handle this clock tick interrupt. Its results are extremely 

important as the clock tick interrupt - being on a high level 

interrupt on the used hardware platform - will bias all other 

performed measurements. 

 
This test helps also in detecting ―hidden‖ latencies that are 

not introduced by the clock tick. In such cases, the ―hidden‖ 

latency will be different and its event time will not be aligned 

with the RTOS clock tick frequency. 

 

Test method: The way we get the clock tick duration in this 

test is simple: we create a real-time thread with the highest 

priority. This thread does a finite loop of the following tasks: 

starting the measurement by reading the time using the ―Start‖ 

signal, executing a ―busy loop‖ that does some calculations 

and stopping the measurement by reading the time again using 
the ―Stop‖ signal. Having the time before and after the ―busy 

loop‖ provides the duration needed to finish its job. This ―busy 

loop‖ is made so that it can run fully in L1 caches and as such 

it does not introduce latencies by cache misses. In case we run 

this test on the bare-machine, this ―busy loop‖ will be delayed 

only by interrupt handlers. As we remove all other interrupt 

sources, only the clock tick timer interrupt can delay the ―busy 

loop‖. When the ―busy loop‖ is interrupted, its execution time 

increases. 

 

When executing this test in a guest OS (VM) running on 

top of a hypervisor, it can be interrupted or scheduled away by 
the hypervisor as well, which will result in extra delays. 

 

Figure 2 presents the results of this test on the bare-

machine, followed by an explanation. The X-axis indicates the 

time when a measurement sample is taken with reference to 

the start of the test. The Y-axis indicates the duration of the 

―busy loop‖.  

 

 
Figure 2: Clock tick processing duration of the bare-machine-

zoomed 
 

The lower values (29.95 µs) of Figure 2 present the ―busy 

loop‖ execution durations if no clock tick happens. In case of 

clock tick interruption, its execution is delayed until the clock 

interrupt is handled, which is around 31 µs (top values). The 

difference between the two values is the delay spent handling 

the tick (executing the handler), which is 0.9 µs. 

 

Clock tick duration=  

30.85 – 29.95 = 0.9 µs 
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Remind that the RT Linux kernel clock is configured to 

generate a tick each 1 ms. This is obvious in Figure 2, which 

is a zoomed-in version of Figure 3 below. 

 

 
Figure 3: Clock tick processing duration of the bare-machine 

 

Figure 3 represents the test results of 128000 captured 

samples, in a time frame of 4 seconds (this is limited by the 

size of the sampling buffers on the used hardware platform). 

Due to scaling reasons, the samples form a line.  

As shown in Figure 3, the ―busy loop‖ execution time is 31.53 

µs at some periods. Note that the first ―clock tick handling 

duration‖ (in the circle) took more time (31.53 µs) due to 

cache miss. Therefore, a clock tick delays any task by 0.9 µs 

(±0.05 µs) to 1.58 µs (±0.05 µs) µs. 

 
This test detects all the delays that may occur in a system 

together with its behavior on the short term. To have a long-

term view on the hypervisor behavior, we execute a test in the 

OS (still in the non-virtualized system or bare-machine) for a 

long duration (more than one hour) where 120 million 

samples are captured. This test is explained in the following 

section. 

 

2) Long-term (statistical) clock tick processing duration 

test 

The ―clock tick processing duration‖ test described above 
detects all the delays that may occur in a system together with 

its behaviour for a short period. To have a more precise view 

of the system behaviour, we execute the same test but for a 

long period. In this test, we use a different sampling method 

than the previous test due to the sample buffer space limitation. 

The importance of the figures obtained by ―clock tick 

processing duration‖ test is to show the exact tracing values 

and the moments of their occurrence while the figures of 

―long-term clock tick processing duration‖ test show their 

distribution over time and the predictability of the system 

latencies. 

 
This test is executed 5 times, each time for one hour. The 

motivation for this (5 times) is to take into consideration all the 

circumstances that may happen in and around the system, like 

the room temperature, running the test immediately after the 

machine start-up, run it after one day of keeping the machine 

on, etc. 

 

 

 

 

Figure 4 shows the maximum values obtained from each of 

the 5 runs. 

 

 
Figure 4: comparing the results of the 5 test runs. 

 

As our concern is about real-time performance, we focus 

on the test-run where the maximum measurement out of the 5 
runs is captured. 

 

Table 1 below shows the results of the run with the highest 

captured latency.  

 
Table 1: Statistical clock tick processing duration results for 

the run with maximum latency  

 

Figure 5 below shows the statistical distribution of the results 

obtained in the run of our concern. 

 
Figure 5: Bare-Machine results for the statistical test with 

highest latency captured 

 

Figure 5 shows that 97 % of the samples (116405074) are 

in the interval between 29.13 μs and 30.45 μs. This is logical 

as the ―busy loop‖ execution time (± 29.95μs) falls in this 

region. Any samples outside this region are considered delays. 

We see that 3 % of the samples are between 30.46 μs and 

31.78 μs. The maximum value captured in this interval is 

31.53μs. Therefore, the maximum overhead detected in the 

system is 1.58 μs (±0.05 µs)  (31.53-29.95). 
 

Due to cache miss 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication                         ISSN: 2321-8169 

Volume: 4 Issue: 8                                                                                                                                                                  147 - 155 

________________________________________________________________________________________________________ 

151 
IJRITCC | August 2016, Available @ http://www.ijritcc.org                                                                 

_______________________________________________________________________________________ 

 

3) Clock tick processing duration with cache flushing 

In the previous test ―clock tick processing duration‖, the 

clock tick handler is always residing in the cache due to the 

periodic clock tick interrupt. Also, our test is not fetching a lot 

of data which could affect the cache contents. This is the best 

case scenario. 

 
The aim of this test - clock tick processing duration with 

cache flushing – it to show the worst case duration that may 

happen in the system due to cache misses. In order to do so, we 

flush the caches (L1+L2+L3) on a regular interval which in 

turn causes the clock tick handler to be fetched from the 

memory whenever a clock tick happens in the system. 

 

For a better understanding of this test setup and outcome, 

we first provide a zoomed version of the results figure, and 

then the complete figure. 

 

 
Figure 6: Clock tick processing duration zoomed version of 

the results on the bare-machine 
 

Figure 6 above shows that this test runs initially for 4ms 

(X-Axis) where four clock tick interruptions occurred, causing 

delays in the test execution (the first four samples in the red 

box). After that, the cache is flushed and the test execution is 

resumed. When the next clock tick interrupt occurs, the CPU 

suspend the test until it handles this interrupt. But as the 

handler is flushed away from the caches, the CPU will fetch it 

from the RAM again. This fetch costs extra delay in handling 

the interrupt, which in turn delays the execution of the test 

(first sample of the green box). The test continues running with 
the same described procedure. 

 

Figure 7 shows the test results for a longer period. 

 
Figure 7: Clock tick processing duration in case of cache 

flushing 

 

 

Table 2 below summarizes the results of this test: 

 
Table 2: Clock tick processing duration with cache flushing 

 

4) Statistical clock tick processing duration test with 

cache flushing 

This is the long-duration version of the test ―clock tick 

processing duration with cache flushing‖. 

 

 Again this test is done 5 times, each time for 1 hour 

(capturing 120 million samples). Figure 8 below shows the 

maximum values captured in each of the 5 runs. 

 

 
Figure 8: Comparing the maximum values obtained in the 5 

runs of statistical clock test with cache flushing 

 

Table 3 summarizes the test results of the run that captured the 

maximum latency. 

 
Table 3: The statistical test with cache flushing test run with 

maximum latency 

 

5) Summary of the four clock tick processing duration 
tests on the bare machine 

Table 4 provides a summary for the maximum overheads 

obtained in each of the four clock tick processing duration 

tests above (executed on non-virtualized systems). 

 

 
Table 4: Comparison between the four clock tests executed on 

bare-machine 

 

6) Maximum sustained interrupt latency (or interrupt 

stress) test 
 ―Interrupt tests‖ evaluate how the operating system 

performs when handling interrupts. Low latency interrupt 

handling is a key system capability of real-time operating 

systems as RTOSs are typically event driven. 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication                         ISSN: 2321-8169 

Volume: 4 Issue: 8                                                                                                                                                                  147 - 155 

________________________________________________________________________________________________________ 

152 
IJRITCC | August 2016, Available @ http://www.ijritcc.org                                                                 

_______________________________________________________________________________________ 

On this platform, we use a PCI device which generates 

interrupts using an internal timer (thus independent of 

operating system clock being tested).  

 

This test detects when an interrupt cannot be handled 

anymore due to the interrupt overload. In other words, it shows 

a system limit depending on, for example, how long interrupts 

are masked, how long higher priority interrupts (the clock tick 
or other) take, and how well the interrupt handling is designed. 

 

It also gives a very optimistic worst case value due to the 

fact that, because of the high interrupt rate, the amount of spare 

CPU cycles between the interrupts is limited or nil. Also, 

depending on the length of the interrupt handler, it might 

mostly be present in the caches. In a real world environment, 

the worst case duration will be longer. 

 

In this test, 10 million interrupts are generated at specific 

interval rates. Our test measures whether the system under test 
misses any of the generated interrupts. The test is repeated with 

smaller and smaller intervals until the system under test is no 

longer capable handling the interrupt load. 

 

Table 5 below show the results of this test: 

 

 
Table 5: Sustained interrupt frequency on bare-machine 

 

The above table shows that the RT Linux OS can handle 

all the 10 million generated interrupts without missing any 

one only if the duration between the generated interrupts is 28 

μs. Below this value, RT Linux start to miss some interrupts. 

Further on, the system is tested by generating bursts of higher 

number of interrupts, which on the long run shows that the 

guaranteed interrupt duration for Linux on bare-machine is 28 

μs (100 million interrupts scenario). 
 

5. TESTING RESULTS ON VIRTUALIZED SYSTEM 

RTS hypervisor is tested using the same test metrics as the 

bare-machine but in several different scenarios or use cases. 

Below is an explanation of each scenario followed by the test 

results. 

 

Scenario 1: 

The aim of this scenario is to measure the extra overhead 

introduced in the VM, compared to the bare-machine, due to 

the insertion of the RTS virtualization layer. In this scenario, 
we have two virtual machines (VMs) running on top of the 

hypervisor: a virtualized Windows 7 VM, and a privileged 

VM with Linux PREEMPT-RT OS. Each VM is assigned to 

run on one physical CPU. The privileged VM is the UTVM as 

our tests are performed in it. Windows 7 VM is running in 

virtualized mode, in idle state and acts as the interface to 

connect and control the UTVM. 

 

Figure 9 below is a graphical representation for this scenario. 

 
Figure 9: Scenario 1: UTVM and idle Windows VM are 

running 

 

As all the tests explained in section 4 above will be 

conducted in every scenario, this will end up in a lot of figures 

and tables to be shown. Therefore, we decided to provide only 

a summary of the results. 

 

Figure 10 below shows the results of all the tests, together 

with a comparison with the results of the bare-machine. 
 

 
Figure 10: Results of the five tests executed in scenario 1 

 

Note: Low values mean better performance. 

Figure 10 results show that an extra overhead (the values 
in the red rectangle), compared with the bare-machine, is 

captured in the RTOS running atop RTS hypervisor. 

Normally, there should not be any difference between the 

values especially that the UTVM is having direct access to the 

hardware. As we do black box testing, we do not know the 

exact reason for this extra overhead. 

 

The only strange result is the ―maximum sustained 

interrupt latency‖ value (in the green rectangle) which is twice 

better than the bare-machine. In theory, this is not very 

logical! But this happens due to the fact that RTS-Hypervisor 

assigns only the IRQs explicitly specified for a specific VM to 
it. To make it more clearly, we refer back to the bare-machine 

case where there is only the hardware and an OS running atop 

of it. In such system, the OS execution is affected by different 

kind of interrupt sources like the System Management 

interrupts (SMI) from the BIOS. 

 

The RTS hypervisor, is configured in a way that all the 

hardware interrupts are directly assigned to the CPU that is 

servicing the virtualized VM, except the ones that are required 

by the UTVM. This means that the execution of the UTVM is 

less affected by external interrupts, and can handle its tasks 
more rapidly. 
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This is illustrated and explained in details in Figure 11. 

 
Figure 11: The procedure of configuring interrupts through 

the RTS hypervisor. 

 

To proof this, we did a test running UTVM solely on top 

of the hypervisor and assigning all interrupts to it. In this 

situation the test results were exactly the same as the results of 

the bare-machine. 

 

Scenario 2: 

The aim of this scenario is to detect the effect of CPU 

caches on the UTVM performance. This scenario is the same 

as scenario 1 except that the Windows 7 VM is running a 

Memory-Load stress test. This Memory-Load test unloads all 

the caches by accessing each cache-line. For this processor, 

each cache-line consists of 64 bytes of memory. On a cache 

miss, a cache line is unloaded and replaced by data from the 

main memory. This happens each time in chunks of cache-line 

data. By accessing only one word of data each 64 bytes, we 

stress the memory bus while minimally using the CPU 
resources. Thus, this generates a worst case stress load 

towards the central memory bus, which can exceptionally 

happen in real world systems, for instance when walking 

through a linked list. For this test we used a loop that flush 

9MB of cache so that the complete cache is flushed. 

 

Figure 12 describes this scenario. 

 
Figure 12: Scenario 2 with Windows VM executing memory 

stress test 

 

 

Again, we provide only a summary of all the tests executed 

within this scenario (Figure 13). 

 
Figure 13: Results of the five tests executed in scenario 2 

 

In comparison with scenario 1, scenario 2 results are almost 

the same which means that one VM of specific workload does 

not have a big influence on the other VMs. 

 

Scenario 3:  

The aim of this scenario is to clarify whether the type of 

workload in the VMs has any effect on the performance of the 

UTVM. In this scenario, 4 VMs are running: UTVM, 

Virtualized Windows VM and 2 other privileged VMs. All the 

VMs (except UTVM) are doing Memory-Load stress test. 

Figure 14 presents this scenario. 

 

 
Figure 14: Scenario 3 with three VMs executing memory-load 

stress test 

 

Figure 15 below is a summary of the test results, compared 

with the previous two scenarios and the bare-machine. 

 
Figure 15: Results of the five tests executed in scenario 3 

 

In all of the four clock tests, scenario 3 has the highest 
value. This is due to the system memory bus bottleneck. The 

hardware platform used for this evaluation is a Symmetric 

Multiprocessor System (SMP) system with four identical 

cores connected to a single shared main memory using a 

system bus. These cores have full access to all I/O devices and 

are treated equally.   

 

The system memory bus or system bus can be used by 

only one core at a time. If two cores are executing tasks that 

need to use the system bus at the same time, then one of them 

will use the bus while the other will be blocked for some time.  
As the processor used has 4 cores, when all of these are 

running at the same time, system bus contention occurs. This 
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explains the high values obtained in scenario 3. This is as well 

the worst case scenario that may be expected in any system 

using this hypervisor on this platform. It has to be remarked 

that also on a bare metal system bus contention can and will 

increase execution latencies. Virtualization does not solve this 

bottleneck. However, using such virtualization solution avoids 

cache coherency latencies as memory regions are not shared 

between the different VM.  
 

The sustained interrupt test is not impacted. This is 

expected due to the nature of the test. The high interrupt rate 

will keep the interrup thandler cached, so no RAM accesses 

are needed and thus no bus contention will occur. 

 

6. EXECUTIVE COMPARATIVE SUMMARY: 

In this section, we present a graphical comparison between 

the results of long term tests in all the scenarios, as the 

concern is always about worst case situations when dealing 

with real-time systems. 
 

Clock tick processing duration test for long term -

Statistical test- (No cache flushing): 

This test measure the RTOS clock tick processing 

duration. It runs for a long duration (5x1 hour). Figure 16 

below shows the maximum overhead obtained in each 

scenario. 

 
Figure 16: Comparison between the maximum overheads 
captured in each scenario for the long term clock test. 

 

Clock tick processing duration test for long term -

Statistical test- (With cache flushing): 

This test is the same as the ―clock tick processing 

duration‖ test except that the cache is flushed at periodic 

durations. It is executed during a long period. Figure 17 shows 

the results of this test in each scenario. 

 

 
Figure 17: Comparison between the maximum overheads 

captured in each scenario for the long term cache flushing 

clock test. 

 

Sustained interrupt frequency: 

This test measures the probability that an interrupt might 

be missed. Figure 18 compares the values of the results in all 

scenarios. 

 

 
Figure 18: comparison between the sustained interrupt 

duration for all scenarios 

 

Although there are no scheduling decisions in the RTS 

hypervisor and moreover it allows the RTOS to have direct 

access to the hardware, an overhead is detected. The ―clock 

tests‖ of Figure 16 show that on average 4 µs overhead is 

captured in the virtualized system in all the scenarios 
compared to the non-virtualized system. 

 

The system caches can affect the RTOS performance by 

increasing the system overhead of near 3 μs, which is visible 

by comparing the corresponding scenarios of Figure 16 and 

Figure 17. 

 

The architecture of the SMP hardware also plays a role in 

performance degradation especially with memory-stress 

workload, which causes system memory bus bottleneck. For 

instance, with a 4-CPU hardware, the performance is 

degraded by a factor 2 which can be seen in scenario 3 in all 
―clock tests‖. 

 

Even with all these increases, the worst case latencies in a 

RTOS atop RTS are still bounded and the system remain 

predictable. 

 

7. CONCLUSION 

For our experimental evaluation of RTS, we tested the real-

time performance of a privileged VM running Linux 

PREEMPT-RT. The results of the short-term tests (only a 

couple of seconds) show that the performance of the RTOS 
running as guest in a privileged VM is almost the same as 

running RT Linux directly on a bare-machine (non-

virtualized). However, the results of the sustained tests 

(statistical tests for long duration) show that an overhead of 

about 4μs is added to the RT VM performance. This overhead 

can increase up to 8 μs in case of system memory bus 

bottleneck. 

 

Even though an overhead is detected in the RT VM, it is 

bounded and the RTOS performance remains predictable, a 

requirement in hard real-time systems. 

 

Extra overhead 

Extra overhead 
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Moreover, RTS shows a great behaviour when dealing with 

interrupts due to its mechanism of assigning interrupts to the 

VMs. Most of the interrupts (including SMI) are handled by 

the virtualized VM except the ones that are explicitly specified 

to be handled by the RT-VM. This means that less interruption 

happens in the RT-VM which results in shorter worst case 

latencies than on a bare-metal system. 

 
Therefore, RTS is a highly recommended virtualization 

product for hard and soft embedded real-time systems. 
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