
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 8 147 - 155

__

147
IJRITCC | August 2016, Available @ http://www.ijritcc.org

RTS hypervisor qualification for real-time systems

1Hasan Fayyad-Kazan, 2Luc Perneel, 3Long Peng, 4Fei Guan, 5,6Martin Timmerman
1PostDoc Researcher, 2, 3, 4 PhD Candidates, 5Professor and EmSlab director

 Department of Electronics and Informatics, Vrije Universiteit Brussel, Pleinlaan 2- 1050 Brussel, Belgium

E-mails: {1hafayyad, 2luc.perneel, 3longpeng, 4feiguan, 5martin.timmerman}@vub.ac.be

6CEO Dedicated Systems Experts NV/SA Belgium m.timmerman@dedicated-systems.com

Abstract:-Virtualization is a synonym for the server and cloud computing arena. Recently, it started to be also applied to real-time embedded
systems with timing constraints. However, virtualization products for data centers and desktop computing cannot be readily applied to embedded

systems because of differences in requirements, use cases, and computer architecture.
Bridging the gap between virtualization and real-time requirements imposes the need of real-time virtualization products. Therefore, some
embedded software manufacturers have built several real-time hypervisors specialized for embedded systems.
Currently, there are several commercial ones such as Greenhills INTEGRITY MultiVisor, Real-Time Systems (RTS) GmbH Hypervisor,
Tenasys eVM for Windows, National Instruments Real-Time Hyper Hypervisor, and some others.
This paper provides the behavior and performance results of evaluating RTS hypervisor and gives advices of its use for soft or hard real-time
embedded systems.

Keywords: Hypervisor, Real-time, Real-Time Systems GmbH, Virtualization

 __*****___

1. INTRODUCTION

Virtualization is one of the hottest trends in information
technology today. It is a mechanism that allows the physical

machine resources to be shared among different virtual

machines (VMs) via the usage of a software layer called

hypervisor or Virtual Machine Monitor (VMM). It is a

fundamental component in cloud computing because it

provides numerous guest VM transparent services, such as live

migration, high availability, rapid checkpoint, etc [1].

Virtualization in the server and desktop world has already

matured, with both software and hardware solutions available

for several years [8, 9, 10, 11, 12, 13]. In recent years, the

introduction of multi-core to embedded systems has brought
the availability of increased computing power to embedded

systems. Virtualization on embedded systems has only been

explored for the past years [14, 15, 16, 17], and is an area of

ongoing research which is likely to become more widespread

in the next few years.

Unlike the server world, where VMs typically run

multiple copies of the same (or similar) operating systems,

VMs in the embedded space are more likely heterogeneous,

running different classes of operating systems: a real-time

operating system (RTOS) for traditional embedded real-time
purposes, and a general-purpose (fully-featured) operating

system to support complex applications such as user interfaces

[3].

Embedded virtualization is already deployed in several

domains such as avionics systems and industrial automation

where a strong emphasis on real-time performance is required

[2]. Also, it is used for soft real-time applications such as

media-based ones and even satellite communication systems.

Virtualizing such systems means inserting a new layer

between the hardware and Operating System (OS), and thus
adding potentially extra overhead. Some of these systems’

applications do not demand hard real-time guarantees, but

require that the underlying virtualization layer supports both

low latency and provide adequate computational resources for

completion within a reasonable timeframe [4]. Both these

aspects are intimately intertwined with the logic of the
hypervisor scheduler [4]. Thus, the performance overhead

introduced by the virtualization layer should be limited or

minimalistic, and very importantly the system should remain

deterministic. Our contribution germinated from this point, and

we want to benchmark the performance (latencies that can

happen in a VM) of several embedded virtualization solutions

.

In order to accomplish our aim, we did contact several

vendors to participate in this benchmark but unfortunately only

Real-Time Systems GmbH accepted for now the evaluation of

their hypervisor: ―Real-Time Systems GmbH Hypervisor‖.

This hypervisor is intended to provide hard real-time support
for virtualized RTOSs as published by the vendor. Our results

should confirm or refute this.

This paper is organized as follows: Section 2 describes

RTS architecture; section 3 explains the experimental setup

used for our evaluation; section 4 presents the evaluation test

metrics together with their results when applied to a non-

virtualized system; section 5 explains the use cases used to test

RTS hypervisor together with the results; section 6 provides a

comparative summary of the RTS results compared to the non-

virtualized system; and finally a conclusion.

2. RTS HYPERVISOR

Real-Time Systems’ (RTS) Hypervisor is a software

abstraction layer that partitions the hardware resources of a

standard x86, multicore-processor execution platform in such a

way that multiple operating systems (RTOS and/or General

Purpose Operating System) can run concurrently and in

complete independence of one another [5].

The number of operating systems that can run

simultaneously is limited only by the number of available

logical CPUs. As such, the RTS Hypervisor does not partition
anything in the time domain on a certain processing resource,

but makes the processing resource fully available for the

virtualized operating system. Therefore, they run at full speed

and full efficiency. They are enough isolated from one another

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 8 147 - 155

__

148
IJRITCC | August 2016, Available @ http://www.ijritcc.org

so that an OS can be booted or rebooted without slowing or

compromising the ongoing activities of other operating

systems [5].

Figure 1 below describes the RTS Hypervisor architecture.

Figure 1: RTS hypervisor architecture [5]

The RTS Hypervisor supports two modes of operating

system execution: virtualized and non-virtualized (privileged).

The virtualized mode is intended for General Purpose OSs

(e.g., Microsoft Windows) that have no hard real-time

requirements. Virtualization is required to guarantee that they

cannot in any way influence operating systems that run in
other hardware partitions [5].

The privileged (non-virtualized) mode is intended for OSs

that offer hard real-time performance (i.e. RTOS). To

guarantee deterministic behavior and latency times, such

systems require direct access to the hardware. An operating

system that runs in privileged mode does not run in a virtual

machine; it runs instead in its own hardware partition. This

fully protects it and its resources from all other unrelated

system events from non-privileged partitions [5]. However the

protection is asymmetric: a privileged mode operating system
could still impact non-privileged operating systems running

on the same system as it runs non-virtualized. This is a

tradeoff taken to be able to guarantee real-time latencies.

For the scheduling part of RTS, as mentioned before, it

uses partitioning which allows a guest OS to run directly on

the physical core and as such the latter is not shared between

different guest OSes. As a result, there is no contention within

the time domain on processing resources, which makes

scheduling extremely simple as there are no scheduling

decisions to be taken at all.

3. EXPERIMENTAL SETUP

RTS Hypervisor version 4.1 (latest version at the time of

writing this paper) is evaluated here. Linux PREEMPT-RT

3.8.13-rt11 is the OS used in the VM where our testing suite is

performed. This VM is called throughout this paper as Under

Test Virtual Machine (UTVM). The RT Linux version used is

shipped together with the RTS hypervisor from Real-Time

Systems GmbH. It has a small difference compared to the

classical Vanilla Linux with RT extensions which is an extra

network driver to have a virtual network with the GPOS,

which in turn is the OS used to control the whole system.

There are no fundamental changes in the kernel.

The testing results presented in this pear are applicable

only to these mentioned hypervisor and OS versions as other

versions may have other significant performance results.

Our testing software uses mlockall() in the Linux kernel to

assure that all memory is locked into memory. Further, the

application was statically linked and started from a RAM disk

(tmpfs) to avoid swapping out read-only code pages.

The hardware platform used for conducting the tests has the

following characteristics: Intel® Desktop Board DH77KC,

Intel® Xeon® Processor E3-1220 v2 with 4 cores each

running at a frequency of 3.1 GHz, and no hyper-threading

support. The cache memory size is as follows: each core has

32 KB of L1 data cache, 32KB of L1 instruction cache and

256 KB of L2 cache. L3 cache is 8MB accessible by all cores.
The system memory is 8 GB.

4. TESTING PROCEDURES AND RESULTS ON NON-

VIRTUALIZED SYSTEM

This evaluation is performed using several tests. These

tests are divided into two categories: short-term and long-term

tests.

The short-term tests are mainly intended to show the

behavior of the system. In these test, a limited number of

samples (128000) are captured to simulate the case of

embedded systems where a small RAM buffer is available.

The long-term tests are done for hours and intended to

provide the probabilistic worst case that could happen in the

system. The aim is to verify the determinism and predictability

of the system.

 In the short-term test, a memory buffer is filled with a

number of samples, while the long-term test uses the same

measurement system as short-term one but counts the number

of samples occurring during a certain interval. In such

approach, the measured delay values are counted in binary
based bins.

Although the test metrics explained below are mostly used

to examine the real-time performance and behavior of RTOSs

on bare-machines [6] [7], they are useful to be used in other

OS test cases. Moreover, virtualization together with real-time

support emerges to be used in an increasing amount of use

cases, varying from embedded systems to enterprise

computing. Therefore, these tests are a good fit for this paper

evaluation.

A. Measuring process,results overhead and precision

In order to do our measurements, a tool or instrument
needs to be used. The cheapest solution is to use an on

processor chip timer running on the constant frequency of the

processor clock giving as a value the number of cycles

occurred on the processor. Its value is set to zero every time

the processor is reset. This timer is called Time Stamp Counter

(TSC). It is a 64-bits register present on all x86 processors and

has an excellent high-resolution. Recent Intel processors

include a constant rate TSC. This can be verified by checking,

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 8 147 - 155

__

149
IJRITCC | August 2016, Available @ http://www.ijritcc.org

using a Unix-Like OS, the presence of the "constant_tsc" flag

in Linux's /proc/cpuinfo. The processor used in our work has

this flag. With these processors, the TSC reads at the

processor's maximum rate regardless of the actual CPU

running rate and thus the timer is not impacted by power

saving mechanisms.

In order to access the TSC, the programmer has to call the
Read Time-Stamp Counter (RDTSC) instruction from

assembly language.

The used tracing system generates an overhead due to

reading the TSC values and saving them in RAM buffers. In

order to calculate this overhead, an initial test was done in

which the tracing overhead was calculated. This overhead is on

average 0.0084 µs, and is subtracted from the results of the

following tests.

Moreover, each individual measurement have of course its
uncertainty coming from different factors such as counter

resolution, caching (presence of our measurement instruction

in the instruction cache), and frequency stability of the quartz

clock of the processor.

After conducting several tests, we can confirm that the

results provided in this paper have an uncertainty of 0.05 µs.

The details of how these values were obtained can be found in

[18].

B. Testing metrics

Below is an explanation of the evaluation tests. Note that
the tests are initially done on a non-virtualized machine

(further called Bare-Machine) as a reference, using the same

OS as the UTVM.

1) Clock tick processing duration

Like any time-sharing system, Linux allows the

simultaneous execution of multiple threads by switching from

one threads to another in a very short time frame. The Linux

scheduler supports multiple scheduling classes, each using

different scheduling algorithms. For instance, there are the two

real-time (strict priority) scheduling classes SCHED_FIFO and
SCHED_RR, a normal scheduling class (SCHED_OTHER)

using dynamic and thus non strict priorities, and finally the

SCHED_BATCH class for background threads. The

prioritization between these scheduling classes is strict as well,

where the SCHED_FIFO/SCHED_RR are using the same

highest priority, followed by the SCHED_OTHER and finally,

at the lowest priority by the SCHED_BATCH class.

As in the tests we perform only measurements using

threads of different priorities, we use the SCHED_FIFO

scheduling class in all these tests.

To be able to use timeouts, sleeps, round robin scheduling,

time slicing and etc…, some notion of time is needed. On the

hardware, there is always a timer responsible for this called the

operating system clock timer. It is programmed by Linux

PREEMPT-RT to generate an interrupt each tick. Depending

on the kernel configuration used at build time the tick

frequency can be selected. In the used RTOS, the OS clock is

configured to run at 1000Hz, which means that the interrupts

occurs every one millisecond. This tick period is considered

the scheduling quantum.

The aim of this test is to measure the time needed by the

OS to handle this clock tick interrupt. Its results are extremely

important as the clock tick interrupt - being on a high level

interrupt on the used hardware platform - will bias all other

performed measurements.

This test helps also in detecting ―hidden‖ latencies that are

not introduced by the clock tick. In such cases, the ―hidden‖

latency will be different and its event time will not be aligned

with the RTOS clock tick frequency.

Test method: The way we get the clock tick duration in this

test is simple: we create a real-time thread with the highest

priority. This thread does a finite loop of the following tasks:

starting the measurement by reading the time using the ―Start‖

signal, executing a ―busy loop‖ that does some calculations

and stopping the measurement by reading the time again using
the ―Stop‖ signal. Having the time before and after the ―busy

loop‖ provides the duration needed to finish its job. This ―busy

loop‖ is made so that it can run fully in L1 caches and as such

it does not introduce latencies by cache misses. In case we run

this test on the bare-machine, this ―busy loop‖ will be delayed

only by interrupt handlers. As we remove all other interrupt

sources, only the clock tick timer interrupt can delay the ―busy

loop‖. When the ―busy loop‖ is interrupted, its execution time

increases.

When executing this test in a guest OS (VM) running on

top of a hypervisor, it can be interrupted or scheduled away by
the hypervisor as well, which will result in extra delays.

Figure 2 presents the results of this test on the bare-

machine, followed by an explanation. The X-axis indicates the

time when a measurement sample is taken with reference to

the start of the test. The Y-axis indicates the duration of the

―busy loop‖.

Figure 2: Clock tick processing duration of the bare-machine-

zoomed

The lower values (29.95 µs) of Figure 2 present the ―busy

loop‖ execution durations if no clock tick happens. In case of

clock tick interruption, its execution is delayed until the clock

interrupt is handled, which is around 31 µs (top values). The

difference between the two values is the delay spent handling

the tick (executing the handler), which is 0.9 µs.

Clock tick duration=

30.85 – 29.95 = 0.9 µs

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 8 147 - 155

__

150
IJRITCC | August 2016, Available @ http://www.ijritcc.org

Remind that the RT Linux kernel clock is configured to

generate a tick each 1 ms. This is obvious in Figure 2, which

is a zoomed-in version of Figure 3 below.

Figure 3: Clock tick processing duration of the bare-machine

Figure 3 represents the test results of 128000 captured

samples, in a time frame of 4 seconds (this is limited by the

size of the sampling buffers on the used hardware platform).

Due to scaling reasons, the samples form a line.

As shown in Figure 3, the ―busy loop‖ execution time is 31.53

µs at some periods. Note that the first ―clock tick handling

duration‖ (in the circle) took more time (31.53 µs) due to

cache miss. Therefore, a clock tick delays any task by 0.9 µs

(±0.05 µs) to 1.58 µs (±0.05 µs) µs.

This test detects all the delays that may occur in a system

together with its behavior on the short term. To have a long-

term view on the hypervisor behavior, we execute a test in the

OS (still in the non-virtualized system or bare-machine) for a

long duration (more than one hour) where 120 million

samples are captured. This test is explained in the following

section.

2) Long-term (statistical) clock tick processing duration

test

The ―clock tick processing duration‖ test described above
detects all the delays that may occur in a system together with

its behaviour for a short period. To have a more precise view

of the system behaviour, we execute the same test but for a

long period. In this test, we use a different sampling method

than the previous test due to the sample buffer space limitation.

The importance of the figures obtained by ―clock tick

processing duration‖ test is to show the exact tracing values

and the moments of their occurrence while the figures of

―long-term clock tick processing duration‖ test show their

distribution over time and the predictability of the system

latencies.

This test is executed 5 times, each time for one hour. The

motivation for this (5 times) is to take into consideration all the

circumstances that may happen in and around the system, like

the room temperature, running the test immediately after the

machine start-up, run it after one day of keeping the machine

on, etc.

Figure 4 shows the maximum values obtained from each of

the 5 runs.

Figure 4: comparing the results of the 5 test runs.

As our concern is about real-time performance, we focus

on the test-run where the maximum measurement out of the 5
runs is captured.

Table 1 below shows the results of the run with the highest

captured latency.

Table 1: Statistical clock tick processing duration results for

the run with maximum latency

Figure 5 below shows the statistical distribution of the results

obtained in the run of our concern.

Figure 5: Bare-Machine results for the statistical test with

highest latency captured

Figure 5 shows that 97 % of the samples (116405074) are

in the interval between 29.13 μs and 30.45 μs. This is logical

as the ―busy loop‖ execution time (± 29.95μs) falls in this

region. Any samples outside this region are considered delays.

We see that 3 % of the samples are between 30.46 μs and

31.78 μs. The maximum value captured in this interval is

31.53μs. Therefore, the maximum overhead detected in the

system is 1.58 μs (±0.05 µs) (31.53-29.95).

Due to cache miss

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 8 147 - 155

__

151
IJRITCC | August 2016, Available @ http://www.ijritcc.org

3) Clock tick processing duration with cache flushing

In the previous test ―clock tick processing duration‖, the

clock tick handler is always residing in the cache due to the

periodic clock tick interrupt. Also, our test is not fetching a lot

of data which could affect the cache contents. This is the best

case scenario.

The aim of this test - clock tick processing duration with

cache flushing – it to show the worst case duration that may

happen in the system due to cache misses. In order to do so, we

flush the caches (L1+L2+L3) on a regular interval which in

turn causes the clock tick handler to be fetched from the

memory whenever a clock tick happens in the system.

For a better understanding of this test setup and outcome,

we first provide a zoomed version of the results figure, and

then the complete figure.

Figure 6: Clock tick processing duration zoomed version of

the results on the bare-machine

Figure 6 above shows that this test runs initially for 4ms

(X-Axis) where four clock tick interruptions occurred, causing

delays in the test execution (the first four samples in the red

box). After that, the cache is flushed and the test execution is

resumed. When the next clock tick interrupt occurs, the CPU

suspend the test until it handles this interrupt. But as the

handler is flushed away from the caches, the CPU will fetch it

from the RAM again. This fetch costs extra delay in handling

the interrupt, which in turn delays the execution of the test

(first sample of the green box). The test continues running with
the same described procedure.

Figure 7 shows the test results for a longer period.

Figure 7: Clock tick processing duration in case of cache

flushing

Table 2 below summarizes the results of this test:

Table 2: Clock tick processing duration with cache flushing

4) Statistical clock tick processing duration test with

cache flushing

This is the long-duration version of the test ―clock tick

processing duration with cache flushing‖.

 Again this test is done 5 times, each time for 1 hour

(capturing 120 million samples). Figure 8 below shows the

maximum values captured in each of the 5 runs.

Figure 8: Comparing the maximum values obtained in the 5

runs of statistical clock test with cache flushing

Table 3 summarizes the test results of the run that captured the

maximum latency.

Table 3: The statistical test with cache flushing test run with

maximum latency

5) Summary of the four clock tick processing duration
tests on the bare machine

Table 4 provides a summary for the maximum overheads

obtained in each of the four clock tick processing duration

tests above (executed on non-virtualized systems).

Table 4: Comparison between the four clock tests executed on

bare-machine

6) Maximum sustained interrupt latency (or interrupt

stress) test
 ―Interrupt tests‖ evaluate how the operating system

performs when handling interrupts. Low latency interrupt

handling is a key system capability of real-time operating

systems as RTOSs are typically event driven.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 8 147 - 155

__

152
IJRITCC | August 2016, Available @ http://www.ijritcc.org

On this platform, we use a PCI device which generates

interrupts using an internal timer (thus independent of

operating system clock being tested).

This test detects when an interrupt cannot be handled

anymore due to the interrupt overload. In other words, it shows

a system limit depending on, for example, how long interrupts

are masked, how long higher priority interrupts (the clock tick
or other) take, and how well the interrupt handling is designed.

It also gives a very optimistic worst case value due to the

fact that, because of the high interrupt rate, the amount of spare

CPU cycles between the interrupts is limited or nil. Also,

depending on the length of the interrupt handler, it might

mostly be present in the caches. In a real world environment,

the worst case duration will be longer.

In this test, 10 million interrupts are generated at specific

interval rates. Our test measures whether the system under test
misses any of the generated interrupts. The test is repeated with

smaller and smaller intervals until the system under test is no

longer capable handling the interrupt load.

Table 5 below show the results of this test:

Table 5: Sustained interrupt frequency on bare-machine

The above table shows that the RT Linux OS can handle

all the 10 million generated interrupts without missing any

one only if the duration between the generated interrupts is 28

μs. Below this value, RT Linux start to miss some interrupts.

Further on, the system is tested by generating bursts of higher

number of interrupts, which on the long run shows that the

guaranteed interrupt duration for Linux on bare-machine is 28

μs (100 million interrupts scenario).

5. TESTING RESULTS ON VIRTUALIZED SYSTEM

RTS hypervisor is tested using the same test metrics as the

bare-machine but in several different scenarios or use cases.

Below is an explanation of each scenario followed by the test

results.

Scenario 1:

The aim of this scenario is to measure the extra overhead

introduced in the VM, compared to the bare-machine, due to

the insertion of the RTS virtualization layer. In this scenario,
we have two virtual machines (VMs) running on top of the

hypervisor: a virtualized Windows 7 VM, and a privileged

VM with Linux PREEMPT-RT OS. Each VM is assigned to

run on one physical CPU. The privileged VM is the UTVM as

our tests are performed in it. Windows 7 VM is running in

virtualized mode, in idle state and acts as the interface to

connect and control the UTVM.

Figure 9 below is a graphical representation for this scenario.

Figure 9: Scenario 1: UTVM and idle Windows VM are

running

As all the tests explained in section 4 above will be

conducted in every scenario, this will end up in a lot of figures

and tables to be shown. Therefore, we decided to provide only

a summary of the results.

Figure 10 below shows the results of all the tests, together

with a comparison with the results of the bare-machine.

Figure 10: Results of the five tests executed in scenario 1

Note: Low values mean better performance.

Figure 10 results show that an extra overhead (the values
in the red rectangle), compared with the bare-machine, is

captured in the RTOS running atop RTS hypervisor.

Normally, there should not be any difference between the

values especially that the UTVM is having direct access to the

hardware. As we do black box testing, we do not know the

exact reason for this extra overhead.

The only strange result is the ―maximum sustained

interrupt latency‖ value (in the green rectangle) which is twice

better than the bare-machine. In theory, this is not very

logical! But this happens due to the fact that RTS-Hypervisor

assigns only the IRQs explicitly specified for a specific VM to
it. To make it more clearly, we refer back to the bare-machine

case where there is only the hardware and an OS running atop

of it. In such system, the OS execution is affected by different

kind of interrupt sources like the System Management

interrupts (SMI) from the BIOS.

The RTS hypervisor, is configured in a way that all the

hardware interrupts are directly assigned to the CPU that is

servicing the virtualized VM, except the ones that are required

by the UTVM. This means that the execution of the UTVM is

less affected by external interrupts, and can handle its tasks
more rapidly.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 8 147 - 155

__

153
IJRITCC | August 2016, Available @ http://www.ijritcc.org

This is illustrated and explained in details in Figure 11.

Figure 11: The procedure of configuring interrupts through

the RTS hypervisor.

To proof this, we did a test running UTVM solely on top

of the hypervisor and assigning all interrupts to it. In this

situation the test results were exactly the same as the results of

the bare-machine.

Scenario 2:

The aim of this scenario is to detect the effect of CPU

caches on the UTVM performance. This scenario is the same

as scenario 1 except that the Windows 7 VM is running a

Memory-Load stress test. This Memory-Load test unloads all

the caches by accessing each cache-line. For this processor,

each cache-line consists of 64 bytes of memory. On a cache

miss, a cache line is unloaded and replaced by data from the

main memory. This happens each time in chunks of cache-line

data. By accessing only one word of data each 64 bytes, we

stress the memory bus while minimally using the CPU
resources. Thus, this generates a worst case stress load

towards the central memory bus, which can exceptionally

happen in real world systems, for instance when walking

through a linked list. For this test we used a loop that flush

9MB of cache so that the complete cache is flushed.

Figure 12 describes this scenario.

Figure 12: Scenario 2 with Windows VM executing memory

stress test

Again, we provide only a summary of all the tests executed

within this scenario (Figure 13).

Figure 13: Results of the five tests executed in scenario 2

In comparison with scenario 1, scenario 2 results are almost

the same which means that one VM of specific workload does

not have a big influence on the other VMs.

Scenario 3:

The aim of this scenario is to clarify whether the type of

workload in the VMs has any effect on the performance of the

UTVM. In this scenario, 4 VMs are running: UTVM,

Virtualized Windows VM and 2 other privileged VMs. All the

VMs (except UTVM) are doing Memory-Load stress test.

Figure 14 presents this scenario.

Figure 14: Scenario 3 with three VMs executing memory-load

stress test

Figure 15 below is a summary of the test results, compared

with the previous two scenarios and the bare-machine.

Figure 15: Results of the five tests executed in scenario 3

In all of the four clock tests, scenario 3 has the highest
value. This is due to the system memory bus bottleneck. The

hardware platform used for this evaluation is a Symmetric

Multiprocessor System (SMP) system with four identical

cores connected to a single shared main memory using a

system bus. These cores have full access to all I/O devices and

are treated equally.

The system memory bus or system bus can be used by

only one core at a time. If two cores are executing tasks that

need to use the system bus at the same time, then one of them

will use the bus while the other will be blocked for some time.
As the processor used has 4 cores, when all of these are

running at the same time, system bus contention occurs. This

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 8 147 - 155

__

154
IJRITCC | August 2016, Available @ http://www.ijritcc.org

explains the high values obtained in scenario 3. This is as well

the worst case scenario that may be expected in any system

using this hypervisor on this platform. It has to be remarked

that also on a bare metal system bus contention can and will

increase execution latencies. Virtualization does not solve this

bottleneck. However, using such virtualization solution avoids

cache coherency latencies as memory regions are not shared

between the different VM.

The sustained interrupt test is not impacted. This is

expected due to the nature of the test. The high interrupt rate

will keep the interrup thandler cached, so no RAM accesses

are needed and thus no bus contention will occur.

6. EXECUTIVE COMPARATIVE SUMMARY:

In this section, we present a graphical comparison between

the results of long term tests in all the scenarios, as the

concern is always about worst case situations when dealing

with real-time systems.

Clock tick processing duration test for long term -

Statistical test- (No cache flushing):

This test measure the RTOS clock tick processing

duration. It runs for a long duration (5x1 hour). Figure 16

below shows the maximum overhead obtained in each

scenario.

Figure 16: Comparison between the maximum overheads
captured in each scenario for the long term clock test.

Clock tick processing duration test for long term -

Statistical test- (With cache flushing):

This test is the same as the ―clock tick processing

duration‖ test except that the cache is flushed at periodic

durations. It is executed during a long period. Figure 17 shows

the results of this test in each scenario.

Figure 17: Comparison between the maximum overheads

captured in each scenario for the long term cache flushing

clock test.

Sustained interrupt frequency:

This test measures the probability that an interrupt might

be missed. Figure 18 compares the values of the results in all

scenarios.

Figure 18: comparison between the sustained interrupt

duration for all scenarios

Although there are no scheduling decisions in the RTS

hypervisor and moreover it allows the RTOS to have direct

access to the hardware, an overhead is detected. The ―clock

tests‖ of Figure 16 show that on average 4 µs overhead is

captured in the virtualized system in all the scenarios
compared to the non-virtualized system.

The system caches can affect the RTOS performance by

increasing the system overhead of near 3 μs, which is visible

by comparing the corresponding scenarios of Figure 16 and

Figure 17.

The architecture of the SMP hardware also plays a role in

performance degradation especially with memory-stress

workload, which causes system memory bus bottleneck. For

instance, with a 4-CPU hardware, the performance is

degraded by a factor 2 which can be seen in scenario 3 in all
―clock tests‖.

Even with all these increases, the worst case latencies in a

RTOS atop RTS are still bounded and the system remain

predictable.

7. CONCLUSION

For our experimental evaluation of RTS, we tested the real-

time performance of a privileged VM running Linux

PREEMPT-RT. The results of the short-term tests (only a

couple of seconds) show that the performance of the RTOS
running as guest in a privileged VM is almost the same as

running RT Linux directly on a bare-machine (non-

virtualized). However, the results of the sustained tests

(statistical tests for long duration) show that an overhead of

about 4μs is added to the RT VM performance. This overhead

can increase up to 8 μs in case of system memory bus

bottleneck.

Even though an overhead is detected in the RT VM, it is

bounded and the RTOS performance remains predictable, a

requirement in hard real-time systems.

Extra overhead

Extra overhead

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 8 147 - 155

__

155
IJRITCC | August 2016, Available @ http://www.ijritcc.org

Moreover, RTS shows a great behaviour when dealing with

interrupts due to its mechanism of assigning interrupts to the

VMs. Most of the interrupts (including SMI) are handled by

the virtualized VM except the ones that are explicitly specified

to be handled by the RT-VM. This means that less interruption

happens in the RT-VM which results in shorter worst case

latencies than on a bare-metal system.

Therefore, RTS is a highly recommended virtualization

product for hard and soft embedded real-time systems.

8. ACKNOWLEDGMENT

We would like to thank RTS Company for making its

product available for testing, and for their support during the

evaluation process.

9. REFERENCES
[1]. J. Zhang, K. Chen, B. Zuo, R. Ma, Y. Dong and H. Guan,

―Performance analysis towards a KVM-Based embedded
real-time virtualization architecture,‖ in 5th international
conference on Computer Sciences and Convergence
Information Technology (ICCIT), Seoul, 2010.

[2]. Z. Gu and Q. Zhao, ―A State-of-the-Art Survey on Real-
Time Issues in Embedded Systems Virtualization,‖ Journal

of Software Engineering and Applications, 2012.
[3]. H. Gernot, ―Virtualizing embedded systems - why

bother?,‖ in 48th ACM/EDAC/IEEE Design Automation
Conference (DAC), New York, 2011.

[4]. M. Lee, A. Krishnakumar, P. Krishnan, N. Singh and S.
Yajnik, ―Supporting soft real-time tasks in the xen
hypervisor,‖ in Proceedings of the 6th ACM
SIGPLAN/SIGOPS international conference on Virtual
execution environments , New York, 2010.

[5]. Real Time Systems GmbH, ―Real-Time Virtualization,
Embedded Hypervisor and Real-Time Windows Solutions
for Windows Real-Time Applications,‖ [Online].
Available: http://www.real-time-systems.com/.

[6]. Luc Perneel, Hasan Fayyad-Kazan and Martin
Timmerman, ―Android and Real-Time Applications: Take
Care!,‖ Journal of Emerging Trends in Computing and
Information Sciences, no. 2013.

[7]. Hasan Fayyad-Kazan, Luc Perneel and Martin
Timmerman, ―Linux PREEMPT-RT vs. commercial
RTOSs: how big is the performance gap?,‖ GSTF Journal
of Computing, 2013.

[8]. K. Adams and A. Agesen, ―A comparison of software and
hardware techniques for x86 virtualization,‖ in Proceedings
of the 12th international conference on Architectural
Support for Programming Languages and Operating

System, New York, NY, 2006.
[9]. P. Braham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.

Ho, R. Neugebauer, I. Pratt and A. WarField, ―Xen and the
art of virtualization,‖ in Proceedings of the nineteenth
ACM symposium on Operating systems principles, New
York, NY, 2003.

[10]. F. Bellard, ―QEMU, a fast and portable dynamic
translator,‖ in Proceedings of the USENIX 2005 Annual

Technical Conference, CA, 2005.
[11]. J. Smith and R. Nair, Virtual Machines: Versatile

Platforms for Systems and Processes (The Morgan
Kaufmann Series in Computer Architecture and Design,
San Francisco: Morgan Kaufmann, 2005.

[12]. R. Uhlig, G. Neiger, D. Rodgers, F. Santoni, F. Martins, A.
Andersons, S. Bennett, A. Kagi and L. Smith, ―Intel
virtualization Technology,‖ Computer 38, 2005.

[13]. J. Watson, ―VirtualBox: bits and bytes masquerading as

machines,‖ Linux Journal, 2008.

[14]. D. Ferstay, ―Fast Secure Virtualization for the ARM
Platform,‖ Master’s thesis, The University of British
Columbia, Faculty of Graduate Studies, 2006.

[15]. G. Heiser, ―The Motorola Evoke QA4—A Case Study in
Mobile Virtualization,‖ Technology White Paper, Open
Kernel Labs, 2009.

[16]. K. Dong-Guen, L. Sang-Min and S. Dong-Ryeol, ―Design
of the Operating System Virtualization on L4
Microkernel,‖ in Fourth International Conference on
Networked Computing and Advanced Information
Management, Gyeongju, 2008.

[17]. K. Sandstrom, A. Vulgarakis, M. Lindgren and T. Nolte,

―Virtualization Technologies in Embedded Real-Time
Systems,‖ in 18th Conference on Emerging Technologies
& Factory Automation (ETFA) , Cagliari, 2013.

[18]. H. Fayyad-Kazan, Benchmarking Virtualization solutions
for business and embedded systems, PhD Thesis, Brussels:
University Press, ISBN: 978-9-4619721-5-6, 2014.

http://www.ijritcc.org/

