
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 6 615 – 618

__

615

IJRITCC | June 2016, Available @ http://www.ijritcc.org

Trends in the Solution of Distributed Data Placement Problem

Rohini T V

Asst. Prof, Dept. of ISE,SJBIT, Bengaluru, India

Research Scholar, VTU, Belagavi

e-mail: rohinitv@gmail.com

Ramakrishna M V

Professor, Dept. of ISE

SJBIT, Bengaluru, India

e-mail: mvrama@yahoo.com

Abstract— Data placement for optimal performance is an old problem. For example the problem dealt with the placement of relational data in

distributed databases, to achieve optimal query processing time. Heterogeneous distributed systems with commodity processors evolved in

response to requirement of storage and processing capacity of enormous scale. Reliability and availability are accomplished by appropriate level

of data replication, and efficiency is achieved by suitable placement and processing techniques. Where to place which data, how many copies to

keep, how to propagate updates so as to maximize the reliability, availability and performance are the issues addressed. In addition to processing

costs, the network parameters of bandwidth limitation, speed and reliability have to be considered. This paper surveys the state of the art of

published literature on these topics. We are confident that the placement problem will continue to be a research problem in the future also, with

the parameters changing. Such situations will arise for example with the advance of mobile smart phones both in terms of the capability and

applications.

Keywords- Data placement; Replication; Distributed system

__*****___

I. INTRODUCTION

 In the modern computing environment processors,

memory and internet have become ubiquitous. Companies

such as yahoo, ebay, facebook, google are dealing with the

problem of processing enormous amount of data which is

being produced continuously. For example Google processed

20 petabytes of data per day as of 2009 [5, 16]. Similar

volumes of data are being dealt with by other companies. The

main issue here is the amount of data and the speed with

which data need be processed for user requests. These

companies resorted to non-traditional approach of horizontal

scaling where a large number of commodity hardware is used

to store and process the data. Google developed Google File

System (GFS), to store their data on a large number of

processors, each of them being a commodity machine [6]. To

deal with semi-structured data they developed Bigtable data

model and processing system [3]. Google file system is an

example of a distributed file system which enables storing and

processing of large volumes of data on thousands of

commodity processors. In such a system in general, all the

processors may not be identical in terms of the processing

capacity as well as the storage capacity. When a query comes

to a machine to be processed, it would access the data stored

on various other machines. The access delay will vary

depending on how data is placed or distributed on the

machines. Accessing data on the disk of the same machine is

fastest. Next is accessing from the same rack followed by

machines located in the same data center which have to go

through network switches, and lastly from remote location. As

the time progresses the query pattern changes; in other words

the access pattern and nature of queries will vary and not stay

static. Hence the proper placement of data which enables high

availability with minimum delay is important.

The goal of solution to data placement problem is to

achieve best throughput, minimize delay and maximize the

utilization of resources. The problem of data placement has

manifested in various forms for a long time in computer

science. This paper deals with the research which has

addressed the problem for the newly emerged heterogeneous

environment as discussed above. In the next section we

describe the Google file system, the most significant

distributed file system today. This is followed by QFS

(Quantcast file system) in the section 3 which deals with wide

area placement of data replicas, in which the main aim is to

maintain multiple copies at multiple locations. We follow this

with a discussion of automatic and location aware data

placement techniques in section 4.

II. GOOGLE FILE SYSTEMS

Google File System(GFS) is designed to provide efficient,

reliable access to data using large clusters of commodity

hardware [6]. GFS provides a familiar file system interface.

Files are organized hierarchically in directories and

identified by pathnames. GFS supports the usual operations

to create, delete, open, close, read, and write files and GFS

has snapshot and record append operations. Snapshot creates

a copy of a file or a directory tree at low cost. Record

append allows multiple clients to append data to the same

file concurrently while guaranteeing the atomicity of each

individual clients append. A GFS cluster consists of multiple

nodes. These nodes are divided into two types: one Master

node and a large number of Chunkservers. Files are divided

into fixed-size chunks. Chunkservers store these chunks.

Each chunk is assigned a unique 64-bit label by the master

node at the time of creation, and logical mappings of files to

constituent chunks are maintained. Each chunk is replicated

several times throughout the network, with the minimum

being three, but even more for files that have high end-in

demand or need more redundancy.

The Master server doesn’t usually store the actual

chunks, but rather all the metadata associated with the chunks,

such as the namespace, access control information, the

mapping from files to chunks, and the current locations of

chunks, what processes are reading or writing to a particular

chunk, or taking a ”snapshot” of the chunk pursuant to

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 6 615 – 618

__

616

IJRITCC | June 2016, Available @ http://www.ijritcc.org

replicate it (usually at the instigation of the Master server,

when, due to node failures, the number of copies of a chunk

has fallen beneath the set number). All this metadata is kept

current by the Master server periodically receiving updates

from each chunk server ”Heart-beat” messages. GFS client

code linked into each application implements the file system

API and communicates with the master and chunk servers to

read or write data on behalf of the application. Clients or

applications interact with the master for metadata operations,

but all data-bearing communication goes directly to the

chunkservers. GFS typically has hundreds of chunkservers

spread across many machine racks. These chunkservers in

turn may be accessed from hundreds of clients from the same

or different racks Communication between two machines on

different racks may cross one or more network switches.

When the user population is scattered over the entire world,

communicating with every user machine over a short network

path is impossible. Large-scale Internet services often solve

this problem by means of replication. For reliability, each

chunk is replicated on multiple chunkservers The chunk

replica placement policy serves two purposes maximize data

reliability and availability, and maximize network bandwidth

utilization. The master re-replicates a chunks soon as the

number of available replicas falls below a user-specified goal.

This could happen for various reasons: a chunkserver

becomes unavailable; it reports that its replica may be

corrupted, one of its disks is disabled because of errors, or the

replication goal is increased. Finally, the master re-balances

replicas periodically. It examines the current replica

distribution and moves replicas for better disks pace and load

balancing.

III. WIDE-AREA PLACEMENT OF DATA REPLICAS

In a distributed system in general data is often replicated at

multiple locations for the sake of reliability, and kept

consistent to serve user requests [18, 7]. The replica

placement serves two purposes: maximize data reliability

and availability and maximize network band width. Ping et.

al. address the wide area placement of data replicas for fast

and highly available data access[12]. They have addressed

the problem of how to place replicas in wide area networks,

where data is replicated at multiple locations to serve users

with lower latency and higher availability. Having replicas

in wide area applications leads to fast and highly available

data access [8]. Since it is in-feasible to know in advance

the user access pattern of data, this research focuses on

determining replica locations based on the past data

accesses. A main challenge that arises in this case is to

analyze data access patterns in an efficient, scalable

manner so as to deal with a large number of users. Such

analysis of data accesses needs to be done efficiently even

across geographic regions since each data replica can be

accessed by a different user population. The analysis must

facilitate robust estimation of both data access delay and

availability for feasible replica placement scenarios [17].

Here optimal replica locations are chosen, further,

redirecting the applications requests to a nearby replica. In

this work they proposed two algorithms, one for finding the

optimal replica locations and another to create user cluster

node .

The first algorithm returns highest utility value and

replica locations that lead to value. The algorithm chooses

set of replica locations that lead to optimal solution from

the candidate locations. In this algorithm, let L be the

candidate locations, T is the set of already chosen replica

locations and main aim is to maximize the objective

function (delay, availability). In this approach, data access

pattern is collected by forming cluster of user nodes. For

each replica placement plan R, the objective function needs

to be evaluated based on the estimated average data access

delay and availability. It would be impractical to collect

information about all the users across data replicas and

store it at a central server. Thus, this approach maintains

for each replica, a summary of the coordinates of the users

that have recently accessed the replica.

Whenever r new locations of replicas need to be

determined, these summaries are collected at a central

location and then used for estimating the overall data

access delay and availability for each replica placement

under consideration. The second algorithm describes the

manner in which the coordinates of users are summarized

at each replica location and the coordinate of such users are

classified int m clusters. The distance between user nodes

and replica locations is obtained from network coordinate

systems RNP [13]. By knowing coordinates of replica

locations, it can predict the nearest replica to access data

with high accuracy.

Assaf and Danny deal with replica placement strategy in

which a replica must be synchronized with the original

content server in order to supply reliable and precise

service to the client requests [2]. Replica placement across

data centers is a very common approach for improving

performance and availability of content services. Content

replication algorithms deploy a set of servers, distributed

throughout the data centers network, and replicate the

relevant data across these servers. Both the time required to

access the data and the traffic in the network are reduced

by Replica placement deals with the actual number and

network location of the replicas. Clearly, would like to

minimize the network distance between an email

application and the closest replica containing the desired

content (in this example the authentication server) and thus

having more replicas helps On the other hand, having more

replicas is more expensive so it needs to model the cost and

the benefit in a way that can allow to make the appropriate

decisions regarding the number and the network locations

of the replicas. This problem is strongly related to a family

of optimization problems generally referred to as facility

location problems [15, 1]. Most of the algorithms neglect

the cost of keeping the replicas across the network up to

date. In this work, A replica must be synchronized with the

original content server in order to supply reliable and

precise service to the client requests. The amount of

synchronization traffic across the network depends on the

number of replicas deployed in the network, the topology

of the distributed update and the rate of updates in the

content of the server.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 6 615 – 618

__

617

IJRITCC | June 2016, Available @ http://www.ijritcc.org

Chervenak and Deelman deal with Data Placement For

Scientific Applications In Distributed Environments [4]. The

aim of this work is to distribute data and to make it

advantages for application execution. They study the

relationship between data placement services and work flow

management systems and placement activity data sets are

largely asynchronous with respect to work flow execution.

TevFik and Miron focus on the idea of placement of data in

distributed computing systems similar to the I/O subsystem

in operating system [9]. In this data placement strategy

different data transfer protocols may have different optimum

concurrency level for any two source and destination. They

have not focused on optimal location with respect user

access pattern..

IV. AUTOMATIC DATA PLACEMENT

 The problem of automatic data placement with replicated key

value stores is address by Joao et. al. [11]. The main objective

is to automatically optimize the replica placement in a way

that locality patterns in data accesses, such that the

communication between nodes is minimized. The issues

addressed are, the placement of the objects generating most

remote operation for each node and combining the usage of

consistent hashing with al data structure.

Yu and pan addressed the problem of placement in three

scenarios. The first case without replicas, the problem is

addresses with hyper-graph formulation. In the second

scenario with replicas, the numbers of replicas allowed are

considered. In the third scenario replica migration is

considered In this paper [19] data placement problem solved

using three scenarios, first, for the scenario without replicas, in

this scenario placement problem is solved by the hyper-graph

formulation. In the second scenario, with replicas and the

number of replicas allowed are considered. In the third

scenario replica migration is considered. Amol et. al. [14]

deals with a technique to address the data placement problem

called SWORD: a scalable workload-aware data partitioning

and placement approach. In which the problem addressed in

OLTP systems. The techniques introduced by them are to

significantly reduce the overheads of initial placement of data

and also during processing of the query. They have used

hyper-graph compression technique over the data items.

Further they address data repartitioning technique which

modifies data placement without complete workload

repartitioning. The technique enables availability and load

balancing. The availability-aware data placement problem to

improve the application performance without Extra storage

cost has been addressed by Yang et. al. [7]. They proposed a

technique of ADAPT which deals with Hadoop framework

and the performance of ADAPT is evaluated in non-dedicated

distributed environment. ADAPT is to migrate data based on

the availability of each node, reduce network traffic, improve

data locality, and optimize the application performance.

V . CONCLUSIONS: FUTURE OF PLACEMENT

PROBLEM

 Although data placement problem is old (such as in

relation to OLTP systems), the engineering details have

changed considerably in the present computing environment.

We have massively parallel processing and storage capability

with commodity hardware, that is distributed widely in

geographic terms. The parameters of the problem include the

network bandwidth, limitations of maximum capability, as

well as delays. In this paper we have provided a survey of the

research literature on the solution techniques and issues

addressed. We discussed the balanced data placement problem

and its solution for distributed system. We see this problem

will continue to be significant research issue in foreseeable

future with new environments emerging. The smart phone

getting smarter and more powerful will be a source of more

information all over the world, and accordingly new

engineering details will emerge for the data placement

problem. New research will have to address these issues.

REFERENCES
[1] Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson,

Kamesh Munagala, and Vinayaka Pandit. Local search heuristics

for k-median and facility location problems. SIAM Journal on

Computing, 33(3):544–562, 2004.

[2] Danny Raz Assaf Rappaport. Update aware replica placement.

In Proceedings of the 9th

[3] CNSM and Workshops, pages 92–99. IFIP, 2013.

[4] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh,

Deborah A Wallach, Mike Burrows, Tushar Chandra, Andrew

Fikes, and Robert E Gruber. Bigtable: A distributed

[5] Ann Chervenak, Ewa Deelman, Miron Livny, Mei-Hui Su, Rob

Schuler, Shishir Bharathi, Gaurang Mehta, and Karan Vahi.

Data placement for scientific applications in distributed

environments. In Proceedings of the 8th IEEE/ACM

International Conference on Grid Computing, GRID ’07, pages

267–274, Washington, DC, USA, 2007. IEEE Computer

Society.

[6] E. F. Codd. A relational model of data for large shared data

banks. Commun. ACM 13(6):377–387, June 1970.

[7] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The

google file system. In ACM SIGOPS Operating Systems

Review, pages 29–43. ACM, 2003.

[8] Hui Jin, Xi Yang, Xian-He Sun, and Ioan Raicu. Adapt:

Availability-aware mapreduce data placement for non-dedicated

distributed computing. In Distributed Computing Systems

(ICDCS), 2012 IEEE 32nd International Conference on, pages

516–525. IEEE, 2012.

[9] Magnus Karlsson and Christos Karamanolis. Choosing replica

placement heuristics for wide-area systems. In Distributed

Computing Systems, 2004. Proceedings. 24th International

Conference on, pages 350–359. IEEE, 2004.

[10] Tevfik Kosar and Miron Livny. A framework for reliable and

efficient data placement in distributed computing systems.

Journal of Parallel and Distributed Computing 65(10):1146–

1157, 2005.

[11] Michael Ovsiannikov, Silvius Rus, Damian Reeves, Paul Sutter,

Sriram Rao, and Jim Kelly. The quantcast file system.

Proceedings of the VLDB Endowment, 6(11):1092– 1101, 2013.

[12] Joao Paiva, Pedro Ruivo, Paolo Romano, and Lu´ıs Rodrigues.

A uto p lacer: Scalable selftuning data placement in distributed

key-value stores. ACM Transactions on Autonomous and

Adaptive Systems (TAAS), 9(4):19, 2015.

[13] Fan Ping, Jeong-Hyon Hwang, XiaoHu Li, Chris McConnell,

and Rohini Vabbalareddy. Wide area placement of data replicas

for fast and highly available data access. In Proceedings of the

fourth international workshop on Data-intensive distributed

computing, page1–8. ACM, 2011

[14] Fan Ping, Christopher McConnell, and Jeong-Hyon Hwang. A

retrospective approach for accurate network latency prediction.

In Computer Communications and Networks (ICCCN), 2010

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 6 615 – 618

__

618

IJRITCC | June 2016, Available @ http://www.ijritcc.org

Proceedings of 19th International Conference on, pages 1–6.

IEEE, 2010.

[15] Abdul Quamar, K Ashwin Kumar, and Amol Deshpande.

Sword: scalable workload-aware data placement for

transactional workloads. In Proceedings of the 16th International

Conference on Extending Database Technology, pages 430–441.

ACM, 2013.

[16] David B Shmoys, Eva Tardos, and Karen Aardal.

Approximation algorithms for facility location problems. In

Proceedings of the twenty-ninth annual ACM symposium on

Theory of computing, pages 265–274. ACM, 1997

[17] Michael Stonebraker. Sql databases v. nosql databases.

Commun. ACM, 53(4):10–11, April 2010.

[18] Michal Szymaniak, Guillaume Pierre, and Maarten Van Steen.

Latency-driven replica placement. In Applications and the

Internet 2005.Proceedings. The 2005 Symposium on, pages

399–405. IEEE, 2005.

[19] Radu Tudoran, Alexandru Costan, Rui Wang, Luc Boug´e,

Gabriel Antoniu, et al. Bridging data in the clouds: An

environment-aware system for geographically distributed

datatransfers. In 14th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing,2014 .

[20] Boyang Yu and Jianping Pan. Location-aware associated data

placement for geo-distributed data-intensive applications. In

2015 IEEE Conference on Computer Communications

(INFOCOM), pages 603–611. IEEE, 2015.

http://www.ijritcc.org/

