
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 6 438 - 440

438

IJRITCC | June 2016, Available @ http://www.ijritcc.org

__

Smart mobile service that helps users to access the applications faster

Mr. Amit Rohra,

Post Graduate, MCA,

Vivekananda Education Society’s

 Institute of Technology,

 Collector’s Colony, Chembur.

Mumbai - 400 074

amit.rohra@ves.ac.in

Mr. Nikesh Posam
Post Graduate, MCA,

Vivekananda Education Society’s

Institute of Technology,

Collector’s Colony, Chembur.

Mumbai - 400 074

nikesh.posam@ves.ac.in

Prof. Nishi Tiku
Senior Lecturer, H.O.D,

Vivekananda Education Society’s

Institute of Technology,

 Collector’s Colony, Chembur.

Mumbai - 400 074

nishi.tiku@ves.ac.in

Abstract:-Our target, today’s generation, we are targeting the root of today’s generation i.e. Mobile phones (Smart phone). Our intent is to

engineer a service that will be running on operating system to access the application.

Keywords:-App, Activity, Drawer, Layout, Coordinates, Service

__*****___

1. Introduction

In today’s generation smart phones have become one essential

part of human being. We use the mobile phone throughout the

day. There are numerous application software’s have been

developed for mobiles operating system to get most out of the

mobile phone. Our concept is to provide the user a quicker

access to the application installed on the system. Our main

focus is on Android operating system as it is the only operating

system that has larger number of users as compared to others

but we can process the same service for other operating system

like Windows, iPhone & Blackberry OS.

2. Android
 Android is a mobile operating system developed by Google.

The first version was brought to market in 2008. Since then

Android is experiencing a great increase in market share. It is

largely open-source and is based on Linux 2.6. Application

programming is done in Java but is being compiled to so called

DEX bytecode and is being run by the Dalvik Virtual Machine

(DVM). This section describes fundamentals of Android

including system architecture and runtime environment.

System Architecture

Android uses a 4-layered system architecture depicted in

figure. The layers are described in the following.

2.1.1 Linux Kernel

Provides low level operating system functionality such as

memory management, security, process management etc. It

also facilitates all the hardware drivers.

2.1.2 Android Runtime
It includes many libraries mostly written in the Java

programming language, which provide a lot of the

functionality of the Java core libraries. The Android Runtime

layer also offers the Dalvik Virtual Machine (DVM) which is

being described in 2.2.

2.1.3 Libraries Provides

C/C++ libraries which are used by many other components

within Android. Those libraries are e.g. the System C library,

SQLite, 3D libraries and so on.

2.1.4 Application Framework

Android offers an extensive framework enabling application

to easily communicate and share data with each other.

Furthermore the framework simplifies accessing systems

resources such as hardware, location data and background

services.

2.1.5 Applications

On this layer Android applications accessible by the user are

located. Android comes with some standard applications

such as Contacts, Messaging etc.

Dalvik Virtual Machine

Android applications are developed using the Java

programming language. Nevertheless you cannot make use

of the full Java framework since Android ships with its own

framework. Java language features such as Reflection are not

supported by this framework due to performance issues. The

Dalvik Virtual Machine (DVM) is a virtual machine which is

optimized for (low-resource) mobile devices. Unlike the

virtual processor model of the Java Virtual Machine (JVM)

the DVM’s processor model makes use of machine registers

thus taking advatage of modern mobile CPU’s. In addition

bytecode for the DVM (called DEX bytecode1) is much

smaller than Java bytecode and can be executed much faster.

How a Java source file becomes DEX bytecode is described

in the following and illustrated in figure 2. Given a Java

source file (*.java) the Java compiler javac creates a Java

bytecode file (*.class). Now the dx tool transforms it to a

*.dex file which is capable of being executed by the DVM.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 6 438 - 440

439

IJRITCC | June 2016, Available @ http://www.ijritcc.org

__

Android Applications

Android applications consist of DEX bytecode, resources and

data and are deployed as *.apk files. They are subject to a

lifecycle and are executed in a so called “Sandbox". That is

every application runs in its own DVM in an independent

Linux process. When an application is being installed to an

Android device it is being assigned a new user and group ID.

Concerning security there is no possibility to illegally access

another process or its data since the user and group IDs are

different.

3. Android's Component System

Before going into the details of Android's component system I

first want to introduce what a software component really is. In

1996 the European Conference on Object-Oriented

Programming (ECOOP) defined it as follows:

“A software component is a unit of composition with

contractually specified interfaces and explicit context

dependencies only. A software component can be deployed

independently and is subject to composition by third parties."

In short the following defines a component:

1. contractually specified interface

2. explicit context dependencies

3. independent deployment

Components must conform to a component model which

specifies form and properties of a component as well as how

components interact with each other and how they can be

combined.

Components in Android

Android allocates four different types of components:

Activities are suitable for interacting with the user and

presenting the user interface.

Services can be used to run background tasks. They do not

have a user interface.

Content Providers are suited for providing data to other

applications. Thus it is possible to “break out" of the Sandbox

and provide data through a defined interface.

 Broadcast Receivers are used to receive broadcasts either

from the Android system or from other applications.

Communication between Components

As a major aspect of a component model is the interaction

between components this subsection is to clarify how it is

implemented in Android. The communication between

components in Android is done by using Intents and Intent

Filters. The calling component uses Intent to announce the

wish for communication with another component. The called

component has an Intent Filter to receive the Intent whereat

the Intent must match the conditions of the Intent Filter.

Intent Filters

Intent Filters are defined in a manifest _le called

AndroidManifest.xml. An example is shown following.

<receiver android:name="org.example.MyReceiver">

 <intent - filter >

 <action android:name="org.example.TEST" />

 </ intent - filter >

 </ receiver >

The XML tag <receiver> stands for a Broadcast Receiver.

This Broadcast Receiver is annotated with an Intent Filter

whose action name is org.example.TEST meaning the

Broadcast Receiver is able to process actions with that name.

So we have an explicitly defined interface through which the

component can be used. That applies to the first point of the

definition of a component.

Intents

Intents Amongst other information Intents contain

information about the desired target component. Intent can

either be explicit or implicit. Explicit means that the target

component is known by its Java name. Implicit means that

the target component is not known but the desired action is.

In case of an implicit Intent the Android system is

responsible for finding a component suitable for executing

the action. If more than one component is found the Android

system asks the user interactively which one to choose. If

none is found Android will display an error message.

/* explicit intent */

 Intent ei = new Intent (org. example . MyReceiver . class);

 /* implicit intent */

 Intent ii = new Intent (" org. example . TEST ");

4. Concept

Traditionally user to open any application user needs to open

the application drawer, then swipe to the screen where the

application is present and then click on the application to

launch it. These steps won’t trouble you if you have few

screens in the drawer (i.e. less applications installed). But

now a days single user have many number of applications

that leads to many screens in application drawer, so to launch

the application user has to swipe n screens to locate the

application and it is also a brain teaser for users to remember

the screen & location of each & every application.

While implementing the proposed daemon, user need not to

open the application drawer & swipe the screens to locate the

application, rather user just have to tap the location on the

Home screen of mobile phone, now this tap location will

query the application drawer & fetch links to the applications

installed at tap location in every screen & pops up a window

which will display the shortcuts to the applications present at

the location.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 6 438 - 440

440

IJRITCC | June 2016, Available @ http://www.ijritcc.org

__

5. Proposed UI

Following images shows the proposed UI for the mobile

phones:

As shown in the picture we can get the location of the screen

when w tap on the screen, subsequently we can pass this

coordinates location to the application drawer and fetch the

links to applications present at the supplied position from all

the screens. These links will be used to create the invisible

shortcut on the home screen. So when user clicks on the screen

he gets the direct access to the application from home page

without going and swiping the application drawer.

6. Conclusions

Opening the drawer, browsing and locating the application

requires more user efforts and power consumption in

traditional operating system. By implementing this service in

the mobile operating system, user gets the faster access to the

application and he don’t need to remember the location of the

each and every application. This service can be integrated with

operating system services so it will not take more power in

terms of battery consumption which will increase the battery

performance to some extent.

7. Acknowledgment

This research was supported by Vivekananda Education

Society’s Institute of Technology. We are thankful to our

colleagues who provided expertise that greatly assisted the

research, although they may not agree with all of the

interpretations provided in this paper. We are also grateful to

Prof. Nishi Tiku for assisting with Mobile Application

Development and moderated this paper. We have to express

out appreciation for sharing their pearls of wisdom with us

during the course of this research.

8. References

[1] Rick Boyer, Kyle Mew Android Application Development

Cookbook .

[2] https://homepages.thm.de/~hg51/Veranstaltungen/MasterS

eminar1011

[3] https://developer.android.com/reference/android/app/Servi

ce.html

[4] Jakob Iversen, Michael Eierman Learning Mobile App

Development (A hands-on guide to develop i-os and

android application).

[5] Michael Burton Android App Development for

Dummies.

[6] Marko Gargenta & Masumi Nakamaru Learning

Android.

https://homepages.thm.de/~hg51/Veranstaltungen/MasterSeminar1011
https://homepages.thm.de/~hg51/Veranstaltungen/MasterSeminar1011
https://developer.android.com/reference/android/app/Service.html
https://developer.android.com/reference/android/app/Service.html

